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Abstract

Good continuation is a fundamental principle of perceptual or-
ganization that guides the grouping of parts based on how they
should succeed one another within coherent wholes. Despite the
general language that was used by the Gestalt psychologists in
phrasing this principle, computational work has focused almost
exclusively on the study of curve-like structures. Here we offer, for
the first time, a rigorous generalization of good continuation to ar-
bitrary visual structures that can be abstracted as scalar functions
over the image plane. The differential geometry of these structures
dictates that their good continuation should be based both on their
value and on the geometry of their levelsets, which yield a coupled
system of equations solvable for a formal model. We exhibit the
resulting computation on shading and intensity functions, demon-
strating how it eliminates spurious measurements while preserving
both regular structure and singularities. Related implementations
could be applied to color channels, motion magnitude, and dispar-
ity signals.

1. Introduction and background

Perceptual organization has its origins in Wertheimer’s
phenomenological observations about perception [33, 19]
which identify the need for an inferential process that pro-
vides a “description that decomposes the image into con-
stituents that capture regularity or coherence [and] therefore
provides descriptive chunks that act as ‘semantic precur-
sors’, in the sense that they deserve or demand explanation”
([35, p. 483]). Good continuation, perhaps the most promi-
nent organizational principle, is described by Wertheimer
as the “inner coherence” by which “successive parts of a
whole should follow one another” [33, p. 83]. It has inspired
investigation into curve-like structures from computational
(e.g., [32, 29, 22, 8, 9, 34, 17]) psychophysical, physiologi-
cal, and anatomical considerations (e.g., [11, 3, 28, 20, 2]).

While the identification of good continuation with curves
is historical (see Fig. 1a,b), it is clear that Wertheimer meant
more. Indeed, Wertheimer intentionally phrased his “Factor
of Direction” in general terms, and our goal is to develop
this computationally for arbitrary scalar functions from the
image plane to the real line R (or subintervals thereof). The
need is also illustrated in Fig 1, which shows how intensity
distributions can conspire to obscure boundaries and frus-
trate image segmentation systems. Indeed, various nonlin-
ear diffusion techniques for smoothing higher dimensional
data sets (e.g., [30, 31]) relate indirectly to good continua-
tion. These techniques, however, were not only criticized on
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Figure 1. Good continuation in perceptual organization is clas-
sically phrased in terms of contours, e.g., to dictate the groups f1-f4
and f2-f3 in panel a, or to override context and visual experience
in panel b. But issues of good continuation arise in more general
cases also, for example in the context of segmentation of objects
that reflect light comparable to the background, a problem that is
exacerbated with noise. This happen frequently in natural images
and in medical imagery, e.g., when there is a lack of bone density
(note boundary regions pointed by arrows in panels c and d), and it
is typified by the example of opposing intensity gradients (note the
central region in panele). How can such boundaries be structured
without causing ’bleeding’ between regions? To our knowledge no
existing region or boundary detection system can solve this prob-
lem and here we show how it can be treated in the framework of
good continuation.

a principled validity level (cf. [18]), but they do not address
good continuation explicitly. We demonstrate this directly
in our experimental section. A more explicit consideration
of good continuation of non curve-like features has been at-
tempted within the tensor voting framework [10] for surface
patches, and formal considerations based on a frame field
representation were offered by Ben-Shahar and Zucker [1]
for locally parallel structures. We follow the latter in using a
frame field representation, but note that it, too, is incomplete
for general scalar functions.

We stress that this paper is theoretical and general, so
our results are applicable not only to images and shading
functions (presented therein), but also, for example, to the
R, G, and B channels of color images; to color saturation
and intensity in HSV representations; to disparity informa-
tion along epipolar lines in a stereo pair; to texture energy
channels;and to the magnitude of optical flow fields.

2. The geometry of 2D scalar features

Let I : R2 → R be a generic image feature defined over
the image plane. For now, assume I is smooth. (We will fre-
quently refer to I as the “shading” function, although this is
a choice of convenience only; it may be one of the many
image features described above.) Our goal is to group dif-
ferent measurements (”parts”) of I into coherent “wholes”.
Following the Gestalt principle of good continuation, two
nearby measurements should be considered part of the same
coherent unit if and only if they are in good “succession”
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Figure 2. Although any general 2D scalar function over the im-
age plane can be viewed as a set of values over a global coordinate
frame (left), we will stress the importance of its levelset geometry
(right) by making this aspect explicit in the representation that we
use. Without loss of generality, and for convenience reasons only,
this and the rest of the illustrations therein use a shading function
as an instance of the abstraction.

relative to each other [33]. The question is how to define
”succession”.

One possibility is to approximate the “good’ behavior of
the function I : R2 → R around a point q = (a, b) based on
the coefficients of its Taylor expansion. Depending on the
level of approximation, this results in one (I(q)), three (I(q)
and the gradient ∇I(q)), six (I(q), ∇I(q), and the Hessian
H(q)), or even higher number of parameters (plus the two
parameters that describe q itself), for example by

I(x, y) ≈ I(q) + (x − a)Ix(q) + (y − b)Iy(q) (1)

+ 1
2!

[

(x − a)2Ixx(q) + 2(x − a)(y − b)Ixy(q) + (y − b)2Iyy (q)
]

Another view – closer in spirit to good continuation –
is that such approximations should be based on the levelset
geometry of these functions [4, 27, 18, 6]. Because the lev-
elset geometry of smooth regions is generically locally par-
allel (Fig. 2), as follows from the classical existence theorem
for ordinary differential equations, we can apply a construc-
tion from Ben-Shahar and Zucker [1] developed for texture.
By their work, approximately locally parallel structures in
the image plane can be characterized at point q by a triple
{θ(q), κT (q), κN (q)}. If we denote by ÊT (x, y) the unit
length vector field tangent to I’s levelsets, then θ(x, y) is
ÊT ’s orientation relative to a global coordinate frame

ÊT = (cos θ, sin θ),

and κT (x, y) and κN (x, y) are the tangential and normal
curvatures of this vector field, i.e., they are the initial rate of
change of orientation in the tangential direction ÊT and the
normal direction ÊN = (− sin θ, cos θ), respectively. These
two curvatures are derived from the covariant derivative of
the field ÊT and they are related to the gradient of the ori-
entation function ∇θ via the formulas:

κT = ∇θ · (cos θ, sin θ) θx = κT cos θ − κN sin θ
κN = ∇θ · (− sin θ, cos θ θy = κT sin θ + κN cos θ .

(2)

But {θ(q), κT (q), κN (q)} are only three parameters, capa-
ble of approximating the local levelset geometry but not all
of I(x, y) in the neighborhood of q. To achieve that goal we
must expand the {θ(q), κT (q), κN (q)} descriptor and add
parameters that map values on top of the geometry. We
therefore return to the Taylor descriptor, focus on 2nd order

approximations (this is the lowest order that captures varia-
tions in the levelset geometry), and seek an extension of the
{θ(q), κT (q), κN (q)} descriptor that maps one-to-one with
the set {I(q), Ix(q), Iy(q), Ixx(q), Ixy(q), Iyy(q)}. In other
words, we need to expand the set {θ(q), κT (q), κN (q)} with
other measurements at q such that all of the Taylor coeffi-
cients can be computed directly from the new set.

Obviously, I(q) must be included explicitly in our ex-
panded set. Since by definition ÊT is tangent to I’s lev-
elsets, ∇I is parallel to ÊN and we arbitrarily select ÊN to
point away from ∇I (Fig. 2), i.e.,

ÊT =
(Iy ,−Ix)

||∇I||
Ix = ||∇I|| sin θ

ÊN =
(−Ix,−Iy)

||∇I||
Iy = −||∇I|| cos θ ,

(3)

which implies that ||∇I ||(q) should be incorporated into
our descriptor. To account for the second derivatives
Ixx, Ixy, Iyy we first differentiate Ix and Iy from Eq. 3

Ixx = −||∇I||θx cos θ − sin θ
∂

∂x
||∇I||

Ixy = −||∇I||θy cos θ − sin θ
∂

∂y
||∇I||

Iyx = −||∇I||θx sin θ + cos θ
∂

∂x
||∇I||

Iyy = −||∇I||θy sin θ + cos θ
∂

∂y
||∇I|| .

At first glance, these equations suggest that we need to add
both ∂

∂x
||∇I || and ∂

∂y
||∇I || as free parameters in our de-

scriptor, which will result in a total of seven parameters,
one more than Taylor. However, the integrability constraint
Ixy = Iyx translates to

∇I · ∇θ = −ÊT · ∇||∇I||

and removes one degree of freedom. Thus either the di-
rection of ∇||∇I || or its magnitude, but not both, should be
used. If γ is the angle between ∇I and ∇θ, and β is the an-
gle between ÊT and ∇||∇I ||, then the cosine rule dictates
that once we set the magnitude of ∇||∇I || the angle must
satisfy

cos β =
||∇I|| · ||∇θ|| · cos γ

||(∇||∇I||)||
.

In conclusion, from this discussion we have

Proposition 1 With notation as above, the set
{I, ||∇I||, θ, κT , κN , ||(∇||∇I||)||} evaluated (or measured)
at point q is an appropriate 2nd-order levelset-centered
descriptor for I(x, y) in the neighborhood of q.

These parameters are illustrated in Fig. 3. We now use this
descriptor to design a local model for I(x, y) in the neigh-
borhood of q such that good continuation of both levelsets
and values hold simultaneously. Moreover, by extending
the model for locally parallel structures [1] exactly to I’s
levelsets, we are able to remove one parameter and end up
with a local descriptor that has the five natural parameters:
{I, ||∇I ||, θ, κT , κN}.

3. Levelsets good continuation model

A primary goal of this work is to develop a model
Î(x, y) of good continuation based on the descriptor de-
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Figure 3. The geometrical parameters underlying the local de-
scription of general 2D scalar functions up to second order. Note
that although the levelset curvatures are depicted as projections
of ∇θ on the frame {ÊT , ÊN}, their more intuitive depiction,
avoided here to prevent clutter, is through two osculating circles,
one tangent to ÊT and another tangent to ÊN , having radii 1/κT

and 1/κN , respectively. Please refer to the text for additional ex-
planations.

rived above. More specifically, we seek a family of func-
tions Î{I,||∇I||,θ,κT ,κN}(x, y), parametrized by the different
measurements at point q, that reflects good continuation in
the neighborhood of q, both for its levelset geometry and
for the distribution of its values. Assuming, without loss of
generality, that our model is constructed around the origin
q = (0, 0) with the coordinate system aligned with the tan-
gent of the levelset at that point, i.e., with ÊT (q) = (1, 0)
or θ(q) = 0, a model that reflects good continuation for the
locally parallel structure of the levelsets has already been
proposed in the literature [1] and takes the form

θ(x, y) = tan−1
(

KT x + KNy

1 + KNx − KT y

)

(4)

where KT = κT (q) and KN = κN (q). When viewed as
a surface in the space XY θ (i.e., R

3 whose Z axis repre-
sents orientation), this function is known as a right helicoid.
Several instances of this model, depicted as texture patterns
stripped of any value structure, are shown in Fig. 4.

Such a helicoidal model possesses several geometrical
properties that associate it with good continuation. Perhaps
most importantly, this model uniquely induces an identical
covariation of the two curvature functions κT and κN and
guarantees that their ratio remains invariant in a neighbor-
hood N(q) of q

κT (x, y)

κN (x, y)
= const =

KT

KN

∀(x, y) ∈ N(q). (5)

Therefore, unlike common ways to achieve “good behav-
ior” of 2D (or higher dimensional) structures, typically via
anisotropic diffusion and deformable models (e.g., [31, 30]),
the helicoidal model emerges from considerations of the be-
havior of curvatures in the image plane and thus it is a closer
in spirit to the methodology that was employed in the study
of good continuation of curves (e.g., [32, 22, 21, 17]). As a
consequence, this model guarantees that streamlines of the
model’s flow structure will have neither curvature extrema
nor inflection points, both of which are considered signifi-
cant geometrical events for segmentation and part decompo-
sition (e.g.,[26, 12]) and therefore are clearly inappropriate
for a model for coherence.

Although it emerges from explicit good continuation
considerations in the image plane, the helicoidal model does
enjoy properties that link it to scale space and diffusion tech-
niques. In particular, this model (as an orientation function)
was also proved to be both p-harmonic for all values of p
and a minimal surface in XY θ. For all these reasons we use
this object as a starting point for the more general model
that we seek for the good continuation of general 2D scalar
functions over the image plane.

4. Extended model for 2D functions

The helicoidal model defines only the levelset structure
of our sought after model Î{I,||∇I||,θ,κT ,κN}(x, y). One way
to proceed toward this general model is to express the heli-
coidal model directly in terms of a function I(x, y) whose
levelsets obey the helicoidal orientation function and then
explore the constraints that this derivation entails. From the
identity θ = tan−1 −Ix

Iy
we can derive ∇θ in terms of I’s

derivatives

θx =
IxIxy−IyIxx

I2
x+I2

y
θy =

IxIyy−IyIxy

I2
x+I2

y
(6)

and using Eq. 2 and 3 we can therefore express the two cur-
vature functions in terms of I’s derivatives

κT =
I2
xIyy−2IxIyIxy+I2

yIxx

(I2
x+I2

y)3/2

κN =
Ixy((I2

x+I2
y)+IxIy(Ixx−Iyy)

(I2
x+I2

y)3/2

(7)

By applying the constraint in Eq. 5 we can therefore obtain
a constraint that forces Î to have helicoidal levelsets

0 = Ixx(KNI2
y − KT IxIy) + (8)

Ixy(KT (I2
x − I2

y) − 2IxIy) +

Iyy(KNI2
x + KT IxIy) .

While this second order PDE defines a necessary condition
which Î must satisfy, its nonlinear nature suggests that a
closed form solution may be difficult to obtain. A more pro-
ductive way to generalize the levelsets’ helicoidal model to
a general model Î{I,||∇I||,θ,κT ,κN}(x, y) is to integrate the
former (which is already parametrized by θ, KT , and KN )
into a closed form which is parametrized by the newly in-
troduced parameters I and ||∇I ||. Doing so requires several
steps. First we derive a closed form expression for Î’s lev-
elsets by solving for the characteristics of a 1st order differ-
ential equation derived from the helicoidal model. Second,
we derive a non-characteristic Cauchy curve [16] which is
used to parameterize the entire solution as a dense collection
of levelsets. This parameterization is finally used to impose
additional good continuation constraints for the derivation
of the final desired model. All these steps are discussed next.

4.1. Levelsets closed form

Let I(x, y) an arbitrary smooth scalar function over the
image plane. The orientation of I’s levelsets satisfy (see
Eq. 3)

θ = tan−1

(

−Ix

Iy

)

(9)
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Figure 4. Stripped of its value (say, shading) structure, underlying Î(x, y) - the model for good continuation - is the geometry of its levelsets,
which as we argue should have good continuation qualities of its own. For this purpose we utilize an already proposed model for the good continuation
of locally parallel structure - a right helicoid in XY θ [1]. Shown here are just several examples of helicoidal levelset structures around a central
point q having θ(q) = 0 and different curvature values κT (q) and κN (q) as indicated. Geometry patterns were generated using the line integral
convolution method [5].

and therefore, once we are given an orientation function
θ(x, y) for I’s levelsets, I(x, y) must satisfy the PDE

Ix + Iy tan θ(x, y) = 0 . (10)

Now, since θ(x, y) will be based on the helicoidal model
for good continuation of locally parallel structure [1], from
Eq. 4, we obtain the following PDE that our model should
satisfy

(1 + KNx − KT y)Ix + (KT x + KN y)Iy = 0 . (11)

The characteristic curves [16] of this PDE must satisfy
dx

dt
= 1 + KN x − KT y

dy

dt
= KT x + KNy

dI

dt
= 0

a system whose solution α(t) = (x(t), y(t), I(t)) can be
written in closed form as

x(t) = etKN (c1 cos(tKT ) − c2 sin(tKT )) − KN
ξ2

y(t) = etKN (c1 sin(tKT ) + c2 cos(tKT )) + KT
ξ2

I(t) = c3

(12)

where ξ2 = K2
T + K2

N and the coefficients c1, c2, and c3,
are determined from the initial data

x(t = 0) = x0

y(t = 0) = y0

I(t = 0) = I0

}

⇒







c1 = x0 + KN

ξ2

c2 = y0 −
KT

ξ2

c3 = I0

. (13)

Given any point in the image plane, we are now able to
trace its levelsets via Eqs. 12 and 13. Deriving such a closed
form for the levelsets should not be taken for granted. In
fact, many levelset orientation functions θ(x, y), including
functions much simpler than the helicoidal one used here,
would give rise to nonlinear characteristic PDEs with no
closed form solution. The fact that we are able to do so
with a function that was shown to have good continuation
qualities is a property that will prove most valuable in the
derivation of a closed form model for Î(x, y) as a whole.

4.2. Solution parameterization

Since Eqs. 12 and 13 transform point initial data to a
curve, they will turn initial data along a curve into a sur-
face patch in R

3. Let Γ(s) = (x0(s), y0(s), I0(s)) be such

an initial Cauchy data parametrized by s. As long as Γ is not
a characteristic curve (and as long as other minor anomalies
are avoided), the substitution on Γ into Eqs. 12 and 13 yields
the following parametric surface

x(t) = −KN+etKN [(x0(s)ξ2+KN ) cos(tKT )+(KT −y0(s)ξ2) sin(tKT )]

ξ2

y(t) = KT +etKN [(x0(s)ξ2+KN ) sin(tKT )+(y0(s)ξ2
−KT ) cos(tKT )]

ξ2

I(t) = I0(s)
(14)

Given this closed form, it is left to find a “legal” (i.e., non
characteristic) initial curve Γ(s). To separate the “spatial”
component (x0(s), y0(s)) of Γ from its “shading” dimen-
sion I0(s), we first consider the projection of Γ(s) on the
image plane, i.e., the curve Γxy(s) = (x0(s), y0(s)). One
safe venue is to select a Γxy(s) that is everywhere orthog-
onal to the characteristic curves. If the latter are computed
by tracing the direction tangential to the levelsets, i.e., the
direction of ÊT , constructing a curve that is everywhere or-
thogonal will be based on integration along ÊN . Repeating
the process from Sec. 4.1 for the system

dx
ds

= −KT x − KN y dy

ds
= 1 + KNx − KT y

and the initial data x0 = 0 and y0 = 0 yields the following
solution for Γxy(s)

x0(s) = −KN +e−sKT (KN cos(sKN )+KT sin(sKN ))

ξ2

y0(s) = KT +e−sKT (−KT cos(sKN )+KN sin(sKN ))

ξ2 .
(15)

Substituting Eq. 15 into Eq. 14 results with the following
expression for our sought after model

x(s, t) =
−KN+e(tKN −sKT )[KN cos K̃(s,t)+KT sin K̃(s,t)]

ξ2

y(s, t) =
KT +e(tKN −sKT )[KN sin K̃(s,t)−KT cos K̃(s,t)]

ξ2

I(s, t) = I0(s)

(16)

where K̃(s, t) = sKN + tKT .
Eq. 16 is a key result of special importance to this

paper. It provides an explicit parameterization of the
desired good continuation model based on its desired
levelset structure (i.e., the helicoidal good continuation
model). It therefore parameterizes the sought after model
Î{I,||∇I||,θ,κT ,κN}(x, y) around the point q (which, without
loss of generality, can be considered to be the origin) as a
collection of integral curves that emerge from the generator
curve Γxy(s) (see Fig. 5). What is left to consider is the dis-
tribution of values I0(s) along Γxy(s) from which we can



complete the definition of Γ(s) and the solution surface as a
whole. Since nothing in the levelset geometry can constrain
this distribution, we will need to incorporate additional good
continuation constraints, as discussed below. However, be-
fore doing so, one needs to realize that the parameterization
provided by Eq. 16 is not Cartesian. This is a major limita-
tion because eventually the good continuation model should
be used with images provided in Cartesian coordinates. Of
particular concern is the fact that once a model is available,
it should be applied to image patches whose spatial extend
is defined using the L2 norm to have circular shape. Can
we bridge this parameterization gap easily? Is it possible to
re-parameterize Eq. 16 based on Cartesian coordinates?

(x(s  ,t),y(s  ,t))1 1

(x(s  ,t),y(s  ,t))2 2

(x(s  ,t),y(s  ,t))3 3

(x(s  ,t),y(s  ,t))4 4

x,yΓ (s)

(x(0,t),y(0,t))

Figure 5. Eq. 16 parameterizes the plane as a collection of
curves, each of which is a projection of a levelset curve on the im-
age plane. Shown here is the generator curve Γ(s) and several of
the generated levelset curves, superimposed on a helicoidal pattern
of KT = 0.1 and KN = 0.1.

Given the gap between the available and desired param-
eterizations, and the nontrivial form of Eq. 16, it is remark-
able that the last question can be answered in the affirma-
tive. Formally, we seek a reparametrization s = s̃(x, y)
and t = t̃(x, y) such that, when applied to s and t in
Eq. 16 makes both x(s̃(x, y), t̃(x, y)) and y(s̃(x, y), t̃(x, y))
the identity transformation. While here we skip most of the
tedious algebraic manipulations, it can be verified that the
transformation from (s, t) to (x, y) defined by Eq. 16 is re-
versible and that every coordinate (x, y) can be traced back
to the pair (s, t) with the following transformation

s̃(x, y) =
sign(KT x+KN y)KN cos−1 ω(x,y)−KT log µ(x,y)

ξ2

t̃(x, y) =
sign(KT x+KN y)KT cos−1 ω(x,y)+KN log µ(x,y)

ξ2

(17)

where

µ(x, y) =
√

1 + 2KN x − 2KT y + ξ2(x2 + y2)

ω(x, y) =
1 + KN x − KT y

µ(x, y)
.

It can be shown that the expression under the square root is
never negative, and therefore µ(x, y) is always real valued
and the logarithm is always well defined. µ(x, y) vanishes at

a single point
(

−Kn

ξ2 , Kt

ξ2

)

which is the same singular point

of the helicoidal model as a whole.
Having Eq. 17, and an explicit way to switch back and

forth between the levelset-centered and the Cartesian pa-
rameterization, we are now able to plug s̃(x, y) to the I(x, t)
component of Eq. 16 to obtain an explicit description of our

desired model in terms of Cartesian coordinates
I(x, y) = (18)

I0

(

sign(KT x+KN y)KN cos−1 ω(x,y)−KT log µ(x,y)

ξ2

)

What is left to do is to devise the function I0(s) in a way
that makes the value structure of the resultant I(x, y) satisfy
certain good continuation properties (i.e., in additional to
the already guaranteed good continuation of its levelsets).

4.3. Derivation of the final model

Eq. 18, and the function I0(s) on which it is built, rep-
resent the backbone on which any scalar function with heli-
coidal levelsets can be constructed in Cartesian coordinates.
But of all these functions, which one would best suit good
continuation?

While this question was never addressed explicitly from
a perceptual organization point of view, the notion of “nice”
functions is of course ubiquitous in image analysis, espe-
cially for denoising and scale space analysis. Typically, the
desired behavior in this context is achieved by low pass fil-
tering [15] or by minimization of some variation measure
through anisotropic diffusion [30, 31]. In this sense, the he-
licoidal model for the levelsets already achieves that goal
for the geometry underlying I(x, y), as it was shown both
to have a vanishing p-Laplacian (a measure used in, e.g.,
[31]) for all values of p and to be a minimal surface (used
in, e.g., [7]) in XY θ [1]. It is therefore natural to exam-
ine these measures also for the value structure of our sought
after model and attempt to derive a model Î(x, y) that has
the same good continuation properties for both its levelset
and value structures. Fortunately, Eq. 18 allows to formally
explore the last proposal in a straight forward way. Gen-
erally speaking, we seek to translate a desired differential
constraint F on I(x, y) to a differential constraint G on I0,

F(I, Ix, Iy, Ixx, Ixy, Iyy;x, y) = 0 ⇒ G(I0,
∂I0

∂s
,
∂2I0

∂s2
; s) = 0 ,

then solve G for I0(s) (if solvable) and plug back into
Eq. 18 to obtain the final explicit solution.

Eq. 18 can be differentiated for an arbitrary differentiable
I0(s) using the chain rule

Ix = ∂I0
∂s̃

∂s̃
∂x

Iy = ∂I0
∂s̃

∂s̃
∂y

Ixx = ∂2I0
∂s̃2

(

∂s̃
∂x

)2
+ ∂I0

∂s̃
∂2 s̃
∂x2

Ixy = ∂2I0
∂s̃2

∂s̃
∂x

∂s̃
∂y

+ ∂I0
∂s̃

∂2 s̃
∂x∂y

Iyy = ∂2I0
∂s̃2

(

∂s̃
∂y

)2
+ ∂I0

∂s̃
∂2 s̃
∂y2

(19)

and the derivatives of s̃(x, y) are readily computed from
Eq. 17 (with some special care involving the sign function):

∂s̃

∂x
= −

KT x + KNy

µ2(x, y)
(20)

∂s̃

∂y
=

1 + KNx − KT y

µ2(x, y)

∂2 s̃

∂x2
=

µ2(x, y)KT − 2(ξ2x + KN )(KT x + KNy)

−µ4(x, y)

∂2 s̃

∂x∂y
=

µ2(x, y)KN − 2(ξ2y − Kt)(KT x + KNy)

−µ4(x, y)

∂2s̃

∂y2
=

−µ2(x, y)KT − 2(ξ2y − Kt)(1 + KNx − KT y)

−µ4(x, y)
.
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Figure 6. One instance of the dual harmonic good continuation
model of Eq. 21, both as a shading patch and as a set of levelsets
(highly quantized for clarity of display). This instance corresponds
to θ(0, 0) = 0, KT = 0.1, and KN = 0.1, where the origin is at
the center of these plots.

Having these last two sets of equations we are able to
impose any desired (second order) differential constraint F
and examine the transformation to G. Remarkably, asking
I(x, y) to have a vanishing Laplacian (the special case of a
p-Laplacian with p = 2, or a critical point of the harmonic
energy

∫∫

||∇I ||2dxdy) results in the following transforma-
tion

F = ∇ · ∇I = Ixx + Iyy = 0 ⇒ G =
I′′0 (s)

µ2
= 0

and since µ never vanishes in the helicoidal domain of def-
inition, it is safe to determine that under the harmonic con-
straint I0(s) takes the form

I0(s) = I′0(0)s + I0(0) .

Combining this form with Eq. 18 gives rise to the following

Proposition 2 (Dual harmonic good continuation model)
A general scalar good continuation model that is harmonic
in both its value and levelsets structures takes the form

Î(x, y) = I0(0)+ (21)

I′
0(0)

ξ2

[

sign(KT x + KNy)KN cos−1 ω(x, y) − KT log µ(x, y)
]

where µ(x, y), ω(x, y), and ξ2 are all as defined in previous
sections.

It should be noted that although expression 21 appears ill
defined for ξ2 = 0 (i.e., for KT =KN =0), the limit actually
converges to the following simple function

lim
KT → 0
KN → 0

Î(x, y) = I0(0) + I ′0(0)y .

The non trivial expression in Eq. 21 represents a most
unique object. It is a scalar function whose levelset geom-
etry and it value structure are both harmonic functions at
the same time! This “dual harmonic” model therefore com-
plies both with the helicoidal good continuation model and
the criterion commonly used to denote “good” scalar func-
tions. Since I0(0) = I(0, 0), and I ′

0(0) = ||∇I ||(0, 0), this
model, by construction, is based on those levelset-centered
local features which we discussed in Sec. 2, namely on the
set {I, ||∇I ||, θ, κT , κN} as measured at the origin (or more
generally, at a general point q). Fig. 6 shows one instance of
this model, with and without its levelsets emphasized.

To conclude this section, and the theoretical part of this
paper, it should be mentioned that an analysis similar to the

one presented above proves that “dual p-harmonic” good
continuation models exist for all values of p. No solution
exists, however, for a model that its value structure is a min-
imal surface. For space considerations, a formal discussion
and proofs of these last statements are described elsewhere.

5. Contextual inference and results

Having a model for the local behavior of “good” scalar
features provides the ability to assess the degree to which a
particular measurement at one point is compatible, or con-
sistent, with the context in which it is embedded. This, in
turn, can be used to remove spurious measurements and re-
place them with consistent ones such that local ambiguity is
reduced and global structures become coherent. There are
several different frameworks in which one can pursue this
task while maximizing some measure of global coherency
over a domain of interest, including, for example, relaxation
labeling [14, 24], recurrent neural networks [13], and belief
propagation networks [23]. Here we present results using
a relaxation labeling network whose nodes i = (x, y) are
the image pixels and the labels λ at each node are drawn
from the set of 5-tuples Λ = {(I, ||∇I||, θ, KT ,KN )}, where
I ∈ [0, 1], ||∇I|| ∈ [0,∇max], θ ∈ [−π, π), and κT , κN ∈ [−K,K]

(after appropriate quantization of these domains).
Initially, the measurement process assigns a confidence

value, or probability p0
i (λ), to each possible label such that

at each node
∑

λ∈Λ pi(λ) = 1. The relaxation process it-
self drives this initial confidence distribution p0

i (λ) to a fi-
nal (possibly ambiguous) distribution p∞

i (λ). What governs
the dynamics of this process, and ultimately its convergence
state, is the compatibility relationships rij(λ, λ′) between
different labels at different nodes. In our case, these com-
patibilities represent the degree to which two nearby pix-
els have consistent values based on the model for consis-
tency developed above (Proposition 2). For lack of space
we omit the rest of the technical details and refer the reader
to the many papers on the subject that describes its theoreti-
cal foundations (e.g., [14, 24]).

We have examined the performance of this approach on a
variety of shading images, both synthetic and natural. Three
of the benchmark images we used are presented in Fig. 7.
Since both values and levelset geometry are important, we
show both aspects in all figures.
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Figure 7. Test images (gradient edge, gradient patches, and ba-
nanas) and their levelsets geometry.



Fig. 8 illustrates the results of the inference of coherent
structure on the input images, and compares these results
to state-of-the-art anisotropic diffusion processes [25, 30] to
show how this computation is able to provide superior orga-
nization that effectively eliminates spurious measurements
and noise while preserving both singularities and much of
the underlying levelset geometry. All relaxation results are
shown after 5 iterations. Diffusion results are shown after
200 iterations on clean images (to illustrate the qualitative
effect of the process on typical visual structure), after 100
iterations on images with additive noise (which was near the
minimal number of iteration required to get rid of most, but
not necessarily all of the noise), and after 500 iteration on
images with Salt and Pepper noise (which was never enough
to eliminate the noise). Observe the near flawless behavior
of the good continuation process in comparison to these con-
temporary diffusion schemes, not only in terms of noise re-
moval and preservation of perceptual edges, but more so in
terms of preserving and reconstructing the general levelset
geometry. In comparison, diffusion of the noisy images dis-
torts these structures long before noise is removed (though
this is true in general, it is particularly evident with Salt and
Pepper noise). Results on clean images are shown in order
to illustrate qualitatively the effect of all these processes on
typical visual structure which without noise should be pre-
served as long as possible.

6. Summary

This paper presents a theory, a formal derivation, and a
method for the organization of coherent structure of gen-
eral 2D scalar visual features based on the principle of good
continuation. We have shown how geometrical good contin-
uation may be applied to general functions by considering
both their levelsets and the distribution of values and have
developed a formal model in which both aspects are har-
monic functions simultaneously (extendable to p-harmonic
for any value of p). We have used this model in a relaxation
labeling computation and demonstrated how this perceptual
organization-based approach provides superior performance
in eliminating spurious measurements while preserving sin-
gularities and much of the underlying levelset geometry.
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Figure 8. Results of applying the good continuation inference process on a synthetic and natural shading patterns (unless printed on a quality
printer, details in several images may be difficult to observe. In this case, please refer to the electronic version and zoom in on individual panels).
Different rows relate to performance on different input images, where each input image is tested with no noise (top row of each triple), with Gaussian
additive noise (middle row, σ = 0.002, Matlab’s implementation), and with Salt and Pepper noise (bottom row, p = 0.1, Matlab’s implementation),
respectively. Please refer to the main text for additional explanations.


