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To Push or Not to Push: On the Rearrangement
of Movable Objects by a Mobile Robot

Ohad Ben-Shahar and Ehud Rivlin

Abstract—We formulate and address the problem of planning
a pushing manipulation by a mobile robot which tries to rear-
range several movable objects in its work space. We present an
algorithm which, when given a set of goal configurations, plans
a pushing path to the “cheapest” goal or announces that no such
path exists. Our method providesdetailed manipulation plans,
including any intermediate motion of the pusher while changing
contact configuration with the pushed movables.

Given a pushing problem, a pushing path is found using a
two-phase procedure: a context sensitive back propagation of a
cost function which maps the configuration space, and a gradient
descent phase which builds the pushing path. Both phases are
based on a dynamic neighborhood filter which constrains each
step to consider only admissible neighboring configurations. This
admissibility mechanism provides a primary tool for expressing
the special characteristics of the pushing manipulation. It also al-
lows for a full integration of any geometrical constraints imposed
by the pushing robot, the pushed movables and the environment.

We prove optimality and completeness of our algorithm and
give some experimental results in different scenarios.

Index Terms—Manipulation planning, pushing planning.

I. INTRODUCTION

PUSHING is an important, basic robotic manipulation. As
with grasping, pushing is used to change both the position

and the orientation of objects. However, one might claim that
pushing has several advantages over grasping. It allows for
easier simultaneous manipulation of groups of objects, permits
the manipulation of larger and heavier objects, and most
important—requires a simpler and cheaper robot structure than
does grasping.

However, the action of pushing has some evident draw-
backs which might make it less attractive than grasping. It is
inherently restricted to a support surface (unless embedded
within a very special context) which does not allow the
robot to exploit the third dimension while manipulating the
object. Hence, it is more likely that a specific task would
lack a solution. Pushing is also mechanically unstable, and
thus various control problems arise. Furthermore, pushing is
different from most other motion and manipulation methods
by the frequent encounters of irreversible states. A navigating
robot can easily change its path upon the realization of a wrong
decision. A grasping robot approaching a dead-end can usually
return to a previous decision point in order to bring the object
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Fig. 1. The problem of trap-points: while the (a) grasping mobile robot can
recover from the wrong decision by backtracking, the (b) pushing robot cannot.

to its target. In such cases and many others, the robot can
recover from wrong configurations simply by reversing its
moves. This property is not one that can be used by a pushing
robot due to the irreversibility of pushing. In other words, a
pushing robot might push the object to a point from which
no other pushing action can set it free. An example of such
a hazardous configuration, which we refer to as atrap-point,
is illustrated in Fig. 1.

Consequently, the successful completion of a pushing ma-
nipulation task requires planning. Unlike for other manipula-
tion or navigation tasks (e.g., [14]), an online, sensory based
pushing planner is likely to be either unsafe, or incomplete. We
believe that high level planning tasks which involve pushing
(as a special case of object manipulation) have their own
characteristics and constraints, hence deserve some special
attention.

While this paper deals with the issue of pushing planning,
there is no doubt that using mobile robots to push objects
around is an area of interdisciplinary research. In our view,
a pushing problem should incorporate three main aspects in
order to allow for a complete solution: themechanics of
pushing, pushing planning, and the integration ofsensing. We
refer the interested reader to [6], [15], [18], [19], [22], and
[23] for key publications in the mechanics of pushing. Related
work on the integration of pushing and sensing can be found
in [7]–[10], [16], [21], [24], and [27].
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Fig. 2. The structure of a pushing C-path. Each transit pathmustreside in
STABLE while each transfer/pushing pathmustreside in PUSH. Note however
that transfer path must not be contained in STABLE (e.g., it is possible to
push an object along a nonhorizontal surface yet it cannot be left on such a
surface without the pusher’s support).

Following the discussion above, we describe a basic algo-
rithm which is capable of creating a complete pushing plan
that is optimal by some cost criterion. Unlike previous work,
our algorithm provides a unified approach which handles both
the pushing actions, as well as any intermediate motion of the
pusher while it changes contact configuration, switches from
one movable to another or seeks its own goal configuration.

II. PROBLEM FORMULATION AND OVERVIEW

Let us consider the integrated configuration space of all
nonstatic objects in the environment (a robot and movable
objects). A pushing plan can be described as a special path in
that space. This path, which is a constrained version of simple
motion or manipulation paths, should express the constraints
imposed by our manipulative action—pushing. The pushing
problem is concerned with finding such a path, and it is
discussed below.

A. The Pushing Problem

Let be a set of bodies composing
the environment. is arobot (i.e., capable of self movement),

represents the union of allimmovablestatic bodies (i.e.,
obstacles), and is a collection ofmovablerigid
objects, capable of being moved by an external pushing force
which might be applied by

Each of the participating dynamic objects has its own
configuration space. Let be the configuration space of

and the configuration space of While the
dimension of can be arbitrary, the dimension of
is bounded by the environment in which moves. As
mentioned before, any pushing task must be carried out in
a context of some support surface. We thus consider only the
case of the two-dimensional environment leading to of

two or three dimensions. Let denote a specific configuration
of (i.e., a vector in and denote a specific
configuration of (i.e., a vector in

Using the above notations, let be the following Carte-
sian product which describes the space of common configura-
tions of the robot and all movable objects:

Each vector in is a composite configuration
for and

Let be the C-obstacle set in , i.e., the set of
all composite configurations in which at least two bodies
of overlap (note that even if .
Each composite configurationnot in is some legal
common configuration of ’s bodies and the set of all such
configurations will be denoted by
Along with the above configuration spaces we will also use
the following projection operators:

Let be the set of all neighboring configurations of
and let denote aconfiguration path(C-path)

between and Similarly, let denote a
C-path from to one of the configurationsin the set

Indeed, it is clear that not every
C-path, , is a pushing C-pathfrom to In
global terms, a pushing path is a special manipulation path and
can be defined in terms coined in [2], [12], and [13]. Like any
manipulation path, it is an alternate sequence oftransit paths
andtransfer paths, as illustrated in Fig. 2. Each transit path is
such that its projection on each is a single configuration
(i.e., a path in which no movable object is moving). Each
transfer path represents some pushing action and lies on the
boundary of (with at least one nonconstant projection
on some ). The last property follows from the fact
that pushing requires physical contact in order to be realized
(something which is true for most conventional manipulations,
unless the force is applied remotely, e.g., via a magnetic field).
Yet, since pushing is applicable by applying force only in
specific directions, all transfer paths of a pushing plan are
constrained further by the directions in which they can move
along the boundary of . This is illustrated in Fig. 3.

Equally, we can characterize a pushing path by local con-
straints. Let be the set of alladmissibleneighboring
configurations of Given a specific composite configuration

, a neighboring configuration is consideredadmissibleas
long as it can be reached from by some robot movement,
with or without a pushing action involved. We will also
use the complimentary definition for all configurations that
a given configuration is their admissible neighbor. This
set will be called theadmissible originof and denoted by

Now, a C-path could be defined as a
pushing C-pathif there is a continuous parametric function
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(a) (b) (c) (d)

Fig. 3. Configuration paths and pushing paths. Note that while many C-paths can be established between any two configurations, most of them cannot be
considered as pushing C-paths. (a) Three placements of a robot and one movable object, both with one degree of freedom (one axis of motion). (b) The
composite configuration space of the problem and a pushing C-path from Q1 to Q2. (c) Another C-path from Qi to Q2 which is not a pushing C-path.
Note that this C-path includes self-movement of M. (d) No pushing path can be found from Q2 to Q1 (note that the longer path is a pulling path). Similar
conclusion can be drawn regarding a pushing path from Q2 to Q3, though different reasons apply.

such that

Despite the restriction imposed by the above definition,
we may still find more than one (and usually an infinite
number of) pushing C-path between two given configurations.
Consequently, we would like to have some measure that can
be used to compare the “quality” of solutions. Let
be a positive cost metric in The cost (or length) of a
given C-path can be calculated by summing the
costs between all adjacent configurations building it. More
formally, under such a metric, the cost of a movement along
an infinitesimal segment of the C-path is

thus the total cost of the C-path will be

Given a set of all C-paths between two composite configura-
tions, we consider the minimal cost path as theoptimal path.

Using all of the above we are ready to define our pushing
planning problem.

Given (a description of the environment), an initial
composite configuration and some goal composite con-
figuration find a pushing C-path optimal
by a given metric or report if no such path exists.

B. Solution Overview

The rest of this paper describes an algorithm which models
the pushing path via local constraints and yet guarantees to
produce plans which are globally legal. This approach was
proved to be very easy to implement, while maintaining an
impressive expressive power to deal with both the nature of the
manipulation, most geometrical constraints and a large variety
of artificial constraints,

Given a pushing problem, the pushing path is found using
two phases: first, acontext sensitive back propagationmaps
each free configuration to the cost of executing an optimal
pushing plan which achieves the goal; then, this map is
used to build aspecificpushing plan from any given initial
configuration to the goal configuration. Both phases evaluate
the local constraints dynamically each time they need the set of
admissible neighbors or admissible origins. In that sense, the
neighborhood relationships in are kept only implicitly.
Since the cost map describes the cost of executing the pushing
plan, it enables us to determine immediately whether such a
plan exists or not.

In order to be numerically computable, and since exact
planning is hard to be realized in a physical environment, the
back propagation is carried out on a discretized version of the
composite configuration space. This methodology of a poten-
tial field integrated with an approximate cell-decomposition is
resolution-complete, so solutions are guaranteed to be found
for infinitely fine resolution.

In general, the algorithm is capable of dealing with an
arbitrary number of movable objects. However, the high com-
plexity involved limits practical applications to tasks involving
no more than few movable objects. It is interesting to note that
although computationally extensive, the more obstacles there
are, the faster the algorithm runs.

III. RELATION TO PREVIOUS WORK

In the extensive literature that is devoted to motion-planning
(see [11]), few studies address the problem of planning a push-
ing manipulation. Motion planning in the presence of movable
objects, which covers the basic aspects of the problem, is dis-
cussed in Section III-A. The differences from current methods
in assembly planning are briefly discussed in Section III-B.
Some works which directly address the problem of pushing
planning are covered in Section III-C.

A. Motion Planning in the Presence of Movable Objects

Having a pushing task in hand, we should instruct the robot
to move in such a way that some objects in the environment
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will be rearranged by the use of pushing. This variation on
the basic problem, of motion planning in the presence of
movable objects, was investigated in several studies, mainly
in the context of grasping tasks.

Wilfong [25] was the first to analyze the complexity of the
problem and showed that motion planning in the presence of
movableobstaclesis NP-hard. Moreover, in the case where
the final position of the movable obstacles is specified, the
problem becomes PSPACE-hard. This result convinced other
researchers to concentrate first on constrained versions of the
problem. Wilfong himself proposed an solution,
based on an exact-cell-decomposition (see [11]), for the case
of a robot translating amidst one movable polygonal obstacle
and a stationary environment of complexity

A generalized approach for the movable objects problem
was proposed in [2], [12], and [13]. They treated the problem
as amanipulation planningproblem, applying an exact cell
decomposition methodology to thecomposite configuration
spaceof the robot and the movable objects. The planning
result, namely themanipulation path, is an alternate sequence
of transit pathsand oftransfer paths. Based on this scheme, a
manipulation planning algorithm for a robot and one movable
object amidst polygonal obstacles was presented by Dacre-
Wright et al. [5].

While in general we expect a pushing path to have a the
same structure of a manipulation path, several differences do
apply. First, as mentioned in Section II, the pushing force
can be applied only in specific directions (i.e., one cannot
push an object by moving away from it). This observation
implies that the transfer paths cannot have anarbitrary di-
rection in the configuration space. Second, while Laumond
et al. defined each transfer path to manipulate onlyone
movable object, the general pushing path should allow, in
our view, a simultaneous manipulation of several objects.
Finally, while Laumondet al. defined each transfer path to
represent arigid manipulation (i.e., a manipulation during
which the geometric relationship between the manipulator
and the object remains constant), we findnonrigid manip-
ulations to be more realistic, especially in the context of
pushing manipulation.

B. Assembly Planning

When dealing with rearrangement problems, one may find
many common aspects toassembly planningtoo. However, the
state of the art research in the area of assembly planning [20]
addresses problems with different characteristics than ours.
Most that research ignores the manipulator, its geometry, and
any constraints on the allowed manipulation (e.g., pushing
only). The ultimate assembly planner should be able to gener-
ate plans directly from a CAD model of the goal assembly [26].
Consequently, assembly planning tends to ignore the initial
configuration of the parts and assumes that they come from
infinity. We, on the other hand, are interested inrearrangement
of parts, i.e., changing their common configuration from a
given initial configuration to a givengoal configuration. In
that sense, as well as in others, our rearrangement planning
problem is a generalization of the assembly planning problem.

C. Pushing Planning

Despite the great deal of motion planning research, not
much work has been done directly on the area of pushing
planning. Akella and Mason [1] analyzed the series of pushes
needed to bring a convex polygon to a desired configuration.
While using pushing manipulation, this problem is a very con-
strained version of the rearrangement problem. They allowed
only one convex movable object, used a simplified fence-
like pusher, and ignored any other geometrical constraints
(e.g., obstacles).

A comprehensive study was carried out by Lynch and
Mason [17] where both mechanics, control and planning issues
were considered. Their planning method was based on abest-
first search over an inexact representation of the configuration
space, which aimed at finding a path to some neighborhood of
the specified goal. Again, in this work they considered only
limited DOF by allowing only one movable object. It was also
assumed that the fence like pusher can change the contact
configuration (chosen from a discrete set) at any time, with
no restrictions. As mentioned before, in this paper we are
interested in multiple objects problems, where the solutions
inherently integrate the motion of the pusher, including all
intermediate motions between contact configurations.

Finally, a somewhat different problem was addressed by
Chen and Hwang [4] who presented a practical, heuristic and
inexact solution for many movableobstacles. Their method
is primarily a motion planning method (rather than rearrange-
ment planning) in which movable obstacles can be pushed
away by the robot whenever they stand in its way to the
goal.

IV. PUSHING PLANNING—A BASIC ALGORITHM

This section describes the general pushing planning algo-
rithm, proves its basic properties and discusses the underlying
admissibility model.

A. The Algorithm

The following algorithm solves the pushing planning prob-
lem with multiple goal configurations. Given aset of goal
configurations, the algorithm plans a pushing path to the
“cheapest” goal, or announces that no such path exists. In
addition, the algorithm is “insensitive” to the initial configura-
tion , and is able to find an optimal pushing path fromany
initial configuration. Selecting a different initial configuration
does not require major re-computation, and can be done online,
as long as the set of goals remains unchanged. We should
note that the cost of pushing to a specific goal depends on
the initial configuration we are starting to push from. Thus,
replacing the initial configuration might result in a different
final goal from .

As was mentioned before, we shall address the pushing
problem under limited resolution, using a discretized version
of . The use of such a discretized configuration space
requires no special modification in any of the above defi-
nitions. However, the termneighboring configurationsdoes
not refer to infinitesimal close configurations any more, and a
C-path is no longer needed to be described as a continuous
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(a) (b)

Fig. 4. (a) Typical pushing problem and (b) the set of its trap points. Once the object is pushed to intersect that set, no further pushing can set it free.

parametric function. Rather, any neighborhood relationship
will be defined in terms of adjacent discretized configuration
while C-paths will be described as a series of discretized
composite configurations. Consequently, the cost/length of
a C-path becomes simply the sum of the costs between
all adjacent configurations that constitute it, and optimality
becomes subject to the discretized version of the metricFor
simplicity, we will assume that each axis is discretized
with equal density (e.g., samples per axis), although such
an assumption is not required by the algorithm and might
incorrectly represent the different nature of the various degrees
of freedom (e.g., rotational versus translational DOF).

Given a pushing problem, an appropriate pushing path is
found using a two-phase procedure. The first phase uses
context sensitive back propagation of a cost function which
results in a mapping of each composite configuration in
to the optimal cost of a pushing plan that achieves a goal
configuration. The second phase restores a specific pushing
C-path that needs to be executed in order to move from some
initial configuration to its “nearest” goal configuration.

1) The Cost Mapping Phase:The cost mapping phase
maps each point in to the cost of the pushing C-
path connecting it to the “cheapest” goal. This mapping is
done by propagating a cost wave function originating at the
target configurations. We describe this back propagation as
context sensitivesince it floods onlyadmissibleorigins of each
configuration. This phase can be considered as a preprocessing
phase since it should be applied only upon a change in the set
of goal configurations. In many aspects, this phase resembles
the Dijkstra algorithm. However, it differs by the direction
of the propagation (backward versus forward), the support of
multiple goals (as opposed to Dijkstra’s single source), and the
fact that the graph’s edges are nota priori known but rather
constructed dynamically by the admissibility mechanism.

Let be the set of all points currently in the
wave front and let denote the cost of a specific
configuration. The following is the algorithm for building the

cost map over :

:

Find with minimal

To obtain a fully mapped free space, reaching was not
used as an additional termination condition of the propagation
loop. Working with a fully mapped free space may allow quick
answers for various initial configurations. It also permits the
robot to regain an optimal pushing path whenever it loses
its original one (due to odometry or control problems). One
should note that the above-mentioned test may not reduce
complexity in the worst case.

An important characteristic of the cost mapping phase is the
direction in which it is carried. Clearly, the backward propaga-
tion makes the mapping insensitive to the initial configuration.
Arguably, many rearrangement problems are such that their
goal configuration(s) is fixed while their initial configuration
may vary, hence insensitivity to the initial configuration is a
desired property. However, the backward propagation serves a
second, subtle point. As discussed in Section I, the irreversibil-
ity of pushing introduces trap points into the work space. While
this may not be observed at the first glimpse, the set of trap
points of a given task might cover major parts of the free space,
as illustrated in Fig. 4. Mapping these trap points is a useless
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activity, something which a planning algorithm better avoids.
The backward propagation achieves exactly that. By definition,
no configuration which allows pushing to the goal can have a
trap-point as its admissible origin. Hence, our context sensitive
back propagation can never reach a trap-point. This is not true
for a forward propagation, though.

2) The Pushing C-Path Restoration Phase:After the
whole space is mapped, a pushing C-path can be built from
any initial configuration simply by using a variation of a
gradient following hill-climbing. This process should preserve
the notable difference between a general C-path and a pushing
C-path, hence onlyadmissibleneighboring configurations are
considered in each step. The same constraint was used in the
propagation phase by limiting the propagation to
alone. Given an initial configuration the following
procedure restores the appropriate pushing C-path or reports
whether no such path exists. We will use the symbol
to denote a concatenation of a new point to the path and
the operator for arbitrary selection of an element
from a set.

or

The core of this procedure is the selection of the next con-
figuration. The operator is used since the cost map
might contain saddles and the optimal pushing C-path might
not be unique (this is easily seen for cases of symmetrical
solutions). The cost equivalence test is needed to ensure that
we select only optimal moves. Choosing, instead, the minimal
cost admissible neighbor as the next configuration in the
C-path might lead to nonoptimal pushing C-paths since it
practically ignores the cost metric. Integrating the metric test
is equivalent to keeping a pointer to the parent node, as done
in many graph search algorithms. Fig. 5 demonstrates such a
case where following minimal admissible neighbors results in
a nonoptimal pushing C-path.

B. The Role of Admissibility

A crucial part in the algorithm is the involvement of
admissible neighbors and origins. Basically, those are required
in order to produce legal C-paths (i.e.,pushingC-paths) and
avoid trap-points, as discussed in Section IV-A1. However,
an appropriate definition of admissible neighbors/origins of a
configuration can also be used to control the specific pushing
functionality of the robot, and to present other behaviors

(a) (b)

(c) (d)

Fig. 5. The role of the metric during the restoration phase. (a) CCF,
admissible neighbors and metric. (b) Result of the cost mapping phase. (c)
Output of the restoration phase. (d) Path found by minimal cost neighbor test.

into the planning. Notable examples of admissibility-based
controllable features are

• allowable pushing directions;
• allowable contact points which may serve for pushing

(note that after selecting the allowable pushing directions,
the contact points are space variant in the general case
since the friction distribution is not necessarily uniform);

• the number of objects that can be pushed at once and their
relative positions while being pushed together.

Any behavior chosen for the pushing planning affects the
size of and and the complexity of their
computation. In most of the cases, we can calculate those sets
using only local information (i.e., based on the “coordinates”
of the configuration alone), yet an accurate calculation requires
a full model of the pushing mechanics (including friction dis-
tribution, movable object parameters, etc.), which we assume
to be given by some external source. In order to clarify this
point, let us examine a task of pushing one movable object
when the only allowable manipulation is a pure translational
pushing to the left. Let us assume that the COF (center of
friction) of the object is known and that the robot can push
the movable object to the left only after maintaining a relative
position of , as illustrated in Fig. 6.

Given a configuration can be obtained by using
the following two steps.

1) Consider all neighboring configurations from which
could be reached by independent movement ofIn
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Fig. 6. The relative position that is needed to allow a translational pushing
to the left.

other words, all configurations such that

2) Consider all configurations from which could have
pushed toward In our case, if

then and are in accurate contact mode for the al-
lowable pushing. Thus, the configurationfrom which

could have pushed toward should also be
considered as an admissible origin. Calculatingis easy
since it can be directly obtained by subtracting the left
pushing vector from

While the admissibility mechanism serves as a primary tool
for expressing pushing abilities, it can be used to describe
environmental-based behaviors as well. We can use it to

• adjust pushing abilities (e.g., contact points and pushing
directions) in accordance with environmental parameters
(e.g., the normal to the support surface);

• limit the areas in which the robot can dismiss a movable
object after pushing it (e.g., no object should be dismissed
on an oblique area);

• force the robot to keep a minimal distance from an object
when not pushing it;

• prevent the robot from roaming or pushing in a nonsafe
distance from obstacles;

• allow self movement of objects in some areas due to
environmental influence (such as gravity).

Some of these behaviors are simulated in Section V.

C. Cost Metrics and Usage

While the admissibility mechanism allows us to distinguish
between legal manipulations and illegal ones, it is not sufficient
for weighting each manipulative action. A notable example is
the different weights which are likely to be allocated for the
action of pushing an object and the action of pure movement
when no pushing is involved, something which is not applica-
ble via admissibility. Thus, while the admissibility mechanism
limits the planning tolegal solutions, the cost metric enables
the preference of one legal solution over another.

An intuitive usage of the metric could be weighting the
pushing actions (e.g., by using the total mass of the objects
currently being pushed). Additional possibilities could involve
the current region’s passability (i.e., how hard is it to move in
a region), the distance from obstacles (in order to achieve safer

plans when possible), changes in object-robot contact modes
(in order to minimize them), etc. Some of these features are
illustrated in the simulations of Section V.

D. Correctness

In order to show that the algorithm is correct, we should
prove the following properties.

Claim 1: Given a pushing problem, the propagation phase
is guaranteed to stop.

Proof: Each iteration of the propagation is guaranteed
to produce exactly one new configuration, the cost of which
will never be overwritten. This property holds for the
minimal cost configuration extracted from the wave front
at the beginning of each iteration. Since the number of
available configurations in a discretized is bounded,
the propagation is guaranteed to stop.

Claim 2: Given a cost map (produced by the propagation
phase) and an initial configuration, the restoration phase is
guaranteed to reach (one of) the goal configuration(s).

Proof: Since the restoration phase is a hill-climbing-like
search, we should verify that local minima are not likely
to occur. Let us assume that such an event has occurred,
i.e., that the propagation phase attached a cost to a
configuration while
If that has happened, no pushing C-path which tends to pass
through will reach the goal. Following the definition of

it is clear that , i.e.,
is an admissible origin of each of its admissible neighbors,
and only of them. Although the propagation phase assigns
higher cost to the origin of a configuration, this cost may
be later overwritten by a lower cost. Still, even if such an
overwrite occurs, it must originate from another admissible
neighbor of since the propagation is done locally. Thus,
we can say that , such that

This fact contradicts our
assumption and proves the claim. We should note that the
only configurations that the above claims do not stand for
are the goal configurations where indeed the algorithm should
stop. This means that the stopping condition of the restoration
phase could ignore the set and the restoration could
continue until it encounters a cost minimum.

Claim 3: The C-paths produced by the algorithm are indeed
pushing C-paths.

Proof: The restoration phase considers only admissible
neighbors while constructing the C-path. Hence, by construc-
tion, this property is maintained.

Claim 4: The pushing C-paths produced by the algorithm
are optimal.

Proof: Let us assume the algorithm restored the
C-path while the
optimal, less expensive C-path from to is

. Note that the
final configurations and need not be the same, yet
both belong to Let the ’s configurations in those
C-paths be the first in which they vary, i.e., while

(note that since at least must
share the C-paths). Fig. 7 illustrates this situation where
and depart.
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Fig. 7. The split point of the nonoptimal C-path from the optimal C-path.

Let us compare the costs of the configurations at the split
point. Following the propagation phase and the optimality of

, we conclude that the cost of should be

for

Following the restoration phase and the production ofwe
conclude that the cost of should be

Integrating the above two equations allows us to conclude that
our assumption is admissible under the following condition:

which holds when either or
Since both conditions contradict the assumption, our claim has
been proved.

E. Complexity

It has already been proved that our pushing problem is
PSPACE-hard [25], which implies a complexity exponential
in ’s dimension. Using an equal density discretization of

samples per axis, and assuming movable objects
pushed by a 3-DOF robot in a 2-D environment, we get
a worst case complexity of with

The function represents the fact that the
set of admissible neighbors of a configuration might affect the
complexity. Choosing a simple pushing behavior, whereby the
robot can push only one object at a time, will limit to

Allowing the pushing of up to two objects at once will
bound by and allowing any combination of the

objects to be pushed by the same robot action will make
exponential.

As mentioned before, the greater the number/area of the
obstacles, the less expensive is the algorithm. As this happens,

gets smaller, and thus the maximum number of prop-
agation iterations is decreased. In any case, the complexity
of the current version of the algorithm makes it practical

Fig. 8. Test case A.

Fig. 9. Pushing plan A1—the robot was allowed to push only one box at
a time. No constraint was imposed on the distance thatR can get from the
boxes. The only invoked metric was themass metric.

for simple scenarios only, allowing probably no more than
few movables to be involved in planning under a rough
discretization resolution.

V. EXPERIMENTAL RESULTS

A. Simulated Examples

In order to examine the algorithm, it was implemented and
tested in a simulated environment. Demonstrated below are
the results of some test cases which involve pushing tasks
with a 2-DOF robot. In order to present the various abilities
of the admissibility mechanism, as well as different features of
the metric function, the simulated environment was designed
to support the following parameters. Note that the first three
behaviors are “admissibility-based” (i.e., implemented by the
admissibility mechanism), while the others are “metric-based.”

• The maximum number of objects that could be pushed si-
multaneously was user defined. Our simulation supported
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Fig. 10. Pushing plan A2, in which two boxes could be pushed simultane-
ously. Other parameters were similar to those of plan A1.

Fig. 11. Pushing plan A3—the robot was allowed to push up to two boxes
and thepassability metricwas integrated with themass metric. Note that this
time, the A1 solution corresponds to a long travel through the “rough” area
(marked), hence it becomes more expensive than the presented optimal path.

up two movable objects, which means that this limit could
be set to 1 or 2.

• Objects were allowed to have 2- (only translation) or 3-
(translation and rotation) DOF. Translations were limited
to the main directions (north, south, west, and east) and
rotations were limited to 90(see discussion below). In
addition, each movable object was associated with a user
defined set of pushing contact modes. This set was then
used by the robot when pushing the object.

• A limit could be set on the (Manhattan) distance that the
robot could keep away from each of the movable objects
(while not pushing it).

• The planner weighted each movement by the total moved
mass (i.e., the more objects are pushed, the more expen-
sive is the movement). We denote this basic metric as the
mass metric.

• The planer could be set to prefer “safe” pushing paths
(i.e., paths in which the movable objects tend to keep
their distance from the obstacles). We denote this metric
as thesafety metric.

• The planner could be set to prefer pushing paths that go
through regions with better “passability.” The simulator
allows up to three different levels of passability and

Fig. 12. Pushing plan A4—pushing was limited to one box at a time. The
(Manhattan) distance the robot could keep from the box which was not being
pushed was limited to 7 units. The only metric used was themass metric.
Note how the robot obeys the distance constraint by leaving the first box in
order to bring the second one closer.

Fig. 13. Pushing plan B1—the robot should exchange the boxes, thus it must
push at least one box to an intermediate position in order to clear its way.

whenever this feature was invoked, the “rough” areas
were marked accordingly. We denote this metric as the
passability metric.

The first test case deals with the pushing task presented in
Fig. 8. Running the algorithm produced the results illustrated
in Figs. 9–12, showing the influence of the above parameters
on the planning. Planning steps are ordered left to right,
top to bottom. Transit paths are marked by arrows. Note
that while admissibility-based features are guaranteed to be
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Fig. 14. Pushing plan B2—the marked region was defined as “rough” and
the passability metricwas integrated into the planning. Note that this time
the optimal solution is totally different than plan B1, and the “rough” area
is avoided.

(a) (b)

(c)

Fig. 15. Test case C—pushing task with a complex movable. (a) and (b)
show the goal and initial states, respectively, while (c) details the movable
object and all translational pushing points which correspond to the marked
COF.

Fig. 16. Pushing plan C1—pushing is done with a small robot.

realized, metric-based features are considered by the planner
as “recommendations.”

The second test case demonstrates a known feature of
manipulation tasks: the need to handle conflicts by designing

Fig. 17. Pushing plan C2—pushing is done with a larger robot. Note that
some moves carried out by the smaller robot are not feasible any longer. Thus,
an alternative (and more expensive) action is chosen.

(a) (b) (c) (d) (e)

Fig. 18. Test case D—planning with nontranslational pushings (i.e., pushings
which not only translate the object but also rotate it). (a) details the movable
object while (b)–(e) show all the allowed pushings (relative contact point and
the pushing outcome).

Fig. 19. Pushing plan D1—using nontranslational pushings in a cluttered
environment.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on May 28,2020 at 08:56:47 UTC from IEEE Xplore.  Restrictions apply. 



BEN-SHAHAR AND RIVLIN: REARRANGEMENT OF MOVABLE OBJECTS BY A MOBILE ROBOT 677

Fig. 20. Real-world experiment snapshots.

and solving subgoals. This feature is managed automatically
by our planner and is illustrated in Figs. 13 and 14.

The next test case deals with pushing plans for complex
movable object and the impact of the pusher’s geometry on
the produced plan. Fig. 15 sketches the shape of a complex
movable object, the task to be solved, and all allowed pushings.
Figs. 16 and 17 illustrate the planning results for a small and
a large pusher, respectively. Note that some moves carried out
by the smaller robot could not be executed by the larger one,
thus an alternative action was chosen.

Although the algorithm is general, its discretized implemen-
tation imposes severe limitations with regard to nontransla-
tional pushings (i.e., pushings which not only translate the
object but also rotate it). Supporting these kinds of pushings
requires either an infinite discretization resolution or the in-
tegration of some sub-cell manipulation mechanism into the
algorithm. Nevertheless, a special case of nontranslational
pushings—those that rotate the object by 90and align it back
with the discretization grid—can be supported. Assume that a
mechanical analysis of the object in Fig. 18(a), results in the
demonstrated pushing manipulations. Fig. 19 shows a pushing
plan in a cluttered environment. Avoiding rotational pushings
in that environment would prevent us from finding a solution
to most rearrangement problems, including the one presented
in the figure.

B. Real-World Experiment

The experiments so far were executed in a simulated envi-
ronment. However, as our final goal is a real working system,

we tested our algorithm in a realistic scenario using a mobile
platform. The planner was run on a Sun 4/460 computer
where it was integrated with the control environment of the
NOMAD-200 mobile robot from Nomadic Inc. The planner
used a coarse representation of the lab where the test was
carried out, and each run involved two movable objects. Only
two types of movables were used in this experiment: boxes
and chairs. Fig. 20 shows some snapshots from one execution
while Fig. 21 details the corresponding plan.

Arguably, as the research outlined in this paper deals with
planning issues, the described experiment may not necessar-
ily contribute significant information. However, we found it
important to experiment with a real platform for two reasons.
First, we felt that such an experiment may reveal additional
features to be integrated in future planning algorithm. For
example, while developing our simulated environment, we
assumed a holonomic pusher which draws no costs for chang-
ing direction of motion. The Nomad 200, as a sync drive
platform, was found to require quite a long time for each turn,
though. This immediately suggested an additional metric to
be integrated in the planning. Second, we expected such an
experiment to show how really critical are the other aspects
of the pushing rearrangement problem, namely the need for
sensory feedback and the integration of accurate mechanical
model. Not unexpectedly, the result emphasized the great
importance of sensory feedback. Before each run the robot
and the movables needed to be carefully calibrated for position
and orientation. Although small odometry errors are acceptable
in most cases for indoor navigation, this is not the case for
pushing. Missing, even slightly, the correct pushing contact
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Fig. 21. Pushing plan for the real-world experiment.

mode can be critical. The two different movables we used
showed different behaviors when pushed and demonstrated the
importance of the integration of a sensory information and a
mechanical model of the manipulation.

VI. DISCUSSION

We formulated the problem of planning a pushing manip-
ulation by a mobile robot which tries to rearrange several
movable objects in its work space. Our resolution-complete
algorithm uses a two-phase procedure: first, it propagates a cost
function to achieve a full mapping of every free configuration,
and then it restores a specific pushing C-path using a hill-
climbing search from the given initial configuration to the
global. By restricting both the propagation and the restoration
to admissible origins/neighbors alone, only legal pushing paths
were produced by the algorithm. The admissibility mechanism
provides a primary tool for expressing the special charac-
teristics of the pushing manipulation. It also allows a full
integration of any geometrical constraints imposed by the
pushing robot, the pushed objects and the environment. The
fact that the propagation is carried out backward also allows
it to avoid mapping the trap points, a property that may be
significant in certain environments.

Our algorithm has been shown to be optimal and
(resolution-) complete. As for other approximate cell decom-
position algorithms, the greater the number/area of obstacles,
the less expensive is the algorithm. As this happens, gets
smaller, and the maximum number of propagation iterations
is decreased. Although one can use the planning algorithm in
practice for scenarios with few movables under a relatively
sparse resolution, its complexity makes it hard to use for most
real-life applications. In another paper [3], we begin to study
planning methods which compromise between the complexity
of the computation and the completeness (or optimality) of
the planning.

Before implementing the proposed algorithm on a real push-
ing robot, one needs to consider several issues and problems.
The first relates to the need for integrating arbitrary rotational
pushing into the planner. This kind of pushing manipulations,
which are common in everyday pushing actions, cannot be
easily supported by our planner due to the discretization of

(a) (b)

Fig. 22. The problem of rotational pushing. (a) Describes a square object
aligned to the grid. The dots show all possible (discretized) configurations
that the robot can take, and the circles illustrate all the configurations on
the grid that define a contact mode of the robot and the labeled edge. (b)
Shows the same object, oriented at some angle. Note that in this case only
two configurations of the robot still define some contact mode with regard
to the same edge.

the configuration space. Naturally, in such a discretized space,
both the position and the orientation of each body are allowed
to get only discretized values. Hence, it is likely that the object
can reach some orientation in which the robot will not be
able to achieve all the allowed contact modes needed for the
pushing (see Fig. 22). Consequently a naive implementation
of rotational pushings in the framework of our algorithm
may cause the planner to miss pushing paths or create illegal
ones. As demonstrated in Section V, rotations which align the
object back to the grid and allow the planner to correctly
consider all contact modes, can still be implemented without
any significant change.

Another issue that cannot be avoided is the need to handle
scenarios where the planner has incomplete knowledge. In
most rearrangement applications we can expect that at least
the initial configuration of the movable objects will not be
known a priori. Hence, an appropriate exploration strategy
that allows the robot to learn where each movable lies must
be carried out before the pushing plan is created. However,
when some movables cannot be localized, the robot might
need to push objects which block critical passages. Such an
action should be taken with caution, carried out as a mini-plan,
since a precipitious move might push an object to a trap-point
and prevent any chance of succeeding with the mission.

The last issue that needs to be addressed is the push-
ing itself. As the action of pushing is inherently unstable
(especially for point pushers), we might need an adaptive
strategy which exploits necessary sensory information in order
to allow controllable pushing actions. Sensory based pushing,
as well as the other issues mentioned above, are topics for our
future research.
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