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To Push or Not to Push: On the Rearrangement
of Movable Objects by a Mobile Robot

Ohad Ben-Shahar and Ehud Rivlin

Abstract—We formulate and address the problem of planning [ - —

a pushing manipulation by a mobile robot which tries to rear-

range several movable objects in its work space. We present an - - ‘
algorithm which, when given a set of goal configurations, plans
a pushing path to the “cheapest” goal or announces that no such ﬁ > O

path exists. Our method providesdetailed manipulation plans,
including any intermediate motion of the pusher while changing
contact configuration with the pushed movables.

Given a pushing problem a pushing path is found using a Goal
two-phase procedure: a context sensitive back propagation of a
cost function which maps the configuration space, and a gradient @
descent phase which builds the pushing path. Both phases are -
based on a dynamic neighborhood filter which constrains each

step to consider only admissible neighboring configurations. This - - -
admissibility mechanism provides a primary tool for expressing
the special characteristics of the pushing manipulation. It also al- %>
| o : i
Goal

lows for a full integration of any geometrical constraints imposed
Fig. 1. The problem of trap-points: while the (a) grasping mobile robot can

. INTRODUCTION recover from the wrong decision by backtracking, the (b) pushing robot cannot.

14
Goal

by the pushing robot, the pushed movables and the environment. )
We prove optimality and completeness of our algorithm and D\?/
give some experimental results in different scenarios. Go;ﬂ
| N—
Index Terms—Manipulation planning, pushing planning. (b)

PU_SHING i_s an impo_rtal_ﬂt, basic robotic manipulation. A?o its target. In such cases and many others, the robot can
with grasping, pushmg is used to change bqth the Pos't'?@cover from wrong configurations simply by reversing its
and t'he orientation of objects. However, one m|ght claim thatoes This property is not one that can be used by a pushing
pushing has several advantages over grasping. It allows {8y que to the irreversibility of pushing. In other words, a
easier S|r_nultar_1e0us manipulation ofgr(_)ups of objects, pemwﬁshing robot might push the object to a point from which
the manipulation of larger and heavier objects, and Mgt qier pushing action can set it free. An example of such
important—requires a simpler and cheaper robot structure thap .- -40us configuration, which we refer to asam-point
does grasping. ) : ) is illustrated in Fig. 1.

However, the action of pushing has some evident draw-qnsequently, the successful completion of a pushing ma-
backs which might make it less attractive than grasping. It g, jation task requires planning. Unlike for other manipula-
m_he_rently restrlcted_ to a support s_urface (unless embedq or navigation tasks (e.g., [14]), an online, sensory based
within a very.speC|aI. conFext) ‘_Nh'Ch fjoes npt all_ow th ushing planner is likely to be either unsafe, or incomplete. We
robot to exploit the third dimension while manipulating thgejieve that high level planning tasks which involve pushing
object. Hence, it is more likely that a specific task woul s a special case of object manipulation) have their own

lack a solution. Pushing is also mechanically unstable, apfl, 5 teristics and constraints, hence deserve some special
thus various control problems arise. Furthermore, pusmngdﬁention

different from most other motion and manipulation methods While this paper deals with the issue of pushing planning,
by the frequent encounters of irreversible states. A navigati[}gere is no doubt that using mobile robots to push objects
robot can easily change its path upon the realization of a wrogg, 4 is an area of interdisciplinary research. In our view,

decision. A grasping robot approaching a dead-end can usually, ,shing problem should incorporate three main aspects in
return to a previous decision point in order to bring the Oble‘é}der to allow for a complete solution: theechanics of
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two or three dimensions. Le}- denote a specific configuration
of R (i.e., a vector inCSg) and q,, denote a specific
configuration of M, (i.e., a vector inC'Syy,).

Using the above notations, 1€tS'S be the following Carte-
sian product which describes the space of common configura-
tions of the robot and all movable objects:

CcSsSs = CSR X CSJWI X - X CS]\L.

Each vector in CSS is a composite configuration
Q= (gr, 901+ 9asy) TOr @p € CSk andqy,, € CSyy,.

Let CCO be the C-obstacle set €SS, i.e., the set of
all composite configurations in which at least two bodies
of B overlap (note thatCCO # & even if I = ).
Each composite configurationot in CCO is some legal
common configuration of5’s bodies and the set of all such

- CCO - Cobstacles subspace PLSH subspace - pushing contigurations . . .
o [h } i [p ‘ ‘ configurations will be denoted b¢/CF = CSS \ CCO.
- - Free contfigurations, ransit path . . . H
S . — Along with the above configuration spaces we will also use
STABLE subspace - stable configurations J— = = = | Transter (pushing) path B . .
the following projection operators:
Fig. 2. The structure of a pushing C-path. Each transit patistreside in
STABLE while each transfer/pushing pattustreside in PUSH. Note however Ig: CSS — CSk
that transfer path must not be contained in STABLE (e.g., it is possible to .
push an object along a nonhorizontal surface yet it cannot be left on such a HM?" 55— CSMf
surface without the pusher’s support). HR(Q) = HR(QR’ My ’an) =qp

I, (Q) = Ung, (qr: Qs>+ > Doiy ) = T
Following the discussion above, we describe a basic algo-
rithm which is capable of creating a complete pushing planLet N(Q) be the set of all neighboring configurations of
that is optimal by some cost criterion. Unlike previous worky and let P(Q;, Q) denote aconfiguration path(C-path
our algorithm provides a unified approach which handles bdd#etween @, and Q.. Similarly, let P(Q;,G) denote a
the pushing actions, as well as any intermediate motion of tRepath from @, to one of the configurationsn the set
pusher while it changes contact configuration, switches frofh= {Qa,,Qa,,--,Qq, }- Indeed, it is clear that not every
one movable to another or seeks its own goal configuratiorf>-path, P(Q1,Q-2), is apushing C-pathfrom Q; to Q2. In
global terms, a pushing path is a special manipulation path and
Il. PROBLEM FORMULATION AND OVERVIEW can be defined in terms coined in [2], [12], and [13]. Like any
. . ) . anipulation path, it is an alternate sequencéranisit paths
Let us Coﬁs'der_ the Integr_ated configuration space of g dtransfer pathsas illustrated in Fig. 2. Each transit path is
no_nstatlc ObJeCt.S in the enwronment_ (a robot and _movab fich that its projection on ea€hS,,. is a single configuration
objects). A pus_hlng plan (_:an_be descrlbgd as aspemal pat B a path in which no movable object is moving). Each
that_space. Th'.s path, which is a consirained version of sim| )gnsfer path represents some pushing action and lies on the
motion or manipulation paths, should express the ConStra'%tt?undary of CCF (with at least one nonconstant projection
imposed _by our manipula_ltive.ac'tiorpashing The pushing on someCSy..). The last property follows from the fact
p_roblem is concerned with finding such a path, and it that pushing réquires physical contact in order to be realized
discussed below. (something which is true for most conventional manipulations,
, unless the force is applied remotely, e.g., via a magnetic field).
A. The Pushing Problem Yet, since pushing is applicable by applying force only in
LetB={R,Z,M,,---, M.} be aset of bodies composingspecific directions, all transfer paths of a pushing plan are
the environmentR is arobot(i.e., capable of self movement),constrained further by the directions in which they can move
7 represents the union of alinmovablestatic bodies (i.e., along the boundary of CF'. This is illustrated in Fig. 3.

obstacles), andM;, - - -, M.,.} is a collection oimovablerigid Equally, we can characterize a pushing path by local con-
objects, capable of being moved by an external pushing forsaints. LetN4(@Q) be the set of albdmissibleneighboring
which might be applied byR. configurations of?. Given a specific composite configuration

Each of the participating dynamic objects has its ow€, a neighboring configuratio); is considereddmissibleas
configuration space. Let'Sg be the configuration space oflong as it can be reached frof by some robot movement,
R and CS,;. the configuration space afM,. While the with or without a pushing action involved. We will also
dimension ofC'Sgr can be arbitrary, the dimension 6fS,,;, use the complimentary definition for all configurations that
is bounded by the environment in whicht; moves. As a given configuration? is their admissible neighbor. This
mentioned before, any pushing task must be carried outdat will be called theadmissible originof @ and denoted by
a context of some support surface. We thus consider only thg '(Q). Now, a C-pathP(Q;,Q») could be defined as a
case of the two-dimensional environment leading6,,, of pushing C-pathif there is a continuous parametric function
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@ (b) (© (d)

Fig. 3. Configuration paths and pushing paths. Note that while many C-paths can be established between any two configurations, most of them cannot be
considered as pushing C-paths. (a) Three placements of a robot and one movable object, both with one degree of freedom (one axis of motion). (b) The
composite configuration space of the problem and a pushing C-path from Q1 to Q2. (c) Another C-path from Qi to Q2 which is not a pushing C-path.
Note that this C-path includes self-movement of M. (d) No pushing path can be found from Q2 to Q1 (note that the longer path is a pulling path). Similar
conclusion can be drawn regarding a pushing path from Q2 to Q3, though different reasons apply.

Op: [0,1] — CCF such that Given a pushing problem, the pushing path is found using
two phases: first, @ontext sensitive back propagationaps

Qr(0)=Q1, ©Op(l)=0Q: each free configuration to the cost of executing an optimal

AhSIno Op(S + AS) € No(0p(S)). pushing plan which achieves the goal; then, this map is

used to build aspecificpushing plan from any given initial
configuration to the goal configuration. Both phases evaluate

Despite the restriction imposed by the above definitiorthe local constraints dynamically each time they need the set of
we may still find more than one (and usually an infinit@dmissible neighbors or admissible origins. In that sense, the
number of) pushing C-path between two given configuratiod%?ighborho‘)d relationships IACF are kept onIy_impIicitIy. _
Consequently, we would like to have some measure that calpce the cost map describes the cost of executing the pushing
be used to compare the “quality” of solutions. LBEQ:, Q) plan, it enables us to determine immediately whether such a
be a positive cost metric iG7SS. The cost (or length of a Plan exists or not. _ _

given C-pathP(Q1,Q.) can be calculated by summing the In (_)rde_r to be numerlc_ally (_:omputab_le, and_ since exact
costs between all adjacent configurations building it. Mofdanning is hard to be realized in a physical environment, the
formally, under such a metric, the cost of a movement alortP@Ck propagation is carried out on a discretized version of the

an infinitesimal segment of the C-path is composite configuration space. This methodology of a poten-
tial field integrated with an approximate cell-decomposition is

dCp = D(©p(S),0p(S + dS)) resqlu_tic_m—cor_npleteso splutions are guaranteed to be found

for infinitely fine resolution.

thus the total cost of the C-path will be In general, the algorithm is capable of dealing with an
arbitrary number of movable objects. However, the high com-

Op(P) = / dCp. plexity involved limits practical applications to tasks involving
P no more than few movable objects. It is interesting to note that

) ) _although computationally extensive, the more obstacles there
Given a set of all C-paths between two composite configurgre the faster the algorithm runs.

tions, we consider the minimal cost path as tiitimal path.
Using all of the above we are ready to define our pushing

planning problem. lll. RELATION TO PREVIOUS WORK
Given B (a description of the environment), an initial

composite configurationy and some goal composite con-

figuration Qg, find a pushing C-path P((Qo, Q), optimal

by a given metric D, or report if no such path exists.

In the extensive literature that is devoted to motion-planning
(see [11]), few studies address the problem of planning a push-
ing manipulation. Motion planning in the presence of movable
objects, which covers the basic aspects of the problem, is dis-
cussed in Section IlI-A. The differences from current methods
in assembly planning are briefly discussed in Section IlI-B.

The rest of this paper describes an algorithm which modék®me works which directly address the problem of pushing
the pushing path via local constraints and yet guaranteesptanning are covered in Section IlI-C.
produce plans which are globally legal. This approach was
proved to be very easy to implement, while maintaining an . L )
impressive expressive power to deal with both the nature of the Motion Planning in the Presence of Movable Objects
manipulation, most geometrical constraints and a large varietyHaving a pushing task in hand, we should instruct the robot
of artificial constraints, to move in such a way that some objects in the environment

B. Solution Overview
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will be rearranged by the use of pushing. This variation o@. Pushing Planning
the basic problem, of motion planning in the presence of pegpite the great deal of motion planning research, not

movable objects, was investigated in several studies, maiply,.h work has been done directly on the area of pushing
in the context of grasping tasks. _ planning. Akella and Mason [1] analyzed the series of pushes
Wilfong [25] was the first to analyze the complexity of the,eeded to bring a convex polygon to a desired configuration.
problem and showed that motion planning in the presence\Rhjje using pushing manipulation, this problem is a very con-
movableobstaclesis NP-hard. Moreover, in the case whergaineq version of the rearrangement problem. They allowed
the final position of the movable obstacles is specified, tf&a"y one convex movable object, used a simplified fence-

problem becomes PSPACE-hard. This result convinced othgb nysher, and ignored any other geometrical constraints
researchers to concentrate first on constrained versions of (IQ% obstacles).

problem. Wilfong himself proposed ad(n? log” ») solution, A comprehensive study was carried out by Lynch and

based on an exact-cell-decomposition (see [11]), for the ca§&qon [17] where both mechanics, control and planning issues

of a robot .translatmg. amidst one movablg polygonal obstacleye considered. Their planning method was based loesé

and a stationary environment of complexi(n). first search over an inexact representation of the configuration
A generalized approach for the movable objects problegy,ce \hich aimed at finding a path to some neighborhood of

was proposed in [2], [12], and [13]. They treated the problefle specified goal. Again, in this work they considered only

as amanipulation planningproblem, applying an exact celljiniteq DOF by allowing only one movable object. It was also
decomposition methodology to theomposite configuration ossymed that the fence like pusher can change the contact
spaceof the robot and the movable objects. The planning,nfiguration (chosen from a discrete set) at any time, with
result, namely thenanipulation pathis an alternate sequence, restrictions. As mentioned before, in this paper we are

of transit pathsand oftransfer pathsBased on this scheme, ainterested in multiple objects problems, where the solutions
manipulation planning algorithm for a robot and one movablﬁherently integrate the motion of the pusher, including all

object amidst polygonal obstacles was presented by Dacigarmediate motions between contact configurations.

Wright et al. [5]. . Finally, a somewhat different problem was addressed by
While in general we expect a pushing path to have a t§,en and Hwang [4] who presented a practical, heuristic and

same structure of a manipulation path, several differencesd@y,ct solution for many movablebstacles Their method
apply. First, as mentioned in Section Il, the pushing forGg nrimarily a motion planning method (rather than rearrange-
can be applied only in specific directions (i.e., one cannpfant planning) in which movable obstacles can be pushed

push an object by moving away from it). This observatiog,yay hy the robot whenever they stand in its way to the
implies that the transfer paths cannot haveaahitrary di- goal.

rection in the configuration space. Second, while Laumond
et al. defined each transfer path to manipulate owlye
movable object, the general pushing path should allow, in
our view, a simultaneous manipulation of several objects. This section describes the general pushing planning algo-
Finally, while Laumondet al. defined each transfer path tofithm, proves its basic properties and discusses the underlying
represent arigid manipulation (i.e., a manipulation during @dmissibility model.

which the geometric relationship between the manipulator

and the object remains constant), we findnrigid manip- A. The Algorithm

ulations to be more realistic, especially in the context of The following algorithm solves the pushing planning prob-
pushing manipulation. lem with multiple goal configurations. Given aet of goal
configurations, the algorithm plans a pushing path to the
“cheapest” goal, or announces that no such path exists. In
addition, the algorithm is “insensitive” to the initial configura-
When dealing with rearrangement problems, one may fitidn (3o, and is able to find an optimal pushing path framy
many common aspects &ssembly planningpo. However, the initial configuration. Selecting a different initial configuration
state of the art research in the area of assembly planning [2@fs not require major re-computation, and can be done online,
addresses problems with different characteristics than ouas. long as the set of goals remains unchanged. We should
Most that research ignores the manipulator, its geometry, amgkte that the cost of pushing to a specific goal depends on
any constraints on the allowed manipulation (e.g., pushitige initial configuration we are starting to push from. Thus,
only). The ultimate assembly planner should be able to genegplacing the initial configuration might result in a different
ate plans directly from a CAD model of the goal assembly [26final goal fromG.
Consequently, assembly planning tends to ignore the initialAs was mentioned before, we shall address the pushing
configuration of the parts and assumes that they come frgmoblem under limited resolution, using a discretized version
infinity. We, on the other hand, are interesteddarrangement of CSS. The use of such a discretized configuration space
of parts, i.e., changing their common configuration from @quires no special modification in any of the above defi-
given initial configuration to a givergoal configuration. In nitions. However, the terrmeighboring configurationgloes
that sense, as well as in others, our rearrangement planniag refer to infinitesimal close configurations any more, and a
problem is a generalization of the assembly planning proble@-path is no longer needed to be described as a continuous

IV. PUSHING PLANNING—A BASIC ALGORITHM

B. Assembly Planning
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e

(@ (b)

Fig. 4. (a) Typical pushing problem and (b) the set of its trap points. Once the object is pushed to intersect that set, no further pushing can set it free.

parametric function. Rather, any neighborhood relationshipst map overCCF"

will be defined in terms of adjacent discretized configuration Initialization:

while C-paths will be described as a series of discretized WF «— GOAL ={Qa,,Qa,, -+, Qa, }
composite configurations. Consequently, the cost/length of cost(Q) — o0,VQ € CCF \ GOAL

a C-path becomes simply the sum of the costs between  cost(Q) — 0,YQ € GOAL

all adjacent configurations that constitute it, and optimality

becomes subject to the discretized version of the métriEor Propagation:

simplicity, we will assume that eacfi'SS axis is discretized while(W F # )

with equal density (e.g.s samples per axis), although such Find @ € W with minimal cost(Q)

an assumption is not required by the algorithm and might WF — WF\{Q}

incorrectly represent the different nature of the various degrees for each Q € N7 (Q)NCCF

of freedom (e.g., rotational versus translational DOF). if (cost(Q) > cost(Q) + D(Q,Q))
Given a pushing problem, an appropriate pushing path is then do { .

found using a two-phase procedure. The first phase uses cost(Q) « cost(Q) + D(Q, Q))

context sensitive back propagation of a cost function which WE —WFU{Q}

results in a mapping of each composite configuratio@'iF’
to the optimal cost of a pushing plan that achieves a goal
configuration. The second phase restores a specific pushing
C-path that needs to be executed in order to move from soife obtain a fully mapped free space, reachilg was not
initial configuration to its “nearest” goal configuration. used as an additional termination condition of the propagation
1) The Cost Mapping PhaseThe cost mapping phaseloop. Working with a fully mapped free space may allow quick
maps each point inCCF to the cost of the pushing C-answers for various initial configurations. It also permits the
path connecting it to the “cheapest” goal. This mapping _[gbot_ tp regain an optimal pushing path whenever it loses
done by propagating a cost wave function originating at /i original one (due to odometry or control problems). One
target configurations. We describe this back propagation uld notg that the above-mentioned test may not reduce
context sensitiveince it floods onlyadmissibleorigins of each comp[exny in the worst case. . .
configuration. This phase can be considered as a preprocesall?Agti'g;]pic:1 rt/?/lﬂitc%hiﬂg(?;rr:is;g c():flggerlcots; mbap[:l)!ng p()jhase Is the
phase since it should be applied only upon a change in the e? : y, the backward propaga-

. . : onh makes the mapping insensitive to the initial configuration.
of goal configurations. In many aspects, this phase resemb erauably, many rearrangement problems are such that their
the Dijkstra algorithm. However, it differs by the directio

: ngoal configuration(s) is fixed while their initial configuration
of the propagation (backward versus forward), the support ofay vary, hence insensitivity to the initial configuration is a
multiple goals (as opposed to Dijkstra’s single source), and thgsjred property. However, the backward propagation serves a
fact that the graph’s edges are reopriori known but rather second, subtle point. As discussed in Section I, the irreversibil-
constructed dynamically by the admissibility mechanism. ity of pushing introduces trap points into the work space. While
Let WF be the set of allCCF points currently in the this may not be observed at the first glimpse, the set of trap
wave front and letcost(@)) denote the cost of a specificpoints of a given task might cover major parts of the free space,
configuration. The following is the algorithm for building theas illustrated in Fig. 4. Mapping these trap points is a useless

end for
end while.
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activity, something which a planning algorithm better avoids
The backward propagation achieves exactly that. By definitior
no configuration which allows pushing to the goal can have .
trap-point as its admissible origin. Hence, our context sensitiv
back propagation can never reach a trap-point. This is not trt
for a forward propagation, though.
2) The Pushing C-Path Restoration Phas&fter the

whole space is mapped, a pushing C-path can be built frol
any initial configuration simply by using a variation of a
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gradient following hill-climbing. This process should preserve
the notable difference between a general C-path and a pushi

C-path, hence onlndmissibleneighboring configurations are @)

considered in each step. The same constraint was used in the

propagation phase by limiting the propagation Mgl(Q)

alone. Given an initial configuration),, the following

procedure restores the appropriate pushing C-path or repo
whether no such path exists. We will use the symbol

to denote a concatenation of a new point to the path an
the select( ) operator for arbitrary selection of an element
from a set.

Restoration:
if (Qo ¢ CCF or cost(Q)g) = o0)
(©)

NO PUSHING PATH EXISTS !!!

(d)

else
P(Qo, GOAL) — Qg Fig.- 5. The role of the metric during the restoration phase. (a) CCF,
admissible neighbors and metric. (b) Result of the cost mapping phase. (c)
Qo — Qo Output of the restoration phase. (d) Path found by minimal cost neighbor test.

while Q¢ ¢ GOAL
Qc — select{Q|Q € N4(Qc)A
cost(Q)) = cost(Qc) — D(Qc, Q) } into the planning. Notable examples of admissibility-based
P(Qo, GOAL) — P(Qo,GOAL) <1 Qc controllable features are

end while « allowable pushing directions;
OUTPUT P(Qo, GOAL). « allowable contact points which may serve for pushing
(note that after selecting the allowable pushing directions,
The core of this procedure is the selection of the next con- the contact points are space variant in the general case
figuration. Theselect( ) operator is used since the cost map  since the friction distribution is not necessarily uniform);
might contain saddles and the optimal pushing C-path mighte the number of objects that can be pushed at once and their
not be unique (this is easily seen for cases of symmetrical relative positions while being pushed together.

solutions). The cost equivalence test is needed to ensure thal pehavior chosen for the pushing planning affects the
we select only optimal moves. Choosing, instead, the minimgbe of v,() and N37YQ) and the complexity of their
cost admissible neighbor as the next configuration in th@mpuytation. In most of the cases, we can calculate those sets
C-path might lead to nonoptimal pushing C-paths since (iing only local information (i.e., based on the “coordinates”
practically ignores the cost metric. Integrating the metric tegf ihe configuration alone), yet an accurate calculation requires
is equivalent to keeping a pointer to the parent node, as dadg,|| model of the pushing mechanics (including friction dis-

in many graph search algorithms. Fig. 5 demonstrates sucfygytion, movable object parameters, etc.), which we assume
case where following minimal admissible neighbors results {g e given by some external source. In order to clarify this

a nonoptimal pushing C-path. point, let us examine a task of pushing one movable object
when the only allowable manipulation is a pure translational
B. The Role of Admissibility pushing to the left. Let us assume that the COF (center of

A crucial part in the algorithm is the involvement Offrlctlon) of the object is known and that the robot can push

admissible neighbors and origins. Basically, those are requirtgg movable object to the left only after maintaining a relative

in order to produce legal C-paths (i.@ushingC-paths) and Pesition of (Az, Ay), as iIIus_t{ated in Fig. 6. _
avoid trap-points, as discussed in Section IV-A1. However, GIven & configuratio®, Ny (@) can be obtained by using

an appropriate definition of admissible neighbors/origins oft§e following two steps.
configuration can also be used to control the specific pushingl) Consider all neighboring configurations from which
functionality of the robot, and to present other behaviors could be reached by independent movementRofin
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TN plans when possible), changes in object-robot contact modes
/ \ o (in order to minimize them), etc. Some of these features are
| ® illustrated in the simulations of Section V.
M o D. Correctness
e - /o Rs origin In order to show that the algorithm is correct, we should
\\ @//;// R prove the following properties.
7 /,/ ax Claim 1: Given a pushing problem, the propagation phase
M's origin is guaranteed to stop.
Fig. 6. The relative position that is needed to allow a translational pushing Proof: Each iteration of the propagation is guaranteed
to the left. to produce exactly one new configuration, the cost of which
will never be overwritten. This property holds for the
other words, all configuration§ such that minimal cost configuration extracted from the wave front
A R at the beginning of each iteration. Since the number of
Q€ COFNN(Q) A Ln(Q) = 1u(Q). available configurations in a discretiz&dCF is bounded,
2) Consider all configurations from whicR could have the propagation is guaranteed to stop. U
pushedM toward Q. In our case, if Claim 2: Given a cost map (produced by the propagation
phase) and an initial configuration, the restoration phase is
LUr(Q) — Mu(Q) = (Az, Ay) guaranteed to reach (one of) the goal configuration(s).

then’R and M are in accurate contact mode for the al- Proof: Since the restoration phase is a h|||-C||mb|ng-|Ike
lowable pushing. Thus, the Conﬁguraﬂ(ﬁ-]from which search, we should verify that local minima are not likely
R could have pushed\U toward @ should also be to occur. Let us assume that such an event has occurred,
considered as an admissible origin. Calculatihg easy I-€-, that the propagation phase attached a eogt 0 to a

since it can be directly obtained by subtracting the leonfiguration@ ¢ GOAL, while cost(Q) > ¢,YQ € Na(Q).
pushing vector(—§, 0, —4, 0), from Q. If that has happened, no pushing C-path which tends to pass

While the admissibility mechanism serves as a primary tofl"ough @ will reach the goa_l.l Following the definition of
for expressing pushing abilities, it can be used to describei(®@): it is clear that@ € Ny (Q),VQ € N4(Q), i.e., Q
environmental-based behaviors as well. We can use it to 1S @n admissible origin of each of its admissible neighbors,

oA . . .and only of them. Although the propagation phase assigns
adjust pushing abilities (e.g., contact points and pushij her cost to the origin of a configuration, this cost may

directions) in accordance with environmental parametelge later overwritten by a lower cost. Still, even if such an

(e.g., the normal to the support surface); . : - -
S X . T verwrite occurs, it must originate from another admissible
« limit the areas in which the robot can dismiss a movable . ; oo

hbor of @ since the propagation is done locally. Thus,

. L . .. neig
object after pushing it (e.g., no object should be dlsmlssgvceé can say thaQ, € N4(Q), such thatcost(Qy) =

on an oblique area); . ‘
« force the robot to keep a minimal distance from an objeE?St(Q) N D(@, Q) < COSt(Q)'.Th'S fact contradicts our
T assumption and proves the claim. We should note that the
when not pushing it;

« prevent the robot from roaming or pushing in a nonsalpenly configurations that the above claims do not stand for
distance from obstacles: are the goal configurations where indeed the algorithm should

. . top. This means that the stopping condition of the restoration

« allow self movement of objects in some areas due : ;
. . . phase could ignore th&/OAL set and the restoration could

environmental influence (such as gravity).

, , ) ) continue until it encounters a cost minimum. O
Some of these behaviors are simulated in Section V. Claim 3: The C-paths produced by the algorithm are indeed
. pushing C-paths.
C. Cost Metrics and Usage Proof: The restoration phase considers only admissible
While the admissibility mechanism allows us to distinguisheighbors while constructing the C-path. Hence, by construc-
between legal manipulations and illegal ones, it is not sufficietion, this property is maintained. O
for weighting each manipulative action. A notable example is Claim 4: The pushing C-paths produced by the algorithm
the different weights which are likely to be allocated for thare optimal.
action of pushing an object and the action of pure movement Proof: Let us assume the algorithm restored the
when no pushing is involved, something which is not applic&-path P1(Q¢, GOAL) = (Qo, @1, - Q) while the
ble via admissibility. Thus, while the admissibility mechanisroptimal, less expensive C-path fro, to GOAL is
limits the planning tdegal solutions, the cost metric enablesP,ptimal(Qo, GOAL) = (Qo,QF,---,Q%). Note that the
the preference of one legal solution over another. final configurations®,, and QY need not be the same, yet
An intuitive usage of the metric could be weighting thdoth belong toGOAL. Let the ¢'s configurations in those
pushing actions (e.g., by using the total mass of the obje@spaths be the first in which they vary, i.€); # Q% while
currently being pushed). Additional possibilities could involv&); = Q?,Vj < ¢ (note thati > 0 since at least), must
the current region’s passability (i.e., how hard is it to move ishare the C-paths). Fig. 7 illustrates this situation where
a region), the distance from obstacles (in order to achieve sad@d F,,tima1 depart.
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« Optimal C-path

Initial Configuration Goal Configuration

Fig. 8. Test case A.

Fig. 7. The split point of the nonoptimal C-path from the optimal C-path.

Let us compare the costs of the configurations at the spli *ﬁ
point. Following the propagation phase and the optimality of
Popi, we conclude that the cost 6f;_; should be

cost(Q;—1) = min{Cielect, Copt) = Copt

for
Cselect = COSt(QZ) + D(Qi—17 Qz)
Copt = COSthQ + D(Qi—17 Q?)

Following the restoration phase and the productioPofwe
conclude that the cost ap; should be

cost(Q;) = cost(Q; 1) — D(Q;-1,Qs)-

Integrating the above two equations allows us to conclude thg
our assumption is admissible under the following condition: ﬁ
COSt(Qz) + D(Qz 1 Qz) - COSt(QO) + D(Qz 17

. . 0
Wh'Ch holds Wh?'j‘ e'theQi - Qz or Cp (Pl) ; opt Fig. 9. Pushing plan Al—the robot was allowed to push only one box at
Since both conditions contradict the assumptlon, our claim hagme. No constraint was imposed on the distance ®atan get from the
been proved. n boxes. The only invoked metric was theass metric

E. Complexity for simple scenarios only, allowing probably no more than

It has already been proved that our pushing problem fgw movables to be involved in planning under a rough
PSPACE-hard [25], which implies a complexity exponentigliscretization resolution.
in C'SS's dimension. Using an equal density discretization of
s samples pelC’SS axis, and assuming movable objects V. EXPERIMENTAL RESULTS
pushed by a 3-DOF robot in a 2-D environment, we get
a worst case complexity oB(V - (f(n) + log(V))) with
V = s*t37_ The function f(n) represents the fact that the
set of admissible neighbors of a configuration might affect the In order to examine the algorithm, it was implemented and
complexity. Choosing a simple pushing behavior, whereby tfsted in a simulated environment. Demonstrated below are
robot can push only one object at a time, will limitn) to the results of some test cases which involve pushing tasks
O(n). Allowing the pushing of up to two objects at once willwith a 2-DOF robot. In order to present the various abilities
bound f(n) by O(n?), and allowing any combination of the of the admissibility mechanism, as well as different features of

n objects to be pushed by the same robot action will mak@e metric function, the simulated environment was designed

f(n) exponential. to support the following parameters. Note that the first three
As mentioned before, the greater the number/area of thghaviors are “admissibility-based” (i.e., implemented by the

obstacles, the less expensive is the algorithm. As this happeapissibility mechanism), while the others are “metric-based.”

CCF gets smaller, and thus the maximum number of prop-

agation iterations is decreased. In any case, the complexity The maximum number of objects that could be pushed si-

of the current version of the algorithm makes it practical multaneously was user defined. Our simulation supported

A. Simulated Examples
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Fig. 10. Pushing plan A2, in which two boxes could be pushed simultane
ously. Other parameters were similar to those of plan Al.

[
b %
£3
L) = =
= Fig. 12. Pushing plan A4—pushing was limited to one box at a time. The
pushed was limited to 7 units. The only metric used wasrttass metric

(Manhattan) distance the robot could keep from the box which was not being
Note how the robot obeys the distance constraint by leaving the first box in
order to bring the second one closer.
Fig. 11. Pushing plan A3—the robot was allowed to push up to two boxes

and thepassability metriovas integrated with thenass metricNote that this

time, the Al solution corresponds to a long travel through the “rough” areg
(marked), hence it becomes more expensive than the presented optimal p|

i
Ll

up two movable objects, which means that this limit coulg
be set to 1 or 2.
Objects were allowed to have 2- (only translation) or 3
(translation and rotation) DOF. Translations were limiteg
to the main directions (north, south, west, and east) a
rotations were limited to 90(see discussion below). In
addition, each movable object was associated with a ug
defined set of pushing contact modes. This set was th
used by the robot when pushing the object.

A limit could be set on the (Manhattan) distance that th

robot could keep away from each of the movable objecigy. 13, Pushing plan B1—the robot should exchange the boxes, thus it must
(while not pushing it). push at least one box to an intermediate position in order to clear its way.

The planner weighted each movement by the total moved

mass (i.e., the more objects are pushed, the more expen- ) )

sive is the movement). We denote this basic metric as the Whenever this feature was invoked, the “rough” areas
mass metric were marked accordingly. We denote this metric as the
The planer could be set to prefer “safe” pushing paths ~Passability metric

(i.e., paths in which the movable objects tend to keep The first test case deals with the pushing task presented in
their distance from the obstacles). We denote this metfiég. 8. Running the algorithm produced the results illustrated
as thesafety metric in Figs. 9-12, showing the influence of the above parameters
The planner could be set to prefer pushing paths that go the planning. Planning steps are ordered left to right,
through regions with better “passability.” The simulatotop to bottom. Transit paths are marked by arrows. Note
allows up to three different levels of passability anthat while admissibility-based features are guaranteed to be
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Fig. 14. Pushing plan B2—the marked region was defined as “rough” ang
the passability metricwas integrated into the planning. Note that this time

the optimal solution is totally different than plan B1, and the “rough” area. . . .
is avoided. Fig. 17. Pushing plan C2—pushing is done with a larger robot. Note that

some moves carried out by the smaller robot are not feasible any longer. Thus,
an alternative (and more expensive) action is chosen.

pdec

(d) (e)

(@

@) () Fig. 18. Test case D—planning with nontranslational pushings (i.e., pushings

which not only translate the object but also rotate it). (a) details the movable
object while (b)—(e) show all the allowed pushings (relative contact point and
the pushing outcome).

Fig. 15. Test case C—pushing task with a complex movable. (a) and (b) -
show the goal and initial states, respectively, while (c) details the movable . .
object and all translational pushing points which correspond to the marked
COF. . - " . . " - .

b T P £ T Ty

S (KR (13 -
- . . . . R, - o
. -~ | - T | DR | B
Ay L SR | B | '
gﬁ
Fig. 16. Pushing plan C1—pushing is done with a small robot. - al " ﬁ% " E‘Eﬁ "

realized, metric-based features are considered by the planner . . .{41- - . - -ll- - -
as “recommendations.”

The Se'Cond test case demonstrates a known feat.ure_Fieflg. Pushing plan D1—using nontranslational pushings in a cluttered
manipulation tasks: the need to handle conflicts by designiagironment.
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Lizal Coofigummsiea

Fig. 20. Real-world experiment snapshots.

and solving subgoals. This feature is managed automaticallg tested our algorithm in a realistic scenario using a mobile
by our planner and is illustrated in Figs. 13 and 14. platform. The planner was run on a Sun 4/460 computer
The next test case deals with pushing plans for compleshere it was integrated with the control environment of the
movable object and the impact of the pusher's geometry BIOMAD-200 mobile robot from Nomadic Inc. The planner
the produced plan. Fig. 15 sketches the shape of a complesed a coarse representation of the lab where the test was
movable object, the task to be solved, and all allowed pushingarried out, and each run involved two movable objects. Only
Figs. 16 and 17 illustrate the planning results for a small amo types of movables were used in this experiment: boxes
a large pusher, respectively. Note that some moves carried antl chairs. Fig. 20 shows some snapshots from one execution
by the smaller robot could not be executed by the larger onvehile Fig. 21 details the corresponding plan.
thus an alternative action was chosen. Arguably, as the research outlined in this paper deals with
Although the algorithm is general, its discretized implemerplanning issues, the described experiment may not necessar-
tation imposes severe limitations with regard to nontransldy contribute significant information. However, we found it
tional pushings (i.e., pushings which not only translate thmportant to experiment with a real platform for two reasons.
object but also rotate it). Supporting these kinds of pushing#rst, we felt that such an experiment may reveal additional
requires either an infinite discretization resolution or the ifeatures to be integrated in future planning algorithm. For
tegration of some sub-cell manipulation mechanism into tlexample, while developing our simulated environment, we
algorithm. Nevertheless, a special case of nontranslatiomasumed a holonomic pusher which draws no costs for chang-
pushings—those that rotate the object by @@d align it back ing direction of motion. The Nomad 200, as a sync drive
with the discretization grid—can be supported. Assume thaptatform, was found to require quite a long time for each turn,
mechanical analysis of the object in Fig. 18(a), results in thleough. This immediately suggested an additional metric to
demonstrated pushing manipulations. Fig. 19 shows a pushbigg integrated in the planning. Second, we expected such an
plan in a cluttered environment. Avoiding rotational pushingsxperiment to show how really critical are the other aspects
in that environment would prevent us from finding a solutioof the pushing rearrangement problem, namely the need for
to most rearrangement problems, including the one presengethsory feedback and the integration of accurate mechanical
in the figure. model. Not unexpectedly, the result emphasized the great
importance of sensory feedback. Before each run the robot
_ and the movables needed to be carefully calibrated for position
B. Real-World Experiment and orientation. Although small odometry errors are acceptable
The experiments so far were executed in a simulated enin-most cases for indoor navigation, this is not the case for
ronment. However, as our final goal is a real working systemushing. Missing, even slightly, the correct pushing contact
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Fig. 22. The problem of rotational pushing. (a) Describes a square object

aligned to the grid. The dots show all possible (discretized) configurations
Fig. 21. Pushing plan for the real-world experiment.
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that the robot can take, and the circles illustrate all the configurations on
the grid that define a contact mode of the robot and the labeled edge. (b)
Shows the same object, oriented at some angle. Note that in this case only
two configurations of the robot still define some contact mode with regard
to the same edge.

o _ the configuration space. Naturally, in such a discretized space,
mode can be critical. The two different movables we US§fih the position and the orientation of each body are allowed
showed different behaviors when pushed and demonstratediget only discretized values. Hence, it is likely that the object
importance of the integration of a sensory information and &, reach some orientation in which the robot will not be

mechanical model of the manipulation. able to achieve all the allowed contact modes needed for the
pushing (see Fig. 22). Consequently a naive implementation
VI. DiscussioN of rotational pushings in the framework of our algorithm

We formulated the problem of planning a pushing manignay cause the planner to miss pushing paths or create illegal
ulation by a mobile robot which tries to rearrange severahes. As demonstrated in Section V, rotations which align the
movable objects in its work space. Our resolution-completdject back to the grid and allow the planner to correctly
algorithm uses a two-phase procedure: first, it propagates a asmisider all contact modes, can still be implemented without
function to achieve a full mapping of every free configuratiorany significant change.
and then it restores a specific pushing C-path using a hill-Another issue that cannot be avoided is the need to handle
climbing search from the given initial configuration to thescenarios where the planner has incomplete knowledge. In
global. By restricting both the propagation and the restoratiomost rearrangement applications we can expect that at least
to admissible origins/neighbors alone, only legal pushing pattfe initial configuration of the movable objects will not be
were produced by the algorithm. The admissibility mechaniskmown a priori. Hence, an appropriate exploration strategy
provides a primary tool for expressing the special charaihat allows the robot to learn where each movable lies must
teristics of the pushing manipulation. It also allows a fulbe carried out before the pushing plan is created. However,
integration of any geometrical constraints imposed by thlvéhen some movables cannot be localized, the robot might
pushing robot, the pushed objects and the environment. Tiged to push objects which block critical passages. Such an
fact that the propagation is carried out backward also allowastion should be taken with caution, carried out as a mini-plan,
it to avoid mapping the trap points, a property that may ksince a precipitious move might push an object to a trap-point
significant in certain environments. and prevent any chance of succeeding with the mission.

Our algorithm has been shown to be optimal and The last issue that needs to be addressed is the push-
(resolution-) complete. As for other approximate cell deconng itself. As the action of pushing is inherently unstable
position algorithms, the greater the number/area of obstacléspecially for point pushers), we might need an adaptive
the less expensive is the algorithm. As this happélsf gets strategy which exploits necessary sensory information in order
smaller, and the maximum number of propagation iteratiots allow controllable pushing actions. Sensory based pushing,
is decreased. Although one can use the planning algorithmais well as the other issues mentioned above, are topics for our
practice for scenarios with few movables under a relativefyture research.
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