Advanced Topics in Complexity - Ex. 2

Due date: 19.5.02

Question 1

Let M be a Boolean matrix and $C(M)$ be the minimal number of rectangles in a monochromatic cover of M. Prove that $\operatorname{rank}(M) \leq C(M)^{\log C(M)}$.

Hint: Use the connection between deterministic and non-deterministic communication complexity.

Question 2

Part 1. Let $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ be a function such that for some $\alpha>0$ and for every rectangle R :

$$
\operatorname{BIAS}(R, f) \leq \alpha 2^{0.5 n} \sqrt{|R|} .
$$

Prove that $\mathrm{D}_{\epsilon}(f) \geq n-\log \frac{1}{1-2 \epsilon}-\log \alpha$.
Hint: You can use the fact that for every non-negative numbers s_{1}, \ldots, s_{t} if $\sum_{i=1}^{t} s_{i} \leq s$ then $\sum_{i=1}^{t} \sqrt{s_{i}} \leq \sqrt{s t}$.

Part 2. Prove that $\mathrm{R}_{\epsilon}(\mathrm{IP}) \geq n-\log \frac{1}{1-2 \epsilon}-O(1)$.
Part 3. Prove that for most functions $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{1,-1\}$ it holds that $\mathrm{R}_{\epsilon}(f) \geq$ $n-\log \frac{1}{1-2 \epsilon}-O(1)$.

Hint: Pick f at random with uniform distribution, that is, for every x, y pick every value $f(x, y)$ independently such that $\operatorname{Pr}[f(x, y)=1]=\operatorname{Pr}[f(x, y)=-1]=1 / 2$.

Question 3

A Las-Vegas protocol for f with error ϵ is a protocol such that for every x, y :

- The protocol outputs the value $f(x, y)$ with probability at least $1-\epsilon$.
- The protocol never outputs the value $1-f(x, y)$, however the protocol might return the value "don't know."

The complexity of the protocol is the maximum complexity over all choices of x, y and the random inputs. Define $\mathrm{ZR}_{\epsilon}(f)$ as the minimum complexity of a Las-Vegas protocol for f with error ϵ. Similarly, $\mathrm{ZR}_{\epsilon}^{\text {pub }}(f)$ is the minimum complexity of a Las-Vegas protocol with public random coins for f with error ϵ.

Part 1. Prove that $\mathrm{N}(f) \leq \mathrm{ZR}_{\epsilon}(f) \leq \mathrm{D}(f)$.
Part 2. Prove that $\mathrm{ZR}_{\epsilon}(f)=\Theta\left(\mathrm{R}_{\epsilon}^{1}(f)+\mathrm{R}_{\epsilon}^{1}(\bar{f})\right)$.
Part 3. Prove that $\mathrm{ZR}_{\epsilon+\delta}(f)=O\left(\mathrm{ZR}_{\epsilon}^{\mathrm{pub}}(f)+\log n+\log \frac{1}{\delta}\right)$.

Question 4

In the lecture we proved that there is a randomized protocol for GT with complexity $O(\log n \log \log n)$. However, this proof was not constructive (since we used the transformation from the public coin model). In this question you will show how to construct such a protocol.

An (ℓ, k, d) error correcting code over alphabet Σ is a mapping $E:\{0,1\}^{k} \rightarrow \Sigma^{\ell}$ such that for every $x \neq y$ it holds that $E(x)_{i} \neq E(y)_{i}$ for at least d values of i (where $E(x)_{i}$ is the i th coordinate of $E(x))$.

Part 1. Prove that there exists an explicit ($n, \log n, n / 2$) error correcting E_{1} code with alphabet $\{0,1\}$.

Hint: You can use the fact that $\operatorname{Pr}_{r}[\operatorname{IP}(X, r)=\operatorname{IP}(y, r)]=1 / 2$ for every $x, y \in\{0,1\}^{\log n}$.
Part 2. Prove that there exists an explicit ($2 n, n, n / 2$) error correcting code E_{2} with alphabet \mathcal{Z}_{p}, where $p \approx 2 n$.

Hint: Use polynomials over \mathcal{Z}_{p} as described in the protocol for EQ.
Part 3. Prove that there exists an explicit $(\ell, n, \ell / 4)$ error correcting code E with alphabet $\{0,1\}$, where $\ell=O\left(n^{2}\right)$.

Hint: Encode every coordinate of E_{2} using E_{1}.
Part 4. Use the code E from Part 3 to construct an explicit protocol for GT.
Hint: Use the same coordinates of E each time you need to check equality.

