Advanced Topics in Complexity – Ex. 2

Due date: 19.5.02

Question 1

Let M be a Boolean matrix and C(M) be the minimal number of rectangles in a monochromatic cover of M. Prove that $\operatorname{rank}(M) \leq C(M)^{\log C(M)}$.

Hint: Use the connection between deterministic and non-deterministic communication complexity.

Question 2

Part 1. Let $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ be a function such that for some $\alpha > 0$ and for every rectangle R:

$$\operatorname{BIAS}(R, f) \le \alpha 2^{0.5n} \sqrt{|R|}.$$

Prove that $D_{\epsilon}(f) \ge n - \log \frac{1}{1-2\epsilon} - \log \alpha$.

Hint: You can use the fact that for every non-negative numbers s_1, \ldots, s_t if $\sum_{i=1}^t s_i \leq s$ then $\sum_{i=1}^t \sqrt{s_i} \leq \sqrt{st}$.

Part 2. Prove that $R_{\epsilon}(IP) \ge n - \log \frac{1}{1-2\epsilon} - O(1)$.

Part 3. Prove that for most functions $f : \{0,1\}^n \times \{0,1\}^n \to \{1,-1\}$ it holds that $R_{\epsilon}(f) \ge n - \log \frac{1}{1-2\epsilon} - O(1)$.

Hint: Pick f at random with uniform distribution, that is, for every x, y pick every value f(x, y) independently such that $\Pr[f(x, y) = 1] = \Pr[f(x, y) = -1] = 1/2$.

Question 3

A Las-Vegas protocol for f with error ϵ is a protocol such that for every x, y:

- The protocol outputs the value f(x, y) with probability at least 1ϵ .
- The protocol never outputs the value 1 f(x, y), however the protocol might return the value "don't know."

The complexity of the protocol is the maximum complexity over all choices of x, y and the random inputs. Define $\operatorname{ZR}_{\epsilon}(f)$ as the minimum complexity of a Las-Vegas protocol for f with error ϵ . Similarly, $\operatorname{ZR}^{\operatorname{pub}}_{\epsilon}(f)$ is the minimum complexity of a Las-Vegas protocol with public random coins for f with error ϵ .

Part 1. Prove that $N(f) \leq ZR_{\epsilon}(f) \leq D(f)$.

Part 2. Prove that $\operatorname{ZR}_{\epsilon}(f) = \Theta(\operatorname{R}^{1}_{\epsilon}(f) + \operatorname{R}^{1}_{\epsilon}(\overline{f})).$

Part 3. Prove that $\operatorname{ZR}_{\epsilon+\delta}(f) = O(\operatorname{ZR}^{\operatorname{pub}}_{\epsilon}(f) + \log n + \log \frac{1}{\delta}).$

Question 4

In the lecture we proved that there is a randomized protocol for GT with complexity $O(\log n \log \log n)$. However, this proof was not constructive (since we used the transformation from the public coin model). In this question you will show how to construct such a protocol.

An (ℓ, k, d) error correcting code over alphabet Σ is a mapping $E : \{0, 1\}^k \to \Sigma^\ell$ such that for every $x \neq y$ it holds that $E(x)_i \neq E(y)_i$ for at least d values of i (where $E(x)_i$ is the *i*th coordinate of E(x)).

Part 1. Prove that there exists an explicit $(n, \log n, n/2)$ error correcting E_1 code with alphabet $\{0, 1\}$.

Hint: You can use the fact that $\Pr_r[\operatorname{IP}(X, r) = \operatorname{IP}(y, r)] = 1/2$ for every $x, y \in \{0, 1\}^{\log n}$.

Part 2. Prove that there exists an explicit (2n, n, n/2) error correcting code E_2 with alphabet \mathcal{Z}_p , where $p \approx 2n$.

Hint: Use polynomials over \mathcal{Z}_p as described in the protocol for EQ.

Part 3. Prove that there exists an explicit $(\ell, n, \ell/4)$ error correcting code E with alphabet $\{0, 1\}$, where $\ell = O(n^2)$.

Hint: Encode every coordinate of E_2 using E_1 .

Part 4. Use the code E from Part 3 to construct an explicit protocol for GT. Hint: Use the same coordinates of E each time you need to check equality.