Advanced Topics in Complexity - Ex. 1

Due date: 22.4.02

Question 1

Let $b \in\{0,1\}$. A b-fooling set of size m for a function f is a sequence $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ such that:

1. $f\left(x_{i}, y_{i}\right)=b$ for every $i=1, \ldots, m$.
2. $f\left(x_{i}, y_{j}\right)=1-b$ or $f\left(x_{j}, y_{i}\right)=1-b$ for every $i \neq j$.

Part 1. Prove that there is a 1-fooling set of size n for the function IP_{n}.
Part 2. Prove that every 1-fooling set for the function IP_{n} has size at most n.
Hint: Prove that the vectors x_{1}, \ldots, x_{m} must be linearly independent over \mathcal{Z}_{2}.
Part 3. Prove that every 0-fooling set for the function IP_{n} has size at most $n+1$.

Question 2

Part 1. Let A and B be matrices. Prove that $\operatorname{rank}(A \cdot B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
Part 2. Let $\mathrm{IP}^{\prime}{ }_{n}$ be the matrix for the inner-product as defined in the class (where $\operatorname{IP}^{\prime}(x, y) \in\{-1,1\}$). Prove that $\mathrm{IP}_{n}^{\prime} \cdot \mathrm{IP}_{n}^{\prime}=2^{n} I$ (where I is the identity matrix with 2^{n} rows).

Part 3. Use the Part 1 and Part 2 to prove that $\operatorname{rank}\left(\mathrm{IP}_{n}\right)=2^{n}-1$. (Recall that a different proof was given in the class.)

Question 3

Part 1. Assume that a function f has a 1-fooling set of size m. Prove that $N^{1}(f) \geq \log m$.
Part 2. Prove that $N^{1}\left(\overline{\mathrm{GT}}_{n}\right) \geq n$.

Question 4

Define $\operatorname{rank}_{2}(M)$ as the rank of M over the field \mathcal{Z}_{2}.
Part 1. Prove that for every Boolean matrix $\operatorname{rank}_{2}(M) \leq \operatorname{rank}(M)$.
Part 2. Prove that $D(f) \leq \operatorname{rank}_{2}\left(M_{f}\right)+1$.
Part 3. Let $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ be such that for every $x_{1}, x_{2} \in\{0,1\}^{n}$, where $x_{1} \neq x_{2}$, there is some y such that $f\left(x_{1}, y\right) \neq f\left(x_{2}, y\right)$. Prove that $D(f) \geq \log n$.

