Topics in the Frontiers of Computer Science - Exercise 2
 Deadline: 6.5.01

Exercise 1

Let $\vec{v}, \overrightarrow{v^{\prime}}$ be two non-zero vectors over some field \mathcal{F}. Prove that for every span program (M, ρ, \vec{v}) over \mathcal{F} there is a span program of equal size $\left(M^{\prime}, \rho, \overrightarrow{v^{\prime}}\right)$ accepting the same access structure.

Exercise 2

Let $n=\binom{m}{2}$ and consider a complete undirected graph with m vertices denoted $\left\{v_{1}, \ldots, v_{m}\right\}$ and n edges. Define the access structure $C O N$ whose participants are the edges, and a set of edges is in the access structure if it contains a path from v_{1} to v_{m}. Prove that $C O N$ has a span program of size n over every field \mathcal{F}.

Exercise 3

Let L_{1}, \ldots, L_{m} be m subsets of $\{0, \ldots, m-1\}$ such that the intersection of every two subsets is of size at most one. Define the access structure LINES, which has $n=2 m$ participants denoted $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\}$, and whose minimal sets are $\left\{\left\{a_{i}, b_{j}\right\}: j \in L_{i}\right\}$.

1. Prove that for every field \mathcal{F}, every monotone span program over \mathcal{F} has size at least $\sum_{i=1}^{m}\left|L_{i}\right|$.
2. Let p be a prime number and $m=p^{2}$. For every $(a, b) \in \mathcal{Z}_{p} \times \mathcal{Z}_{p}$ define

$$
L_{(a, b)}=\left\{(x, y) \in \mathcal{Z}_{p} \times \mathcal{Z}_{p}: y \equiv a x+b \quad(\bmod p)\right\} .
$$

Prove that for every $a_{1}, b_{1}, a_{2}, b_{2} \in \mathcal{Z}_{p}$ such that either $a_{1} \neq a_{2}$ or $b_{1} \neq b_{2}$ (or both)

$$
\left|L_{\left(a_{1}, b_{1}\right)} \cap L_{\left(a_{2}, b_{2}\right)}\right| \leq 1 .
$$

3. Identify each pair $(x, y) \in \mathcal{Z}_{p} \times \mathcal{Z}_{p}$ with the number $x p+y \in\{0, \ldots, m-1\}$, and similarly for every pair $(a, b) \in \mathcal{Z}_{p} \times \mathcal{Z}_{p}$. What is the lower bound for the access structure LINES defied with the sets $L_{(a, b)}$?
