Inheritance, Polymorphism and
the Object Memory Model

; -’. SPL/2010 ;

L

. how objects are stored in memory at
runtime?

. compiler - operations such as access to a
member of an object are compiled

. runtime - implementation of operations such
as hew and delete

; -’. SPL/2010 ;

L

Object-class in memory

. object= instance of a class

. class defines characteristics of instances: data
members (state)/member functions (methods).

. object is implemented at runtime as a region
of storage (a contiguous block of memory)

. class defines the memory layout of all the
objects that belong to that class

; -’. SPL/2010 ;

L

Object-class in memory

. object of class is allocated a copy of all class
data members

. static members allocated once

. objects of class share member functions
(methods)

. code for functions is stored only once in memory
for each class.

i ; SPL/2010 2 4

L

object values / object references

. obj]
ob]

. ob]

ect references is as a pointer o an

ect va
ect va

ue

ues are implemented as a

con’ruguous block of memory, where each
field (data member) is stored in sequence

; -’. SPL/2010 ;

L

class A |

b3

int a;

ftloat f;
char cl;
char cf;

char d[4]; 7/ An array of 4 char walues

SPL/2010

int a (4 bytes)
float £ (4 bytes)

char cl

(1 byte) Unused

char ¢2

(1 byte) Unused

char d[0] | char d[1] | char d[2] | char d[3]
(1 byte) | (1byte) | (1byte) | (1 byte)

sizeof()

. primitive type is encoded in a fixed amount
of memory.

. int 4 bytes, char 1 byte, double 8 bytes... etc.
. sizeof() - size used by a given type.

. computed at compile-time

. a compiler operator

. can return size allocated for object data-types
. sizeof(A) = 20 (5 words of 4 bytes).

; -’. SPL/2010 ;

L

Field Alignment

. fields c1 and c2 are "word aligned" within the
block of memory of the object:

. fields start on a word boundary (word=4b)
. memory left "wasted"
. compiler flag not to align fields

. aligning fields - easy data accessing

i ; SPL/2010 2 8

L

RBitfields should be avoided

#ginclude <ztdio.hs-
int mainf(int argc,char® argv[]) 4
typedef struct testl!
char a:2;
long bi3;
char c:2;
short d:1;
long long int e:3;
ltestl;
typedef struct test:!
char a:2;
long b:3;
char c:2;
short _d:l:
<:::EEEEHQ long int {EEE:>
lLestly
printf("testl:3d testZ::d\n",sizeof(testl) sizecfitesti]] ;
return 0;

result:
tl:d testz:d

SPL/2010

class A |

i

et a: offset O
tloat f; t: oftfset 4
char cl; =l: off=set B
char cZ; c2: offset 12
char d[4]; 7/ An array of 4 char wvalues d: offset 16

SPL/2010 10

d
A al;

cont << al. .ol

}
. reference to a field - compiler uses offset
of field within the object

. al.c2 is translated to:

. push activation frame for new block with one
variable of 20 bytes (for al)

. invoke constructor of A on the address of
register S (top of stack)

READ [S]+12, B - address [S]+12 into register B

i -’. SPL/2010 ; 11

L

Memory Layout of Arrays

. field is aligned on a word boundary

. arrays are generally "packed": elements of
array are one after the other

. ho holes

char *str = “the cat”;

3130
Memo
aaaaaaaaa
SPL/ZOIO sentl (3133
sent2 [3133

L

Memory Layout and Inheritance

. class B extends class A

. fields defined in A exist in B
. new fields for objects of type B.

. block memory for objects of class B is larger
than that of objects of class A.

class B @ public A |
public:

double g;
SPL/2010 } .

L

. first 20 bytes = structure of it (4 bytes

Type A.

" " . " float f (4 bytes)
. "look at a B value® as 7/f an "A
" char ¢
Value . (Fh}rt;) Unused
. take first part of B and "cut" |
Unused

to sizeof(A). (1 byte)

char d[0] | char d[1] | char d[2] | char d[3]
(1 byte) [(1 byte) | (1byte) | (1 byte)

double g (8 bytes)
SPL/2010

C++ and memory

. code for the methods of a class is stored
only once for each class

. picture of the memory allocated to a process
covers 3 distinct areas:

. heap: values allocated using the new operator
. stack: automatic values in activation frames

. code segment: code of all the classes used in the
program executed by the process

i -’. SPL/2010 ; 15

L

abstract objects & memory model

. an abstract object is characterized by the
following elements:
. identity
. State
. set of objects it knows

. interface (set of messages to which the object
can react)

; -’. SPL/2010 ;

L

16

abstract objects & memory model

. identity - address of object data in memory

. state of object - encoded in associated
memory block (fields values)

. interface of object - known by the compiler,
based on type of object

. methods for objects to react (defined by class)

i -’. SPL/2010 ; 17

L

. interface: C::C(), C::~C(), C::f(), C::g()

class C |
private:
int i;
char c;
public:
ciy {1=0; c="a’; |

int f(int §) const { return i+j; }

char gl) const { return c; }

SPL/2010 18

code region

. method is stored in code region allocated to process
in which the class is used

. method is encoded as sequence of processor
Instructions

. method is known to compiler by start address in
memory

. invocation of method = sequence of instructions:

. parameters pushed on stack

. method invoked by using CALL instruction of the
processor

. passed the address of the first instruction of the
method that is invoked.

i ; SPL/2010 2 19

L

S
int x = cl.f(2);

!
. push new activation frame on stack - c1= 8B + x=4B

. invoke C::C() on the address [S]

. push [S] -- push the address of cl on the stack
. push $2 -- push the constant 2 on the stack

. push [S] -- push the address of cl on the stack
. call [C::f] -- invoke c1.f(2)

. write ReturnRegister [S-4] -- copy the value returned by
f into variable x which is below clin the stack

. pop [S] - pop the address of cl from stack
. call [C::~C] -- invoke the destructor of cl

i -’. SPL/2010 ; 20

L

. compiler maintains internal table where it
keeps track of the address of each of the
methods of the class

. compiler invokes a method of a class

. method has access to internal state of
object, wherever it may be. How?

; -’. SPL/2010 ;

L

21

implicit "this" parameter
. How method knows where are fields of
object?

. Solution: compiler always passes a "hidden’
parameter to method call: address of the
object-this

. this of type C* (for class C): address of
block organized according to structure of
class C.

; -’. SPL/2010 ;

L

22

Static method

. static methods do not have access to this -
can be invoked independently

. Custatic_method(x)

; -’. SPL/2010 ;

L

23

Polymorphism

. ability to use an operator or function in
different ways.

. Different meanings to the operators or
functions (poly = many / morph = shape)
. 6+5
. “a"+"bc"
. 3.2+4.75

; -’. SPL/2010 ;

L

24

Late Binding

. Polymorphism = essential property of OO
languages

. Refers to the possibility to decide which
method to invoke at runtime and not at
compile time.

; -’. SPL/2010 ;

L

25

1. /4 2bstract class shape
2. olass Shape |

3. e

3.)i

6.

V. glass Circle : public Shape |
g. public:

a, Circlel() {...}

10. wirtual drawi() {....}

11. };

1Z.

153. eclass Bectangle : public Shape |
14, public:

15. Rectangle () {...}

16, wirtual drawi() {....}

17. };

12.

19, <oid maini...) {
a0. Circle cl;
21. Rectangle rl;
22, Shape* =;
a3.

&cl;
s-»drawl}; // = now refers to a wvalue of type circle (cl). = will invoke the method Circle::draw
a2 = &rl;

s-»drawl}; // 3 now refers to a walue of type rectangle (rli. = will invoke the method Rectangle: jfraw

s->draw()

. compiler does not know the address of the
function to invoke

. same C++ instruction will sometimes execute:

. "call [Circle::draw]"
. "call [Rectangle::draw]"

. How does the compiler manage to produce
the right code?

i -’. SPL/2010 ; 27

L

Vtable Mechanism

. compiler delaying the decision of method to
invoke to runtime, instead of compile time.

. method is marked as virtual

. actual method invoked depends on the type
of the value of the object at runtime

. hot on the type of the value at compile time

; -’. SPL/2010 ;

L

28

. s is a variable of type Shape
. invoke s->draw():

. Call draw() of Rectangle or Circle by value to
which s is bound at time of invocation

3 = Lol;
s—>dramw|) ;

5 = &rl:

g—>dramw|) ;
SPL/2010 }

L

virtual-table (vtable)

how an object decides which code to invoke when
It receives a message?

. message = invocation of a method through a
pointer to an object.

. value of object in memory is extended by a
pointer to a table with function address

. table is stored explicitly in process memory
(code region).

. table for each class that contains virtual
methods.

; -’. SPL/2010 ;

L

30

ink a;

double b;

char <;
public:
virtual
wvirtual
virtual

virtual

} F':

SPL/2010

vtable for class foo

wold kK [... =

— Code for m

int 1
wolid m () ;

double nf

31

Invoking a virtual method

. Suppose d is of type foo *.
. call to object reference: d->m():

. dereferencing d's vpointer,
. looking up the m entry in the vtable,

. dereferencing that pointer to call the correct
method code.

; -’. SPL/2010 ;

L

foo' s viahle

m — Code for o

Example: *((*d)[2])(d):
. Assume vpointer is always the first element
in d:
. dis the address of the beginning of the block of
memory which stores the foo value bound to d

. *d is the content of the first word in the block
of memory: it contains the address of the vtable

. (*d)[2] is the address of the 3rd element in the
vtable (the address of method m)

. *((*d)[2])(d) - invoke function located at third
slot in vtable of foo and pass to it the address of
the value

i -’. SPL/2010 ; 33

L

Inheritance and vtable

. When a class extends another class, how is
the vtable managed?

class bar : public foo { B bar s viable
int w: — - k
public: 1
vold =2 (): ffoverr idas . ;
® —»Cocde for bar s =
virtual double & (... b _ .
—» Cocle for foo "s n
virtual char =t (..

Code for bar "s =

¥ B;

1]
K B
LA RN

. bar extends foo. bar overrides m, and
introduces 2 new methods s and t.

feo's viable

SPL/2010

. compiler generates a new distinct vtable for
class bar. vtable elements point:

. to same addresses as parent when method is not
overridden

. overridden methods or to the new methods
otherwise

. vtable of inherited class is an extension of the
vtable of the parent table:

. shared methods appear in the same order

. new methods in the child class appear at the end of
the vtable.

i ; SPL/2010 2 35

L

Vtable and Multiple Inheritance

. multiple inheritance: a class can extend more
than one base class

parson gp_list_node

N/

gtudant

i ; SPL/2010 2 36

L

Multiple Inheritance

. Class student inherits both from
class person and from class gp_list_node

. vtable layout becomes more complex in such
a situation.

; -’. SPL/2010 ;

L

37

Multiple Inheritance

. object of type student has in its state 3
types of fields (inherited from person,
gp_list_node) and declared in class student

. 3 types of methods (inherited from person,

gp_list_node) and defined in class student

; -’. SPL/2010 ;

L

38

Vtable

. vtable points to student specific vtable

. vtable first contains person methods, next
methods that appear in class student

. viable is then followed by the person fields.

(look at a student value as a person value -
just ignore the bottom part of the block)

we cannot store the gp_list_node vtable at the

beginning of the block.

; -’. SPL/2010 ;

L

39

. So where can we store gp_list_node vtable?
. Store fields right after the person fields.

. Store gp_list_node data members after this
viable

. Finally we store the student specific data
members at the end of the data block

i -’. SPL/2010 ; 40

L

parson gp.list_node

N/

studant

SPL/2010

student view, —
person VICW '

gp_list_node view —h

student object.

student viahle
istudent/person par)

person
(e lds

> person
methods

student (only)
met hod s

s s s oo o i R S S . .

gtudent viable
(gp_list_node par)

gp-list_node
fields

student (only)
[z lds

EP _list_nodea
methods

41

. how does the compiler find the appropriate
vtable?

. how to pass valid tAis pointer to a method
of gp_list_node that is not overridden?

. code cannot know that what it receives as a
this pointer is not a real gp_list_node.

. accesses the fields of the value it has assuming
it is a gp_list_node value.

i ; SPL/2010 2 47

L

pointer fixup

. compiler knows what type of method is invoked -
either inherited from person, gp_list_node or
specific to student.

. If inherited from gp_list_node: pass
"corrected address" (this+d, d=sizeof(person)).

. Jook down from this address, block memory
looks as a valid gp_list_node value

. vtable to which we point is also a valid

_list_node vtable
SPL/2010 43

L

Casting and Addresses

. when we cast an object to a different class,
we may end up with a different address in
memory

. casting is not only to tell the compiler "trust
me I know what I do"; it also can end up
generating code to fix the pointers in
memory.

i -’. SPL/2010 ; 44

L

SPL/2010

clazs P1
public:
wirtual m() ;
ri
clazs P2
public:
wirtual nil) ;
'
class € @ publiec P1, public P2 |
'

int maini() {
C* o = new C[);
P1* pl;
Pi* pd;

pl = dynamic cast<P1l*>(c);
pZ = dynamic cast<PI*>(c);

£/ pl and pZ have different wvalues

45

. Implicit conversion:

— short a=2000:; int b; b=q;

- automatically performed when a value is copied to a
compatible type

. Explicit conversion

— short a=2000; int b; b = (int) a;

- explicit type-casting allows to convert any pointer into
any other pointer type

SPL/2010 46

. Dynamic_cast:

SPL/2010

can be used only with pointers and references

ensure that the result of the type conversion is a valid
complete object

always successful when we cast a class to one of its
base classes

Compatibility: dynamic_cast requires the Run-Time
Type Information (RTTI) to keep track of dynamic
Types

47

g++ fdump -class-hierarchy option

. look at the exact structure of the vtables
the compiler generates for us

. g++ has an option that allows us to get this
information in a readable manner:

. g++ c.cpp -fdump-class-hierarchy -o ¢
. generates a text file called c.cpp.tOl.class which

. gives the details of the memory layout and
vtable of the classes defined in the file.

i ; SPL/2010 2 48

L

class EB1

i

pubblic:

woid £01() {1}

wirtual woid £1() {}
int int in bl;

class B2

i

public:

wirtual woid £2()1 {1}
int int in bZ;

E bE

clas=s D @ public Bl, public EZ2

. public:

E void di) {}
I woid £2() {} Jf override EBZ::f£f2 ()
E int int in d;

= new B2 ():
= new DI]:

SPL/2010

b

2
+0:
+4:

+0:

pointer to wirtual method takble of B2
value of int in ba

wirtual method tabhle of EZ:

Ez::f2 ()

__

+0:
+4:
+5:
+12:
+16:

+0:

+0:

pointer to wirtual method takbhle of I (for E1l)
value of int in bl
pointer to wirtual method takhle of I (for EBZ)
value of int in bhi
wvalue of int:in:d

Total =ize: 20 Bytes.

wirtual mwethod table of I (for EBl):

Bl::f1() // Bl::f1() i= not overridden

wirtual method table of I (for EBZ) :

D::£2 1) 4 BEi:fZ () is owverridden by D::£2 ()

__

SPL/2010

50

Virtual methods: performance
Issues

. invoking a virtual method is more expensive at
runtime than invoking a regular function.

. 2 operations: get the location of the function's code
from vtable, and invoke the function.

. 2 other costs to the vtable mechanism:

) ObLec’r values are extended by one word for each
vtable to which they refer.

. Virtual methods cannot be compiled "inline"

. (Inline: avoids calling a function - pushing arguments
on the stack, popping them out at end - copying code
of the function at invocation)

i .’. SPL/2010 ; 51

L

. 3 costs combined can have a strong effect on
performance of program.

. in C++, methods are not virtual by default. If
a class does not have virtual method, then
does not include a vtable.

. in Java, methods are always virtual.

i -’. SPL/2010 ; 52

L

Implementing Interfaces in C++

. Java avoids the complexity of multiple
inheritance

. restricts programmers to single inheritance and
the mechanism of interfaces.

. Interfaces = restricted method of multiple
inheritance.

. interfaces in C++: pure virtual abstract class.

i ; SPL/2010 2 53

L

pure virtual abstract class

. does not define any data members.
. All of its methods are virtual.

. All of its methods are abstract (marked in
C++ as virtual m() = O;)

; -’. SPL/2010 ;

L

54

"virtual inheritance"= "implement an interface”

. avoid the problem of ambiguous hierarchy
composition - diamond problem

. inheritance=arranging classes in memory

F4 A C++ interface
class serializable |
public:
wirtual woid serialize (stream& =) = O;

1

A4 A olass implepenting™he serializable interface
class C @ publig wvirtual gerializable |
public:

CHA v}
SHJZOKZ—/ virtual woid serializable (stream& s) { ... 1}

1

L

The Visitor Pattern

. when you want to decide at runtime which
piece of logic to execute=polymorphism

. In such cases in your code -refactor -
infroduce polymorphism

A4 This calls for polymorphism!
if (getType() == typel] |

ff procezs typel case
} else if [getTypel) == typel) |

ff process typei case

SPL/2010

56

Visitor pattern - achieve re-organization of
your code

. a Printer object can print Document objects.

. code to print documents types is different
. code for each type of printer is different.
. 'double dispatch”

i ; SPL/2010 2 57

L

. use the virtual table dispatch mechanism to
send the print message to the right method.

. a printer object receives the print message
with a document object:

. first dispatch happens when we select the
appropriate printer object

. second dispatch (based on the type of document)
is achieved by sending the printMe message to
the document.

i ; SPL/2010 2 58

L

. do not want each document class to know
about each printer class -very bad coupling.

. document object just invokes the specific
printer method on a specific document type
method.

. each document type for each printer type
has a separate method handling the specific
code

i ; SPL/2010 2 59

L

Sk

l

finclude <iostream:

Fiformard declarations
zlas=s Printer;
zla==s PDFDoc;

class DocDoo;

zlass Document |

public:
//thi=s is the accept function
wirtual woid printMe [Printer *p)=0;

i

zlas=s Printer
public:

wirtual woid print (Docweent *d)=0;

A/the visitors
wirtual woid print (PDFDoc *d)=0;
wirtual woid print(DocDoc *d)=0;

i

cls=ss PDFDoc @ public wirtual Document |
public:
wirtual woid printMe (Printer *p) {
std: icout << "PDFDoc accepting a print call”™ << std::endl;
p—rprint (this) ;

i e

class DocDoc @ public virtual Docwment |
public:
wvirtual woid printMe (Printer *p) {
gtd: icout << "DocDoc accepting a print call"™ <« std::endl;

60

p—=print (this);

SPL/201

class MyPrinter : public wirtusl Printer

public:

i 8

int

void bhadPrint (Document *d) |
if [dynamic cast<PDFDoc*>(d)) {
print (dynamic cast<PDFDoc*>(d)) ;
i else if [(dynamic cast<DocDoc*>(d)) {
print (dynamic cast<Dochoc*s>(d)) ;
1 else |
atd:icout << "what to do???" << stdiiendl;

wirtual woid print(Docwnent *d) |
std: :cout << "dispatching function <prints> called™ << std::endl;
d-zprintMe (this) ;

}

wirtual woid print (PDFDoc *d) {
std: :cout << "printing a PDF doc" << std::endl;

}

wirtual woid print (DocDoc *d) f

std: :cout << "printing a Doc doc" << std::endl;

mainl) |

MyPrinter p;

Document *docA = new PDFDoc () ;

Document *docE = new DocDoc) ;

p.printidocd);

p.print (docB) ;

std: :cout << "using hadPrint™ << std::endl;
p.badPrint (docd) ;

p.badPrint (docE) ;

delete dock;

delete docE;

return 0;

61

