
SPL/2010

SPL/2010

Inheritance, Polymorphism and
the Object Memory Model

1

SPL/2010

SPL/2010

● how objects are stored in memory at
runtime?

● compiler - operations such as access to a
member of an object are compiled

● runtime - implementation of operations such
as new and delete

2

SPL/2010

SPL/2010

Object-class in memory

● object= instance of a class

● class defines characteristics of instances: data
members (state)/member functions (methods).

● object is implemented at runtime as a region
of storage (a contiguous block of memory)

● class defines the memory layout of all the
objects that belong to that class

3

SPL/2010

SPL/2010

Object-class in memory

● object of class is allocated a copy of all class
data members

● static members allocated once

● objects of class share member functions
(methods)

● code for functions is stored only once in memory
for each class.

4

SPL/2010

SPL/2010

object values / object references

● object references is as a pointer to an
object value

● object values are implemented as a
contiguous block of memory, where each
field (data member) is stored in sequence

5

SPL/2010

SPL/2010

6

SPL/2010

SPL/2010

sizeof()

● primitive type is encoded in a fixed amount
of memory.

● int 4 bytes, char 1 byte, double 8 bytes… etc.

● sizeof() - size used by a given type.

● computed at compile-time

● a compiler operator

● can return size allocated for object data-types

● sizeof(A) = 20 (5 words of 4 bytes).

7

SPL/2010

SPL/2010

Field Alignment

● fields c1 and c2 are "word aligned" within the
block of memory of the object:

● fields start on a word boundary (word=4b)

● memory left "wasted"

● compiler flag not to align fields

● aligning fields - easy data accessing

8

SPL/2010

SPL/2010

Bitfields should be avoided

9

SPL/2010

SPL/2010

10

SPL/2010

SPL/2010

● reference to a field - compiler uses offset
of field within the object

● a1.c2 is translated to:

● push activation frame for new block with one
variable of 20 bytes (for a1)

● invoke constructor of A on the address of
register S (top of stack)

● READ [S]+12, B - address [S]+12 into register B

11

SPL/2010

SPL/2010

Memory Layout of Arrays

● field is aligned on a word boundary

● arrays are generally "packed": elements of
array are one after the other

● no holes

char *str = “the cat”;

12

SPL/2010

SPL/2010

Memory Layout and Inheritance

● class B extends class A

● fields defined in A exist in B

● new fields for objects of type B.

● block memory for objects of class B is larger
than that of objects of class A.

13

SPL/2010

SPL/2010

● first 20 bytes = structure of
type A.

● "look at a B value“ as if an "A
value":

● take first part of B and "cut"
to sizeof(A).

14

SPL/2010

SPL/2010

C++ and memory

● code for the methods of a class is stored
only once for each class

● picture of the memory allocated to a process
covers 3 distinct areas:

● heap: values allocated using the new operator

● stack: automatic values in activation frames

● code segment: code of all the classes used in the
program executed by the process

15

SPL/2010

SPL/2010

abstract objects & memory model

● an abstract object is characterized by the
following elements:

● identity

● state

● set of objects it knows

● interface (set of messages to which the object
can react)

16

SPL/2010

SPL/2010

abstract objects & memory model

● identity - address of object data in memory

● state of object - encoded in associated
memory block (fields values)

● interface of object - known by the compiler,
based on type of object

● methods for objects to react (defined by class)

17

SPL/2010

SPL/2010

● interface: C::C(), C::~C(), C::f(), C::g()

18

SPL/2010

SPL/2010

code region

● method is stored in code region allocated to process
in which the class is used

● method is encoded as sequence of processor
instructions

● method is known to compiler by start address in
memory

● invocation of method = sequence of instructions:

● parameters pushed on stack

● method invoked by using CALL instruction of the
processor

● passed the address of the first instruction of the
method that is invoked.

19

SPL/2010

SPL/2010

● push new activation frame on stack - c1= 8B + x=4B

● invoke C::C() on the address [S]

● push [S] -- push the address of c1 on the stack

● push $2 -- push the constant 2 on the stack

● push [S] -- push the address of c1 on the stack

● call [C::f] -- invoke c1.f(2)

● write ReturnRegister [S-4] -- copy the value returned by
f into variable x which is below c1 in the stack

● pop [S] – pop the address of c1 from stack

● call [C::~C] -- invoke the destructor of c1

20

SPL/2010

SPL/2010

● compiler maintains internal table where it
keeps track of the address of each of the
methods of the class

● compiler invokes a method of a class

● method has access to internal state of
object, wherever it may be. How?

21

SPL/2010

SPL/2010

implicit "this" parameter

● How method knows where are fields of
object?

● Solution: compiler always passes a "hidden"
parameter to method call: address of the
object-this

● this of type C* (for class C): address of
block organized according to structure of
class C.

22

SPL/2010

SPL/2010

Static method

● static methods do not have access to this -
can be invoked independently

● C::static_method(x)

23

SPL/2010

SPL/2010

Polymorphism

● ability to use an operator or function in
different ways.

● Different meanings to the operators or
functions (poly = many / morph = shape)

● 6+5

● “a”+”bc”

● 3.2+4.75

24

SPL/2010

SPL/2010

Late Binding

● Polymorphism = essential property of OO
languages

● Refers to the possibility to decide which
method to invoke at runtime and not at
compile time.

25

SPL/2010

SPL/2010

26

SPL/2010

SPL/2010

 s->draw()

● compiler does not know the address of the
function to invoke

● same C++ instruction will sometimes execute:

● "call [Circle::draw]"

● "call [Rectangle::draw]"

● How does the compiler manage to produce
the right code?

27

SPL/2010

SPL/2010

Vtable Mechanism

● compiler delaying the decision of method to
invoke to runtime, instead of compile time.

● method is marked as virtual

● actual method invoked depends on the type
of the value of the object at runtime

● not on the type of the value at compile time

28

SPL/2010

SPL/2010

● s is a variable of type Shape

● invoke s->draw():

● Call draw() of Rectangle or Circle by value to
which s is bound at time of invocation

29

SPL/2010

SPL/2010

virtual-table (vtable)

how an object decides which code to invoke when
it receives a message?

● message = invocation of a method through a
pointer to an object.

● value of object in memory is extended by a
pointer to a table with function address

● table is stored explicitly in process memory
(code region).

● table for each class that contains virtual
methods.

30

SPL/2010

SPL/2010

vtable for class foo

31

SPL/2010

SPL/2010

Invoking a virtual method

● Suppose d is of type foo *.

● call to object reference: d->m():

● dereferencing d's vpointer,

● looking up the m entry in the vtable,

● dereferencing that pointer to call the correct
method code.

32

SPL/2010

SPL/2010

Example: *((*d)[2])(d);
● Assume vpointer is always the first element

in d:

● d is the address of the beginning of the block of
memory which stores the foo value bound to d

● *d is the content of the first word in the block
of memory: it contains the address of the vtable

● (*d)[2] is the address of the 3rd element in the
vtable (the address of method m)

● *((*d)[2])(d) - invoke function located at third
slot in vtable of foo and pass to it the address of
the value

33

SPL/2010

SPL/2010

Inheritance and vtable

● When a class extends another class, how is
the vtable managed?

● bar extends foo. bar overrides m, and
introduces 2 new methods s and t.

34

SPL/2010

SPL/2010

● compiler generates a new distinct vtable for
class bar. vtable elements point:

● to same addresses as parent when method is not
overridden

● overridden methods or to the new methods
otherwise

● vtable of inherited class is an extension of the
vtable of the parent table:

● shared methods appear in the same order

● new methods in the child class appear at the end of
the vtable.

35

SPL/2010

SPL/2010

Vtable and Multiple Inheritance

● multiple inheritance: a class can extend more
than one base class

36

SPL/2010

SPL/2010

Multiple Inheritance

● Class student inherits both from
class person and from class gp_list_node

● vtable layout becomes more complex in such
a situation.

37

SPL/2010

SPL/2010

Multiple Inheritance

● object of type student has in its state 3
types of fields (inherited from person,
gp_list_node) and declared in class student

● 3 types of methods (inherited from person,
gp_list_node) and defined in class student

38

SPL/2010

SPL/2010

Vtable
● vtable points to student specific vtable

● vtable first contains person methods, next
methods that appear in class student

● vtable is then followed by the person fields.
(look at a student value as a person value -
just ignore the bottom part of the block)

we cannot store the gp_list_node vtable at the
beginning of the block.

39

SPL/2010

SPL/2010

● So where can we store gp_list_node vtable?

● Store fields right after the person fields.

● Store gp_list_node data members after this
vtable

● Finally we store the student specific data
members at the end of the data block

40

SPL/2010

SPL/2010

41

SPL/2010

SPL/2010

● how does the compiler find the appropriate
vtable?

● how to pass valid this pointer to a method
of gp_list_node that is not overridden?

● code cannot know that what it receives as a
this pointer is not a real gp_list_node.

● accesses the fields of the value it has assuming
it is a gp_list_node value.

42

SPL/2010

SPL/2010

pointer fixup

● compiler knows what type of method is invoked -
either inherited from person, gp_list_node or
specific to student.

● If inherited from gp_list_node: pass
"corrected address" (this+d, d=sizeof(person)).

● look down from this address, block memory
looks as a valid gp_list_node value

● vtable to which we point is also a valid
gp_list_node vtable

 43

SPL/2010

SPL/2010

Casting and Addresses

● when we cast an object to a different class,
we may end up with a different address in
memory

● casting is not only to tell the compiler "trust
me I know what I do"; it also can end up
generating code to fix the pointers in
memory.

44

SPL/2010

SPL/2010

45

SPL/2010

SPL/2010

● Implicit conversion:

– short a=2000; int b; b=a;

– automatically performed when a value is copied to a
compatible type

● Explicit conversion

– short a=2000; int b; b = (int) a;

– explicit type-casting allows to convert any pointer into
any other pointer type

46

SPL/2010

SPL/2010

● Dynamic_cast:

– can be used only with pointers and references

– ensure that the result of the type conversion is a valid
complete object

– always successful when we cast a class to one of its
base classes

– Compatibility: dynamic_cast requires the Run-Time
Type Information (RTTI) to keep track of dynamic
types

47

SPL/2010

SPL/2010

g++ fdump -class-hierarchy option

● look at the exact structure of the vtables
the compiler generates for us

● g++ has an option that allows us to get this
information in a readable manner:

● g++ c.cpp -fdump-class-hierarchy -o c

● generates a text file called c.cpp.t01.class which

● gives the details of the memory layout and
vtable of the classes defined in the file.

48

SPL/2010

SPL/2010

49

SPL/2010

SPL/2010

50

SPL/2010

SPL/2010

Virtual methods: performance
issues

● invoking a virtual method is more expensive at
runtime than invoking a regular function.
● 2 operations: get the location of the function's code

from vtable, and invoke the function.

● 2 other costs to the vtable mechanism:
1. Object values are extended by one word for each

vtable to which they refer.

2. Virtual methods cannot be compiled "inline"

● (Inline: avoids calling a function - pushing arguments
on the stack, popping them out at end - copying code
of the function at invocation)

51

SPL/2010

SPL/2010

● 3 costs combined can have a strong effect on
performance of program.

● in C++, methods are not virtual by default. If
a class does not have virtual method, then
does not include a vtable.

● in Java, methods are always virtual.

52

SPL/2010

SPL/2010

Implementing Interfaces in C++

● Java avoids the complexity of multiple
inheritance

● restricts programmers to single inheritance and
the mechanism of interfaces.

● Interfaces = restricted method of multiple
inheritance.

● interfaces in C++: pure virtual abstract class.

53

SPL/2010

SPL/2010

pure virtual abstract class

● does not define any data members.

● All of its methods are virtual.

● All of its methods are abstract (marked in
C++ as virtual m() = 0;)

54

SPL/2010

SPL/2010

"virtual inheritance“= "implement an interface"

● avoid the problem of ambiguous hierarchy
composition – diamond problem

● inheritance=arranging classes in memory

55

SPL/2010

SPL/2010

The Visitor Pattern

● when you want to decide at runtime which
piece of logic to execute=polymorphism

● In such cases in your code -refactor -
introduce polymorphism

56

SPL/2010

SPL/2010

● Visitor pattern - achieve re-organization of
your code

● a Printer object can print Document objects.

● code to print documents types is different

● code for each type of printer is different.

● “double dispatch”

57

SPL/2010

SPL/2010

● use the virtual table dispatch mechanism to
send the print message to the right method.

● a printer object receives the print message
with a document object:

● first dispatch happens when we select the
appropriate printer object

● second dispatch (based on the type of document)
is achieved by sending the printMe message to
the document.

● e.

58

SPL/2010

SPL/2010

● do not want each document class to know
about each printer class –very bad coupling.

● document object just invokes the specific
printer method on a specific document type
method.

● each document type for each printer type
has a separate method handling the specific
code

59

SPL/2010

SPL/2010

60

SPL/2010

SPL/2010

61

