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We present some techniques in ¢.C.c. forcing, and apply them to prove consistenicy results
concerning the isomorphism and embeddability relations on the family of ®,-dense sets of real
aumbers. In this direction we continue the work of Baumgartner [2] who proved the axiom BA
stating that every two 1,-dense subsets of It are isomorphic, is consistent. ‘We e.g. prove
Con(BA-+(2%>R5)). Tet {KH, <) be the set of order types of R,-dense homogeneons subsets
of [t with the relation of embeddability. We prove that for every finite model (L, =):Con(MA+
(KH,<)=(L,=<)) iff L is n distributive lattice. We prove that it is consistent that the
Magidor-Malifz language is not countably compact. We deal with the consistency of certain
topological partition theorems. E.g. We prove that MA is consistent with the axiom OCA which
says: “If X s a second countable space of power ®y, ad {Ugs---» U,_,} is a cover of
DEOEXxX-{(x xy|xe X} consisting of symmetric open sets, then X can be partitioned
into {3 | i € @} such that for every | e o there is 1<n such that DL U™ We also prove that
MA+OCAS 2h=R,

Introduction

The purpose of this paper is to prove consistency results about partitions of

e et e o st

second countable spabes—of-power—xl,—and_abmn the relations of embeddability

and jsomorphism between sets of real numbers of power X.

Our intention is not only to prove new results, but also to present the
techniques used. Because of this reason, in the first sections, we tried as much as
possible to present applications in which the proofs were technically simple, and
in which only one technique was being used at a time. Thus we sometimes had 10

repeat ourselves, and in one case we chose 10 Teprove a theorem from [1], thoug
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in a different way. On the other hand we sometimes omit the proof of some
details which resemble previous arguments.

The starting point of this paper is the theorem of Baumgartner [2] that the
axiom BA, which says that every two Ry-dense sets of real numbers are order-
isomorphic, is congistent. Baumgartner in fact proved that MA + BA is consistent.
The isomorphization of two X, -dense sets of rea] numbers was done by means of a
c.e.c. forcing set. This suggested that maybe MAy, already implies BA.

The negative answer to the above question was found by Shelah. He invented
two techniques: the club method and the explicit contradiction method, Using
these methods Shelzh [1] proved that MA,., was consistent with the existence of
an entangled set (see Section 7), thus showing that MAy, 5 BA.

Avraham [1] then found another way to refute BA. By means of the club
method he constructured a universe V satisfying MA and a set of real numbers of
power Ry, A€V, such that every 1-1 uncountable ESAXA contained an
uncountable order preserving function. Such an A is not isomorphic to A
—alae A}, thus VE—BA.

Answering a guestion of Avraham, Shelah [1] proved that it is consistent that
every 1-1 g<RXR of power ¥, can be represented as the union of countably
many monotonic functions. The proof involved a new trick: The preassignment of
colors (see Section 3).

The club method

" The'clitb méthod plays the most central role in this paper. We explain in what
context one can try to use this method. Let |A|=R,, and Jet R be a binary
relation on A. Suppose R=UiemBixC}, (in this case we say that R has a
countable semibase). By the club method one can try to construct a c.c.c. forcing
set which adds to V an uncountable subset of A™ which has various homogeneity
properties with respect to R. E.g. one might want to add an uncountable
gS A XA such that for every (a,, b,), {as, bp) e g, {a, a)e R iff {b1, by)& R. (This
is the case of adding an order preserving function.) Note that if X is a second
countable space and R X X X is open, then R has a countahle semibase, hence
<gr and p> have countable semibases.

The club method makes the problem of isomorphizing two Ni-dense subsets of
R just one special option in a wide spectrum of possibilities.

In the beginning, we knew to apply the club method only when the ground

mnf“’l—satisﬁed—GH.—A:f—ter—understanﬂi'ng‘fhe exact role of CH it wag possible to

replace it by an axiom denoted by A1 which may holds also in the absence of CH.
Al has the property that if VEAl and Pisa cc.c. forcing set of power <2™, then
V¥ also satisfies Al. Hence one can carry out a finite support iteration of length
2% consisting of general c.c.c. forcing sets and ‘club method’ forcing sets. In this
way we obtain the consistency of BA+ (2%>R,) which could not have been
obtained by the method of [2].
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The other techniques described in this paper are easily combined with the club
method in many different Ways, thus yielding a rich variety of consistency results.

Summary of results

{. The club method and the semiopen coloring axiom

In this section we present the club method by means of an application. Let X
denote a second countable space of power Ry, let U be a symmetric open subset
of X% X, and for a set A let D(A)=AXA—{a a) | ac A}. The semi open
coloring axiom (SOCA) says: “For every X and U as above there is an
uncountable A < X such that either D(AYc U or DANTU=9¢".In Section 1 we
prove that MA +SOCA is consistent. This is probably the simplest application of
the club method.

In addition we prove in Section 1 the consistency of a certain strengthening of
SOCA, we prove some coroltaries of SOCA, and bring some counter-examples.

2. The explicit contradiction method and the increasing set axiom

Aset ScRof cardinality &, is called an increasing set if for every new and a
set {{afe, 0, ..., ales ™ M) |a<rc A" of pairwige disjoint n-tuples there are
@, B <N, such that for every i<n, a(a, iy<a(p,i).

...._Suppose A€V is increasing, and we want +0 construct a universe W=V which

satisfies MA and in which A retains its increasingness. The problem is that when
we iterate c.c.c. forcing sets in order to take care of MA it may happen (and
indeed it does happen if v ECH) that some of the iterands P, force that A is not
increaging. The way in which this difficuity is overcome, is that we construct a
c.c.c. forcing set Q such that - (P; is not cccIn(A 1S increasing). Hence forcing
through Q retains the increasingness of A and frees us from forcing through P
The particular method in which this is done is called the explicit contradiction
method. .

Section 2 is devoted to the proof that MA,, is consistent with the existence of
an increasing set. Indeed MA,, > A I8 increasing iff every uncountable 1-1
g AXA contains an uncountable order preserving function. Thus what we
prove in Section 2 coincides with Theorem 2 of {1]. However, since this is the
simplest application of the explicit contradiction method, and since the proof we

present can be used 10 ~etain—also-other-propertics of_A, we take the liberty to

reprove Theorem 2 of [1}

3. The open coloring axiont, and how to preassign colors

Iet X denote a second countable space of power ¥;. An open cover o=
{Ugy- v+ U, -4t of D(X) consisting of symmetric sets 8 called an open coloring of
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X. AcX is %-homogeneous if for some i<n, D(A)= U, Let OCA be the
axiom: “For every X and % as above X can be partitioned into countably many
%-homogeneous subsets”. Let ISA be the axiom: “There exists an increasing
set”,

Trying to strengthen SOCA, and Theorem 6 of [1], we prove that MA+
SOCA+OCA+ISA is consistent. The new element in the proof is a use of the
so-called preassignment of colors. Let X, % be as above, and let A <R be an
increasing set. We want to partition X into countably many % -homogeneous
subsets without destroying the increasingness of A. There is a method to assign to
each a € X a color i{a) <n such that there is a c.c.c forcing set P which partitions
X into countably many % -homogeneous sets, in this partition every a e X belongs
to a set with color i(a), and P does not destroy increasingness of A. The
preassignment of colors resembles Theorem 6 of [1], but here we have one
additional trick devised in order to retain the increasingness of A.

OCA. can be generalized to colorings of n-tuples rather than colorings of pairs.
For v, £€°%2 let vA ¢ denote the maximal common initial segment of v and &
For A=“2 let

TIA]={vat|v, Ec A aﬁd are distinct}.

For »,é€“72 and 1=0,1, let »<, ¢ denote the fact that v(I) is an initial
segment of & Let o, v be finite subsets of “>2, ¢~ means that {0, <q, <g)=
<Ta <0: <1)-

Let TCAm be the axiom saying: “If (C,,...,C,;) is a partition of the

- ~unordered-m=tuplesof “=2; and A <25 6f ower R, then there is a partition of

A {A;|ie w} such that for every i€ and two subsets oy, o, of A; of power
m+1:if Tloy]~ T[], then there is j<k such that T[], Tlom]= G,

In Section 3 we 'prove that Ma+ A, ... TCAm is consistent. TCA1 is implied by
OCA, and MA+TCA1=> OCA.,

TCAm has also a fopological equivalent but its formulation is not very
transparent. The more direct and stronger generalization of OCA remains opern.

We conclude Section 3 with another axiom concerning partitions. Let X, Y be a
second countable spaces such that |X|=R,, and Y does not contain isolated
points; let f be a symmetric continuous function from D(X) to Y. Let NWDA be
the axiom which says: “If X; Y, f are as above, then there is a partition {4, [ i ¢ w}
of X such that for every i, je w f(A; X A;—{(a, a)| a e X}) is nowhere dense”. We
prove that MA +NWDA is consistent.

: We_did_nm_inyﬁsﬁgate_the_rclaﬁonship-of—N—“@A—Wi-t—h—ether-axioms—and*its

possible generalizations.
4. The semi open coloring axiom does not imply the open coloring axiom; the tail
method

In Section 4 we prove that SOCA +MA + (2% =R,) 35 OCA. Indeed, in Section
5 we prove that MA +SOCA is consistent with 2%>R,, and in Section 11 we
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prove that MA+ MR, = OCA, hence the result of Section 4 becomes less
interesting. But the proof serves well in demonstrating an additional trick called
the tail method. This trick is used also in Sections 9 and 10, but there, the
technical details are somewhat more complicated.

5. Enlarging the continuum beyond ¥a

In Baumgartner’s proof of the consistency of BA, the construction of a c.c.C.
forcing set which isomorphizes ®,-dense sets of real numbers, is done under the
assumption of CH. So in the universe satisfying BA the continuum had to be Ra.
The substitute for CH in the application of the club method was found by Shelah.
This immediately implied that BA is consistent with 2>, In this section we
demonstrate this method bY proving that MA +SOCA + (2F>R,) is consistent.

6. MA, OCA and the embeddability relation on R,-dense real order types

Let K={AcR|A# A has no endpoints and every interval of A has
cardinality ®,}. For A, BeKlet AXB and A =B respectively mean that (A, <)
is embeddable or isomorphic to {B, <), Let AeK A is homogeneous if for every
a,be A there is an automorphism f of (A, <) such that f (a)=bh. Let KH =
{AcK|A is homogeneous}. Let N(A, B) mean that there is Ce K such that
C< A and C<B;A Ll B=-IN(A, B) and ALB=A1BAA 1 B¥* Lei NA be

' the axiom: (YA, BEK) N (A, B).

A great part of fhis woik was motivated by questions about the possible
structure of K and KH. Since SOCA easily implies (VA,BeK) (N (A, BYU
N(A, B¥)) it was natural to ask whether it also implied NA. Since “A 18
increasing” implies —IN(A, A*), this question was answered in Section 3. There
was still another reason why MA+ OCA +ISA was interesting. Shelah proved the
consistency of the following axiom: “There are A, BeK™ such that: A=A%
B=RB* ALB, AUBeKY and for every CeKH either C=A or C=B or
C=AUB”. .

Tt was of interest to us to find whether in this axiom one can make the
modification that A L A* and A*=B. In Section 6 we indeed show that this
modified axiom follows from MA+OCA+ISA.

In fact MA + OCA almost determines the structure of £ and K. If MA+OCA
is conjuncted with ISA, then K™ is as above, if MA +OCA is conjuncted with

USA, firen BAholds:

7. Relationship with the weak continuum hypothesis

The weak continuumnl hypothesis WCH is the statement that 2% <2%. In Section
7 we first show that BA = —WCH. The question that naturally arises is what
happens if BA. is weakened and i8 replaced by NA. We prove that unlike BA, NA
is consistent with WCH.
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This automatically implies that NA =% BA. The fact that MA+NA$BA
follows from the results of Section 9.

In the proof of NA+WCH we introduce a forcing which makes two members
of K near. This is a simple version of a forcing set which isomorphizes two
members of K.

One can consider the following strengthening of NA. Let DNA be the following
axiom: “If A,BeK, then there is an uncountable order preserving function
g S AXB such that Dom(g), Rng(g) e X and are dense in A and B respectively.
Section 7 is concluded with a proof that NA= DNA.

8. A weak form of Martin’s axiom, the consistency of the incompactness of the
Magidor-Malitz quantifiers.

Let MML denote the Magidor-Malitz language. In [7] Magidor and Malitz
proved that Oy > “MML is countably compact”. This suggested the following
question: “Construct a universe in which MM is not countably compact”. A first
solution to this problem was found by Shelah (unpublished) using methods of
Avraham. Shelah’s solution involves properties of Suslin trees which are expressi-
ble by MML sentences. The result of Shelah is that the countable incompactness
of MML is consistent with CH,

In Section 8 we bring a simpler solution to this question, here we obtain a
universe in which MA + (8, <2%)-- (MML is not countably compact) holds,

Let AeK and kew, A is k-entangled if for eVery sequence

@l 0}, ale k= 1) <R Ak ~of-pairwise disjoint 1-1 seqiences, and

for every (2(0),..., s(k~1))e{0, 1}* there are «,, a1 <R; such that for every
1<k, a{e.qy, i) <ale_.q, i). The k-entangleness of A can be expressed by an
MML sentence and MAy, > (JA eK) (Vk € w) (A is k-entangled). Let WE
MAg,+(Vkew) (3A €K) (A is k-entangled). Hence in W MML, is not countably
compact, '

The notion of entangledness was defined by Shelah in [1]. There, it is proved
that for every kew, MAg,+(3AeK) (A is k-entangled) is consistent. It is
somewhat more complicated to prove that MAy,+(Vkew)(FTAcK) (A is k-
entangled) is consistent. We prove this fact in Section 8. '

The other question considered in Section 8 is whether iterating forcing sets
obtained by means of the club method can yield a universe satisfying MA,.. To
prove that this is not so we define a property, denoted by s.c.c., and stronger than

the countable chain condition, such that every forcing set potten from-—the-club

method has this property. On the other hand we prove that a finite support
iteration of s.c.c. forcing sets does not destroy Suslin trees. We hence obtain that
OCA, SOCA, NA, etc. are consistent with the existence of a Suslin tree.

9. The isomorphizing forcing, and more on the possible structure of K

In this section we first construct for A,BeK a c.c.c. forcing set P such that
Ibp A =B. This construction is a basic too] for results concerning the possible
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structure of K. This construction can be carried out under assumptions weaker
than CH, hence we can prove that BA is consistent with 2%>N,. The other
important property of this construction is that it enables to isomorphize two sets
leaving some other seis far. E.g., we prove that if A, B, C 1 D, then there is a
c.c.c. P which isomorphizes A and B and keeps CLD.

AeK is rigid if (A, <) has no automorphisms other than the jdentity. Let

RHA=(VAeK)(3B,Ce K) (B, CcAINB s rigid) A (C is homogeneous}).

Note that RHA=>—CH.
Combining the construction of isomorphizing forcing sets with the explicit
contradiction method and the tail method we prove the consistency of MA+

" RHA.

10. The structure of K and K when K is finite

In Section 6 we prove that MAy,=> K¥/= is partially ordered by <. Clearly * is
an automorphism of (K=, <). Let K2 = (KHjz) U{), (K72, <, #) is a partially
ordered set with an involution. In Section 10 we prove the following theorem: Let
(L,=,% be a finite partially ordered set with an involution: Then MA-+
(KPZ=L) is consistent iff L is a Ginite distributive lattice with an involution.

This theorem was preceded by the following result by Shelah: It is consistent
that K¥Z={0, a, b, ¢} where an b=0,a*=g b*=bandc=av bh. Avraham and
Rubin then showed (Section 3, 6) that K™ may by {0, a, b, ¢} where anb=0,

g=b¥ and-e=aN b ..

Some results in the same direction were proved by Rubin for the class
KR (A ¢ KT A s of the second category}.
We also prove in Section 10 some results about the possible infinite K¥*’s.

11. MA+OCA implies 2%=Ra.

Until the writing of this paper had been almost finished, we believed that the
method to enlarge 2% peyond R, worked for all applications of the club method.
We realized that CH was used not only in the application of the club method, but
also in order to e.g., get from A, BeKA',B'eK such that A'c A, B'c B and
A' 1L B'. However this could be done too without assuming CH. Finally we
noticed that, indeed, we did not know to preassign colors {Section 3) without CH,
and we did not know how to prove the consistency of SOCA1 (Section 1) and the
results-of-Section 10 without assuming CH in the intermediate models.

Shelah then found that at least in the case of OCA, the failure 10 prove the
consistency of OCA+MA+ (2%>R,) followed from the fact that this axiom was
false. He found a c.c.c. forcing sei P of power ¥,, and R, dense subsets of P, such
that if V contains a filter of P which intersects all these dense sets, then V'
contains an open coloring of a set Ac“2 of power ¥, for which there is no

partition of A ipto countably many homogeneous sets. Section 11 contains this =~

result.
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Whether the results of Section 10 and SOCA1 are consistent with MA +
(2%>N,) remains open. '

Main open problems

In the paper we mention many open problems, they appear in the relevant
context. Let us mention here those problems which, we believe, require new
techniques,

(1) (Baumgartner) Is it consistent that every two R,-dense sets are isomorphic?
More generally, are the axioms appearing in this paper consistent when we
replace X; by R,?

(2) The axioms mentioned in this paper are all consistent with MA. We do not
know how to prove the consistency of similar axioms which contradict MA. E.g.,
is the following axiom consistent: “BA+(VA, B e K) (A< B)? Is the following
axiom consistent: OCA+2%>N,?

(3} Let OCA(m, k) be the following axiom: “For every second countable space
X of power R, and every finite open cover % of X™ there is a partition {X; | ie w}
of X such that for every i e @, X{" intersects at most k members of 9.” Does there
exist a k for which OCA(m, k) is consistent? In fact we do not know the answer
even for m = 3, and even if the axiom is weakened to require only the existence of
one uncountable subset A of X such that A™ intersects at most k members of ¥.
—-{4)-Aze-some—of-the-axioms—mentioned consistert with the existence of a
second category subset of R of power X,? E.g. are NA+(HAeK) (A is of the
second category) and SOCA+ (3A e K) (A is of the second category) consistent?

Historical remarks

The club method, explicit contradiction method, the method to enlarge 2%
beyond R, are due to Shelah, The tail method is due to Rubin. The method of
preassigning colors is due to Shelah, but an additional trick was added by
Avraham and Rubin. Section 1 dealing with SQCA is mainly the work of
Avraham and Rubin. Section 2 is another proof of a theorem by Avraham and
Shelah in [1]. The axiom QCA appearing in Section 3 and its corollaries

concerning the structure of_K_appﬁaring_m_Section—é—a-re—due—te—Av—raham—aud

Rubin. The axiom TCAm which generalizes OCA is due to Shelah and the axiom
NWDA. is due to Rubin. The proof that SOCA % QCA appearing in Section 4 is
due to Rubin. Section 5 dealing with how to enlarge 2% beyond K, is due to
Shelah. Section 7 dealing with the relationship with WCH is due to Shelah. The
weak Martin’s axiom appearing in Section 8 and the proof that it is consistent
with the existence of Suslin trees is due to Avraham and Rubin. The proof that
MML may be countably incompact is due to Rubin. This theorem was first proved
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by Shelah using other methods. The proof was a glight improvement of a theorem
of Shelah in [1].

The isomorphizing forcing in Section 9 is due to Shelah. BA1 as well as RHA
are due to Rubin. RHA uses the tail method as well as an important lemma
essentially due to Shelah. This lemma states that if A, B il C, D then it is possible
to isomorphize A and B keeping C 1 D. Section 10 which deals with the structure
of K and K¥ when K™ is finite is due 1o Rubin. The theorem stating that
MA + OCA = 2% =R, appearing in Section 11 is due to Shelah.

Index

For the reader’s convenience we include here an index of axioms and some
notations used in this work.

Al, 160 OP (order preserving), 162
BA (Baumgartner’s Axiom), 124 OR (order reversing), 162
BAl, 179 K, 162

DNA, 169 . KH, 162

DN(A, B), 169 RHA, 185

entangled set, 171 semibase, 134
homogeneous, 162 shuffie, 162

increasing set, 139
ISA (increasing set axiom), 139

SOC (semiopen colaring), 132
SOCA (semiopen coloring axiom), 132

iing, 162 - e e e - _ SOC pair, 154
monotonic, 162 TCAm (the tree m-coloring axiom), 148
NA (nearness axiom), 165 TCA, 148
N(a,B), 165 WCH (weak continuum hypothesis), 165
NWDA? (nowhere denseness axiom), 153 A*=[—alacA}, 124
open coloring, 141 A<B, 162
OCA {open coloring axiom), 141 A LB, 162
OCAm, 152 =, 162
OCA(m, kY, 147 A LB, 181
OC pair, 154

1. The club method and the semjopen coloxing axiom

In this section we present the club method which is the main technique in this
paper.We prove a theorem in which the club method is used. This theorem 18

perhaps the simplest application of this method.

For a set A let D(A)=AXA~{{a o} |ae A}. A function f from the set of
unordered pairs of a set A 10 {0, 1} is called a coloring of A in two colors. We
regard f as a symmetric function from D(A) to {0, 1}. A subset B = A is called
f-homogeneous, or in short homogeneous, it f } D(B) is a constant function; we
say that B is of color ], or in short B is l-colored if the value of f | D(B) is L

From now on X denotes 2 second countable topological Hausdorfl space of
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cardinality X;. Let f be a coloring of X in two colors, f is called a semiopen
coloring (SOC), if f7(1) is open in XXX,
Let the semiopen coloring axiom be the following axiom.

Axiom SOCA. For every X and a SOC f of X, X contains an uncountable
f-homogeneous subset,

Theorem L.1. SOCA is consistent with ZFC.

Proof. We prove the following claim. Let VECH, and let f be 2 SOC of X such
that X has no uncountable homogeneous subset of color 0; then there is a c.c.c.
forcing set of power X, P =Py, such that in V¥, X contains an vncountable
homogeneous set of color 1.

By the method of Solovey and Tenenbaum /9], this claim suffices in order to
prove the theorem. More specifically we start with a universe satisfying CH+
(2% =R,) and carry out an iteration with direct limits {P, | @<}, in which each
(a+1)st iterand is the P,-name of some forcing set of the form Pxs

We thus turn to the construction of Pk, assuming that CH holds, and X and f
are given. We first need a model of the form (X, <,..., that ihcludes the
information about X and f, and that encompasses enough set theory. In order not
to repeat the same definition over and over, we shall at this point fix a model that
will serve us also in the future. Let H(X,) be the set of hereditarily countable sets.
By CH, |H(R,)|=R,. We choose a 1-1 correspondence h between F (R and R,
Let M°=(&;, <, h,€,) where o€, 8 -ifft-h(a)eh{B). In order not to have two
belonging relation symbols we shall denote €, by € and will refrain from using
“e€f” to mean the usual belonging relation between countable ordinals ; instead
we shall write “a <8”. We reserve M to mean the above model throughout this
paper.

Wlo.g. XNy Let M=(M" X, f, T); by this we mean that we expand M° by
adding to it a unary predicate to represent X, a binary function symbol to
represent f, and some binary relation symbol to represent some fixed countable
base for X. T can be defined in the following way: let {UJ; | icw}Eq be a
countable base for X; T={(i, ¢)|icw and e c U}

For a<K;, let M, denote the submode] of M whose universe is «. Let
G ={a | M, < M}, Cy; is a closed unbounded set {club).

A subset AcR, is called Cy,-separated or in short separated, if for every
@, BeA such that @ <B there are v,, y,& G, such that . < o Loy, <

Let A be a cardinal and A be a set; we denote P,(A)={B< A [|B|<Al}. Let
Py ={0ePy(X)| o is homogeneous of color 1 and o is separated}. The partial
ordering on Py is set inclusion. .

We show that Py is c.c.c. Suppose by contradiction that it is not; then it is easy
to see that there is I'y={¢" | i <R,} € Py, such that:

(1} for every i<j<¥,, o' Uo' is not homogeneous of color 1;

(2) for every i<j<R;:lo*|=|o|, and o' Ug’ is Cy,-separated.
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Let {af,..., o} be an epumeration of o' in an increasing order. Since o' is
homogeneous of color 1 and since f is a SOC, there are Ui, ..., Ul e such that
for every k# 1L o€ Ui and f(UX UD = {1}. Let I" be an uncountable subset of I'y
such that for every i, j€l’ and for every 1=k=n, Ui="Ui = U,. By reindexing
we can assume that I'={o" | i <R} We thus conclude

(+) For every i,j <R, and 1<k#l=n flaj a)=1.

The next step which we call ‘the duplication argument’ is one of the central
arpuments in this paper. For a subset A of a topological space X, let cl{A) be the
topological closure of A in X

r'cX™ and X" is second countable, hence for some countable TocT, cdly)=
ci(I"). Let ye Gy be such that Tye|[M,|. (More precisely we mean that h(Ie) <+,
but we shall always make this abuse of notation.) Note also that % = M, for every
a € Gy There is a formula in the language of M, and with the parameter Lo,
@(xy, . - - » %), Which says that (xq, . . - » %) ECUT0)- Let i <K, be such that v <ai.
We want to define by a downward induction a sequence of certain formulas
oy s X) 120,01 where o, =@ and where MEglal, ..., all. For the
cake of clarity we first show how to get @n—1. Let §€Cy and ak., <8 <ai,. For

every €Ml MEyla, ..., ahon ]  where WXy ..o Yot x)=
(’:'Ix,,>x)cp(x1,...,xn); for one can take x, to be al. Since Mz<M, MsF
ek, . .., ahoy, « ). Hence M EVx Plat, .- - ! _i, x], hence M satisfies the same

formula. This means that L¥E el oty Brec(I'g)} is unbounded and
thus uncountable. We assumed that X did not contain uncountable homogeneous

o 'ﬁ'ﬁf'tﬁlo'rﬂ';‘thus-thefe—are—B1.,...{32.5:_1; such that f(By, B2) = L. Let UT, UseW be

disjoint sets such that $,€ U, and f(UTX U ={1}. Let

2
Orq(Xs s Tpo) =3XT X3 (1/_\1 (xPe Urne(xy, - s Xn-1s x’l‘)))-
Clearly MF PRI L T o' _,). Suppose @n has been defined and MF
rpm[a;,...,afn]. Repeating the same argument as before, there are disjoint

m Urel and Bi€ Up, 1=1,2, such that FUTX U ={1}, and MF
‘Pm[c‘:a: Lot O‘:;u-*l: Bt] Let

2
1= 3xT Fxz ([/_\1 (xp'e U A @u(X1s - -+ s Xm1s x‘:“))) .

Now we start with ¢¢ and inductively pick g} 1=1,2,j=1,...,n Since M Fgq
there_are_fle U}, 1=1,2, such that ME@,[BL]. Suppoese Bl,....BM 1=1.2,

were defined so that Bie Ul and ME@uIBL, -+ Pl b 1= L2 Hemee B+ canbe
chosen to satisfy the same induction hypotheses. The fact that MEo, B ..., 8]
means that {81,..., Mecl(lg). Since UM is a neighborhood of BY", there are
aelyn Uix-- XU By (+) and the choice of the Uls, ey U @5 is homogene-
ous of color 1, & contradiction. We have thus proved that Pk is c.c.c.

The union of all elements of 2 generic subset of Px; is a homogeneous subset of

X of color 1. It remains fo show that this union is indeed uncountable.
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It suffices to show that for every oePy, {a IcrU{a}EPx,f} is unbounded,
Suppose by contradiction o= {a,,...,a,}is 2 counterexample to this claim, Let
Qx ¢(x) mean: “there are unboundedly many x’s satisflying ¢”. Using the fact
that there is §eCy such that o, ,<8<e,, it is easy to see that MFE
Qxglay, ..., 001, x] where o(xy,...,x)={xy,..., %} is homogenesous of
color A{y!{xs, ..., x, v} is homogeneous of color 1} is bounded). For every 8
satisfying ¢{e, . .., @,—q, x) let v5 be a bound as assured by . Let {g, | i<R,}be
a separated set such that for every i<j<®;, MFo[a,,..., o3, B;] and B; > v,

The set {{ay,...,e,—4, B} 0<i<R} is an uncountable antichain in Pys a
contradiction. [

The use of topological terminology and especially the use of the Hausdorff
condition in Theorem 1.1 was redundant; we did not lose however any generality.
We now give an equivalent formulation of the theorem that does not involve
topology. Let |A|=®, and f be a coloring of A in two colors. A semibase for fis
a family {(C,, D) | i <e} such that f7(1)=J,, G, X D,.

Theorem. It is consistent with ZFC, that for every coloring f of R, in two colors
which has a countable semibase, R, contains an uncountable f-homogeneous subset.

Theorem 1.2 (Consequences of SOCA). Assuime SOCA, then:
() If feRXR is a 1-1 uncountable function, then there is a monotonic wncouri-

——able-g= f. {(A-model satisfying-this-property was-built in (11

(b) If fERXR is a 1-1 uncountable function, then there is an uncountable gef
such that g or g™" is a Lipschiz function.

(c} If A= P(w) is uncountable, then either A contains an uncountable chain, or
A contains an uncountable set of pairwise incomparable elements. If B is an
uncountable Boolean algebra, then B contains an uncountable set of pairwise
incomparable elements. (A model satisfying this axiom was built by Baumgartner
in [3].)

(d) Let R < D(X) be open, then there is an uncountable A = X such that either
D{A)S R, or DIA)NR={ or R'A is a linear ordering on A. ‘

Proof. (a) Since fCRXR, f is equipped with a second countable topology. Let ¢
be the following coloring of f:c(ay, a;)=0 if {a,, a;} is an order preserving

function, and otherwise c(a;, @)=1. Since f is 1-1 both_c~}{(0)-and-e=D)-are———

open, hence the claim of (a) follows.

(b) We regard f as a topological subspace of RXR. For {(a,, by),{ag, bo)ef let
c((aq, by, {ag, b)) =1 it |(by—by)/(az—aq)|<1, otherwise c({as, b1}, {aa, ba))=0.
Clearly ¢ is a SOC, hence (b) follows.

(c) The relation of incomparability on P(w) has a countable semibase since
7, 0 € P(w) are incomparable iff for some distinct n, m e w, nersm and né o sm.
Hence the first part of {c) follows.
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Tet B be an uncountable Boolean algebra. If B does not contain a countable
dense subset, then by a theorem of Baumgartuer [3], B contains an uncountable
set of pairwise incomparable elements. Hence w.lo.g. B coptains 2 countable
dense subset, so B i8 embeddable in p(w)- BY the first part of (c), B contains a
chain or an anti-chain. If the latter happens, then our claim is true; otherwise let
C be an uncountable chain in B. A subset of P(w) which is a chain must be
embeddable in (R, <Y, since the lexicographic ordering between the characteristic
functions of the elements of C is identical with the containment relation on C, and
on the other hand p(w) together with its lexicographic order is jsomorphic to a
Cantor set.

Let deC be such that 1% ceClccd} and C*%ceC|dsc) are un-
countable. Let f:C'— 2 pe a 1-1 function. BY (a) there is an uncountable
monotonic g < f. If g is order reversing let D={cU (g{c)—d) | c e Dom({g)}, then
D is an uncountable set of pairwise incomparable elements. I g is order
preserving let D ={(d-c)U(glc)—a) | c e Dom(g)}; again, D is as required.

(d) Tet R'(x, y)=R(y, x), hence R’ is open in XXX Let flx,y) =11 R(xY)
or R'(x,y) holds; and otherwise f(x, y)=0. Hence fis a SOC. Let A be an
uncountable f-homogeneous subset of X. If A has color 0, then D(AYNR=0,
and thus A is as required. Otherwise, for every distinet a, be A, R{a,b) oz
R'(a, b} holds. Let g : D(A)—10, 1} be defined as follows: g(a, by=1 if R{a, b)
and R'(a,b) hold; and otherwise g{a, b}=0. g 82 SOC, hence let B be an
uncountable g-homogeneous subset of A. If the color of B is 1, then D(B)ER,

hence B is as required; otherwise R|B is an antisymmetric connecied relation on

B. Let < be a linear ordering of & such-that (B, <) is embeddable in R, <}. Let
c:D(B)—~1{0, 1} be defined as follows: c(a, p=1if a<be Rla, b). Obviously ¢
has a countable open semibase, and R is a linear ordering on any c-homogeneous

get.

Strengthenings of SOCA
Proposition 1.3. SOCA+MA is consistent with ZFC.

Proof. In the proof of the consistency of SOCA we iterated c.c.c. forcing sets. We
had the freedom to include in the jteration any c.c.C iterands, and SOCA would
have still held. So we interlace in the iteration all Px;’s and all c.c.c. forcing sets
of power ¥y H P is the forcing set gotten 2s the limit of such an iteration, then
VPESOCA+MA. [

Proposition 1.4. Suppose VESUCA_-FM:A.—L—ei—f—be—a—S@G—ef-a_sparP X such that

X does not contain uncountable 0-colored sets, then X is a countable union of
1-colored sets.

Proof. Let P be the following forcing set.
P ={f | Dom(f) € Px,(X); Rng(f) € w, and for every i€w,

F71(i) is a homogeneous set of color 1}.




136 U, Abraham et al,

It suffices to show that P is c.c.c. Let {f, |a<rJcP W.lo.g. for every a# g,
Dom(f,) NDom(fs) =@, and {a, (0, 0),..., 4. (0, M), ..., @u(n,0),..., ay(n, my,))
is & 1-1 enumeration of Dom(f,) such that for every i=0,...,n and j=
0,...,m; fu(a,(i,f))=1. We can further assume that for every i=0,...,n,
O=j<k=m; and &, B<Ry, fla,(ij), ag(i, k))=1. Recalling that X does not
contain uncountable O-colored sets, we apply successively SOCA to the subsets
{a. (i, j) | ¢ <R} of X Hence we obtain an uncountable subset A =R, such that
for every distinct @, Be A and for every i and b flaa(i, 1), e(i, /))=1. Hence
every finite subset of {f, | « € A} js compatible, []

Remark. Note that we needed a rather weak form of MA since P has the
property that every uncountable subset of P contains an uncountable set of
finitely compatible elements.

We do not know whether the analogue of Proposition 1.4 for the color 0 is true.,

Question. Is conjunction of the following axioms consistent? MA + SOCA +
“There is a pair (X, f) such that f is a SOC of X, X does not contain uncountable
1-colored sets but X is not a countable union of O-colored sets™.

We can still say something about the analogue of 1.4. Let SOCAL1 be the axiom
which says that for every pair (X, f} such that fis a SOC of X: X contains an
uncountable homogeneous set, and if for some [e{0, 1}, X does not contain

_ uncountable I-colored sets, then X is a countable union of (1=1)-colored sets.

Theorem 1.5. MA+SOCA1 is congistent.

Proof. The proof is as the proof of Theorem 1.1 except that the first claim in
Theorem 1.1 has to be strengthened as follows.

Claim (CH). Letfbe a SOC of X, and X is not a countable union of 0-colored sets.
Then there is a c.c.c forcing set Pl =P of power Ry such that Ibp “X contains a
1-colored uncountable set”.

Proof. Assume X is not a countable union of O-colored sets. Let {F;|i<X;} be an
enumeration of all O-colored closed subsets of X, Choose by induction a sequence
{x; | i <¥,}< X such that for every i, %€ Ui B U{x; | j <i}; this choice is possible

since-X-isnot-a-countableunionof O-colored sets. Tet Y={x]i<R}: clearly Y

is a second countable Hausdorff space of power ¥, andf}'Y is a SOC of Y. We
show that Y does not contain a Q-colored uncountable subset. Suppoe it did, and
let A be such an example. cl(A) is also homogeneous of color 0, hence for some
I <Ry, cl(A)=F. Since A is uncountable, for some i>1i, Asx. This contradicts
the definition of {x; | j<R}.

Let Py ;= Pyyy, cleatly PL, is as desired. [
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To prove Theorem 1.5, we start with a universe V satisfying CH~+ {28 =R,).
We make a list of tasks which includes all possible names of pairs (X f) and all
possible names of c.c.c forcing sets of power Ri. Let this Hst be {R, | @ <Rz}. We
define {P, | @ <X} as follows: Pq s 2 trivial forcing set, and for limit § Ps=
|UJa<s Ps Suppose P, has been defined. ¥ R, is 2 P,-name of a c.c.c. forcing set
we define P ., =P, *R,. If R, is a name of a pair (), f} such that X is not a
countable union of 0-colored sets, then Py = FPu* Pk, In all other cases Poiq=
P,. This concludes the proof of 1.5. O

Some easy counter-examples

One can try to strengthen SOCA in various ways.

(1) Increase the number of colors, namely consider f’s from X to w in which
for every i€ w, f(i) is open.

(2) Consider colorings of unordered n-tuples rather than coloring of pairs.

(3) Consider colorings f in which for every i, (i) is a Borel set.

(4) Try to decompose X into countably many homogeneous sets.

Appropriate versions of (2) and (4) are consistent, this will be proved in Section
3. (1} and (3) are inconsistent. We give counter-examples to (1)—(4).

Example 1.6. There is an open coloring f of the unordered pairs of 2 in ¥y
colors, such that “2 does not contain an uncountable homogeneous subset.
For distinct 1, » €2 let f(m, ») be the maximal common segment of i and ».

Example 1.7 (Blass [4]). There is an open coloring f of the unordered triples from
@9 in 2 colors such that “2 does not contain an uncountable homogeneous subset.

Let m, v, £€“2 be distinct and n<v < ¢ lexicographically ordered. f(n, %, =0
if the maximal common initial segrment of ¢ and 7 is a proper initial segment of
the maximal common initial segmexnt of v and m. Otherwise f(n, v, &) =1.

Example 1.8. There is XcR %R of power R; and a SOC f of X such that X is not
the countable union of homogeneous subsets.

let AR be a power Ry, X= AXA and (g, ye), {2 y2)=1 iff
{4, Y1), (%, yo3} is & strictly order preserving function, and otherwise the value of
fis0.
Clearly f is a SOC of X. For BE X let D = {ae A |there are distinct by, b A

wuch-that-tarboys{as-by)y-eBh- 1L B-is-2 1-colored homogeneous set, then Dy =@. If

B is O-colored, then it is easily seen that |Dg|=Re. Let {B; |iew} be a family of
homogeneous subsets of X, andlet a € A —Uicw Ds, hence {b | {a, bY€ Uiew Bit I8
at most countable. Thus Uiew Bi# X

Questions about Borel partitions of subsets of B of power Ry, are equivalent to
questions about general partitions of ¥;. Galvin and Shelah deal with such
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questions in {6]. This fact is expressed in the following observation, which is
due independently to K. Kunen, B.V. Rao, and I. Silver.

Observation 1.9. Let R be an n-place relation on R,. Then there is a G; relation S
on the Cantor set C and a subset A of C such that (A, S | Ay={,, R).

Proof. For the sake of simplicity we take an R which is binary symmetric and
irreflexive. We represent C as “5. Let {a* |a <R,} be a family of almost disjoint
infinite subsets of w, For every e <N, let {aZ%|B=<a} be a family of pairwise
disjoint subsets of w such that for every S < a the symmetric difference of a§ and
a® is finite. Let {b® |a <R} be a family of infinite subsets of @ such that for every
@<B <Ry b*—b® is finite and b®—b* is infinite. For every <R, we define
Me €95 M, (2i+1)=1if ieb” and otherwise 1,(2i+1)=0, 1.2 =2 if ica?,
M(2i)=3 if for some B8<a, icag and (B, a)e R. Otherwise Ne(2i)=4. Let
Si={n, v} n,ve5, {i|v(i}=1 and n(i)=0} is infinite and {i | v(i)=3 and
(i) =2} is infinite}, and let $=5;UST", Let A ={n, | <R,}; clearly § is a G,
set and (A, S [ Ay=®;, R). TJ

Question 1.10. Using oracle forcing it is easy to construct a model of set theory in
which R contains a second category set of power X,, and in which for every second
countable space Y of the second category and every SOC of Y, Y contains an
uncountable f-homogeneous subset. We do not know whether

e SOCA+(HX cR) (| X|=8,.and X is-of the second category)

1s consistent.

Question 1.11. Tf in SOCA one replaces everywhere X, by R, is the resulting
axiom still consistent?

Question 1.12. If in observation 1.9 one replaces N; by K, is the resulting
statement consistent with ZFC?

2. The explicit contradiction method, and the increasing set axiom

Suppose that we want to construct a model of MA +R, <2% or of MA,,, and
at the same time we want to preserve a certain property & of a certain set A.

There-is-a-problem-whenwe-encounter vt e, forcing set P which ruins property
&, that is, in V¥, A does not satisfy @ anymore. In such a case we shall find a
c.c.c, forcing set Q such that in V9, P is not c.c.c., and A still has property &b, We
call the particular method in which we do this ‘the explicit contradiction method’,

We take the liberty to explain this method by an application which yields a
known result. We do so in order not to start with applications that involve more
than one tehcnique.
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Definition. Let AcR be of power Ry; A ig called an increasing set, if in every
uncountable set of pairwise disjoint finite sequences from A there are two
sequences (By, .- Guds (bys- v b having the same length such that a,<
by, ovs G < Dy

Axiom YSA. These exists an increasing set.

The following theorem is due to Avraham and Shelah [1]. It follows from
Theorem 2 there, together with the discussion preceding it.

Theorem 2.1. MA,, +ISA is consistent.

Remark. The proof in [1] is slightly difierent from ours and does not use the
explicit contradiction method. Instead, there, a model V¥ is constructed such that
VP “Byery uncountable 1-1 function from A to A contains an uncountable OP
cubfunction”. This implies that there is B0 C.C.C. Qe V¥ such that in V¥, ko A 18
not increasing.

This slight difference between the proof becomes essential, if one wants at the
game time to carry out s0ome task that requires CH in the intermediate stages.

E.g., Theorem. MA is consistent with the existence of a rigid increasing set. (‘Ragid’

means there are no order automorphisms except for the identity.)

Proof. Let V be any universe. Let s add to V a set A of R, Cohen reals. It is
eagy to see that in {his Cohen extension of V the set A is increasing. (This fact
and more appears in 1,85 Remark 21].) Hence we can w.l.0.g. assume that this is
our universe V and there is an increasing set A.

As nsual we will define a finite support iteration {P; |i<2%} in which all
possible ¢.c.C. forcing sets of power R, are considered. For each single step in the
iteration we need the tollowing lemma in which the explicit contradiction method
is used.

Lemma 2.2. Let A be an increasing set in V, P be a c.c.c. forcing set p€ P, and
pl-p “Aisnot increasing”. Then there is @ C.C.C. forcing set Q= Qpp, of power Ry
such that trq “A is increasing and P is not c.c..”. :

Proo. Let Bbe a‘Pmame—ef—a—se—t—ef_paimise_disioint 1-1 sequences of length n

such that p g B is a counterexample to the increasingness of A”. Since P is
c.c.c. it is easy to pick a sequence {p, B j <X,} such that: (1) for i:p:=p and
pil,bieB and (2) let bi=(b\,...,bL), then for every i#j, b, ..., BN
{bi,...,bht=0.

Tet a={ay,...,anh b={0-- - b,)eR" be distinct, we say that {a, b} is order
preserving (OP), if for every i=k<slsng<bhoa< b. We say that p;, p; are
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explicitly contradictory if {b, b’} is OP. The main point is that if p; and p; are
explicitly contradictory, we indeed know that they are incompatible in P; for if
r=p, p, then r=p, heace rlFp “B is a counterexample to the increasingness of A,
and b', b’ € B”. This is of course a contradiction, Recall that we are looking for a
Q that will add an uncountable anti-chain to P. Hence our choice for Q is
obvious. Let o€ Py (X)) and q, % {p, |icqa}. Let Q'={g, | ocepy(R;) and for
every i#¥jea, p; and p; are explicity contradictory}. q,=gq, if rco.

Obviously a Q'-generic set adds an antichain ID to P. Once we show that Q' is
c.c.c., there is a standard way to find some Qo€ Q' such that gqlko “D is
uncountable”. Hence we shall take Q to be {ge Q' | g,< qk.

We thus show that ' is c.c.c. Let {Go, | i <®.} be an uncountable subset of Q.
W.lo.g. {oy [i<Ry} is a A-system and for every i, o={a,..., ok e, . ., o™}
where o'<: - <af<all< .. <l Let ¢=po'. . . ~pt ey, ey, and
el =P e D, For every 8 let U¥F, ..., U? be rational neigh-
borhoods of ¢f,...,cP respectively such that for every 1=i, j<r for every
d;e UP and d; e UP: cf<cPe> d, < d,. By choosing a subsequence, we can assume
that for every i, Uf is independent of g.

Let B, y be such that {c®, ¢} is OP. Hence for every 1<i <k, {b=*, b*™} is OP,
If i#j, then since {b>™, 5™} is OP, and since we uniformized the UPs, also
{6=*, b=} is OP. Hence {4, Vg, }e Q" So Q' is ccc.

Our next goal is to show that Ik, “A is increasing”. The proof is very similar to
the proof that Q' is c.c.c. Suppose by contradiction B is a Q'-name, g€ Q' and
dolFq“B is a name of a counterexample to the increasingness of A” Let
~go; a™Fla= R} be a sequence siuch that for eVETy &, qu<q,, 4, Fa®€ B, and
for every a# 8, a* and a” are disjoint. As in the previous argument we assume
that the o, ’s form a A-system, and we choose U= U, with the same properties.
Define the ¢®’s as in the previous argument, and find B, v such that {cP~d",
¢"™ d"} is OP; then g, U 4, € Q', {d® d"} is OP, a contradiction. [J

Continuation of the proof of Theorem 2.1. It follows from Lemma 2.2 that if Pisa
c.c.c. forcing set such that | “A is increasing”, and if Q is a P-name of a c.c.c.
forcing set, then there is a P-name R = R4 such that ke (R is a c.c.c. forcing set
and Iz “A is increasing”), and for every pe P: if p Ik (-5 A is increasing), then
plFeR=Q; and if ple(Fqe @) {glFoA is not increasing), then plFe (O is
not c.c.c.).

Let {N;|i<2"} be an enumeration of Py(2). We define by induction an

inereas—i—ng—sequence—of-forcin'gsets.‘?o_i's the trivial forcing set, and if & is a Lmit

ordinal, then Py =[J;«s P, Suppose P, has been defined; if |-, “A is increasing”
or if |-, “N; is a c.c.c. forcing set”, then let Fiv1=P;; otherwise let P,,, = P, *RN.
We first show that for every i, g, “A is increasing”. By our definition if this
happens for P, then it happens for P
Let cf(8)>Ry, and suppose for every i <$, g, “A is increasing™. Suppose by
contradiction that G is a Ps-generic set and B e V[Glisa counterexample to the
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increasingness of A, Let Gi= G NP, There is i <8 such that the closure of B in
A", B, belongs to V[G;]. It is easy to see that there is B'€ V[G;] such that B’ is
an uncountable subset of B consisting of pairwise disjoint sequences. Hence there
cannat be two sequences in B' which form an OP pair. Hence A is not increasing
in V[G;], a contradiction.

Let cf(8) = ¥, suppose our claim is true for every i <8. Let G be a Py-generic
set and let B A™ and B e V[G]. Then there are {B; | i € w} such that e, Bi =B
and for every i there is v; <& such that B; e V[G, ] Hence one of the B,’s is
uncountable, hence if B is a counterexample to the increasingness of A, there is
such an example belonging to 2 previous ViG], and by the induction hypothesis
this is impossible.

Let P = Py, the argument showing that MA,, holds in VT is standard. O

Remark. Note that if MA, holds, then A is increasing iff for every 1-1 un-
countable f= A X A there is an uncountable OP function g<f.

3. The open coloring axiom, and how to preassign colors

In [1] it was shown (Theorem 6) that it is consistent with ZFC that every 1-1
fSRxR of power Ry is the union of countably many monotonic functions. This
fact is a special case of the open coloring axiom (OCA) to be defined below. (S.

TFSdbfé"é\'fi‘é‘proved-’that;—--under—-}.ﬂ.—A—,— OCA is.a consequence of this fact.)

Let X be a second countable Hausdorff space of power X;. An open coloring of
X is finite cover U ={Up...: U, .t of D(X) such that for every LU=
{3, 0| el AcX is 9 -homogeneous if for some color I, DAY= UL A
9 -homogeneous partition of X is & countable partition {X; | i€ w}of X consisting
of A -homogeneous sets.

The open coloring axiom is as follows.

Axiom OCA. For every X and every open coloring % of X, X has a %-
homogeneous partition.

Tt turns out that in a universe V satisfying MA.+- OCA+ISA, the set of real
order types of power R, has nice properties, e.g. there are exactly three

homogeneoug‘such—order—types;—se—eu-r—ﬁIst_goal is to prove the consistency of the

conjunction of these three axioms. As seen in the following theorem we do a little
more, and add to the above axioms also SOCA.

Theorem 3.1. MA+OCA+ SOCA+ISA is consistent.

Later in the section we shall prove 2 seneralization of OCA.
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Proof of Theorem 3.1. We start with a universe V satisfying CH+ (2% =x,) and
with an increasing set A e V. We construct a finite support iteration (P | i=NR,},
according to a list of tasks of length 8, which is prepared in advance. In each
atomic step of the iteration we deal with one of the following tasks.

(1) For a given c.c.c. forcing set Q of power R,, we have to find a c.c.c. forcing
set P =P, of power K, such that i, “A is increasing”, and either Q is not c.c.c.
or there is a Q-generic filter over V.

(2) For a given X and a SOC f of X we have to find a c.c.c. forcing set P = Py,
of power ®; such that IFp “A is increasing”, and X contains an uncountable
f-homogeneous subset.

(3) For a given X and an open coloring % of X we have to find a c.c.c. forcing
set P=Pxq of power X; such that |-z “A is increasing”, and X has a %-
homogeneous partition.

We expect the reader to known how to define the list of tasks, how to define the
iteration and why V[Py,] satisfies all the four axioms. We shall concentrate only
on the atomic steps of the iteration.

The existence of P =Py, satisfying the requirements of (1) was proved in the
previous section (Lemma 2.2).

We start with task (3) where the additional trick of preassigning colors is used.
This method appears also in [1, Theorem 6]. There, a special case of OCA is
proved. In the present application there is an additional complication, since at the
same time we want to preserve the increasingness of A.

Lemma 3.2. Suppose VF“CH, A € Vis increasing’’ and % ={Ug,..., Uy} is an
open coloring of X. Then there is a c.c.c. forcing set P of power Ry such that Fp “A
is increasing”, and X has a U-homogeneous partition.

Proof. W.lo.g. A, XcR;. As in Theorem 1.1 we form a model M with universe
R, that includes enough set theory, and includes also A, X and % as predicates.
Let M, be the submodel of M whose universe is o, and let C= Cu=
{o | MNa< M. '

We know that each element of X should be put into one of a countable set of
homogeneons subsets of X, and our first aim is to decide in advance what will be
the color of the homogeneous set to which each element @ of X should belong.

Let {a [T<R;} be an isomorphism between (Ry, <) and (C, <), Jet E =
{8 ;<P <ayq}, and let €={E; | i <R,}; we call € the set of C-slices. For every
i <Ry let {a}] I 0} be an enumeration of X N E, such that af =min(X N E,). Let
¢(x)=0(%y,...,%) be a formula i the language of M and possibly with
parameters from |M]|, Qxe(x) abbreviates the following formula Ve x>
a) - @x>ae) olx). Let §=(8;,...,8_)e'n be a sequence, and ¢(x,y)=
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(%, - » Xg—1: Vi - v 2 ) be a formula with parameter from |M|; we denote
1-1 m
dgs=0(x V) A0, ¥)A (1/_\0 X, X EX)A (t_i Vo yieA)

1-1
A( (s 20 Uy, v} is OP

¢=0

where x', y' are disjoint sequences of distinct variables disjoint from x and y.

Claim 1. Let i <®,. Then for every I € w there is & € 'n such that for every m € ® and
every (X, ¥)=@(Xgs - -5 X115 V1o - - 05 Vi) With parameters from |M,,\: if there are
Biyevrs b €A (M|~ 1M, D) such that MEglab,. ..., 81—, b es b,.], then MF
Qx, y QX' ¥ Yo

Proof. Suppose by contradiction the claim is not true, so for every se'n let
og(x, y°) be a formula showing that & is not as required in the claim. We assume

that the y®’s are pairwise disjoint sequences of variables, and that their concate-
nation is ¥ =¥, -« +» Ym)- 1T

qo(x,y)EaA ¢g and X(x’y)Em(I’}’)A(Z\ly‘E‘A)'

By the choice of the og’s there are bl,...,meAﬂ(\M\"—lMa'\) such that

“MEelan s wrn b bily-hence.

(1) MEQx, yx(x,¥)
On the other hand it is clear that for every &
(2) Ml':-—'st y Qx,s yr lbcp.ﬁ-
Hence there is B° <R, such that jor every a € |M|' and be|M[™ if po< g, b then
there is B = B{a, b) such that for every 8 €'n and a’, b'> B, ME—, e b, a’, b}
We define by induction on j<Rj, ol e X' and B € A™, our induction hypothesis
is that for every | <Ry, @, b’ > B, Suppose a®, b have been defined for every
k<j. Let 8> B"Ulk< B(a*, b). Let ¢l e X', '€ A™ be such that &, b’ > B;,

and ME¢lal, b']. This choice is possible by (1).

By the increasingness of A there are k<j such that {b*, b’} is OP. Let
ol =(a®,...,a" ) and a* = {@®®,...,a"™, and let & be such that {a*', a™"Ye
Us. Let =8 ---» &_1). MExla¥, b+}, and MExla’, b'}; however since a’, b >
ByMEmulr, S a’, b gl b']. This is a contradiction, and the claim is proved. O

3 e s = s e

Let i<Ny; for every lew let &} be the least element in Y according to the
lexicographic order of ln, which satisfies the requirements of Claim 1. Recalling
that for every lcw, ah=a’, it is easy 10 sec that if k<[, then &% is an initial
segment of 8. Let (8, 8%, .. y=Uicodr HaeX and a > aq, then for some i and
I, a = ai; we denote §(a) = &} and call 8(a) the color of a. We have thus assigned a
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color to every a in X —a,™ X', and when we construct P we shall puteach a e X'
in a homogeneous set of color &(a).

We are ready to define the forcing set P which satisfies the requirements of the
lemma.

Let {n; | i € @} be an enumeration of the set of colors # such that for every | <n,
{i | n; =1} is infinite. Let P be the set of finite approximations of a homogeneous
partition {X; | i€ @} of X’ which respects the preassigned colors, and in which X
has the color n;. More precisely, P={f|Dom(f)e Py (X"), Rug(f)< w, and for
every a, beDom(f) if f(a)=f(b) =i, then {q, b)e U, and &(a)=8(b)=n,)

Clearly I “X has a U-homogeneous partition”. We have to show that P is
c.c.c., and that |Fp “A is increasing”. The proofs of these two facts are similar, we
thus skip the first, and assuming that we already know that P is c.c.c., we prove
that |Fp “A is increasing”.

Suppose by contradiction there is p°c P and m € w such that p°iF, “There is a
family {b> | & <¥;}= A™ of pairwise disjoint sequences such that for no a# 3,
{6 b"} is OP”. Let BB be a name for this family. Let {(p,, b*) | @ <Ry} be such
that (1) p.=p°% (2) palbpb e B; and (3) if a#p, then b* and b® are pairwise
disjoint.

W.Lo.g. the p,’s form a A-system, and they all have the same structure. More
precisely, we need the following uniform behavior of the {p,, b=)’s.

(1) {Dom(p,) | @ <R} is a A-system.

(2) Let Dom(p.) ={@u0s - - . » e} Where g a<-- *<A,,; and the first r cle-

~-ments-form-the kernel-of {Dom(p; )| @< R;} and b= (bas - - Baum). Then for

every @, B<R, for every ij<I and 1<k, t<m:8(a,;)=25(ag:), Pal@ei) =
Pp(pi)s Dot = Qo Ml bpp=dg; and b,y b, iff by) <bg,.

We can assume that for every a <Ry, by <+ <bh, .

Since X is second countable, we can further uniformize the (p,, b*Ys in the
following way.

(3) There are open sets V,..., V;= X such that for every e <N; and distinct
i,je{0,..., }a,, €V, i pola.:) = pa(a,;) then V;x Vi€ Usta -

Let dy == {@a0 - - - » oty D15+ - - » Do) and let D be the topological closure of
{d,|a<R;} in X"'x A™ Since X is second countable D is the closure of a
countable set, hence it is definable by a parameter d in M. Let ye C,, be such
that d, oo, ..., dar1€|M,), (recall that {a,p,...,da., i+ is the kernel of
{Dom(p,) | B <X.}.) We choose @ such that a,,..., Qos Doty -+« - By |M,]. We

intend to-apply-the-duplication-arpument-to-d.

Let do={ag,....apby,...,b,), a={ag,...,a) and b={(p,,.. vy b). Let
E,..., E" be those Cy-slices E for which there is a;, r<i=</, such that g, € E, or
there is b, 1=<j=m, such that h,eE Let a=a’" - -~g* where a®=
(8o, . . ., @1} is the sequence of those clements of @ which belongs to |M,,|, and
for i>0, a' is the sequence of those elements of @ which belong to E. Let
b=b""---"b* where b is the sequqnce of those elements of b which belong to
E'. Let B, be the minimal element of E’
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We define by a downward induction formulas ¢, ..., Po The induction
hypotheses are: (1) the parameters of ¢ belong to |M,|, and (2} ME
olal, ..., abY ., Bl Let @o=(Gp--»G-1)" " xkmylo o myke D
Suppose that @(x"s .- . 1yl ...,y ") has been defined. Let 5 be the length
of b, let a™'={(ai,....,ap, and let &= §(ap), j=1,...,t The formula
oua(al, ..., a X b b', yi*1) has parameters from M., .|, hence by the
definition of & there are c'={(c,...,cn and d' 1=1,2, such that: (1) MF
ooifal, ... a, e, b b d, 1=1,2; ) for every j=1,.... 0 (c}, e e Us;s
and (3) {d", 4% is OP.

For 1=1,2, j=1,...,t let Vi™*! be basic open sets in X such that (¢}, cPe
Vit VA E Uy and et V= VERHIX- X VT For 1=1, 2 e W be
basic open sets in .A* such that dle WS 1=1,2, and for every dye W' and
d, e W2, {d,, dy} is OP. Let al=d, .., ud, o =0k vl) be sequences of
variables. Let

cpi(xl,...,xi,yl,...,yi)

3
—_ 1 2 1 2 1 i I 1 i 1
=dy,u5,v,V (1/\ P C TS " AN 0 ))
=1

2z 2
A (/\ ul € Vi'ﬂ’l)/\ (/\ IJ1 e WH'U).
I=1 =1

Clearly o; satisfies the induction hypotheses. We have thus defined ¢q.

__ As it was done in Theorem 1.1 starting with @, we can choose two sequences

gt~ gelmptt T ~perEe T= T,“Z’;"éiibhthat'a“’“el, a®=e?e D, forevery
i=1,...,k a7 aeVx V42 and bilmbtre WX W2 Dy={d, € @ <Ry}
was dense in D, hence there are doy€Do, 1= 1,2, such that

dyp XX VI X VRO WX - WL

It is easy to see that Paw Y Pam€ P and {p=®, p=™} is OP. This contradicts the
assumption that pPlkp “B is a counter-example to the increasingness of A”.
Hence Lemma 3.2 is proved. U

We turn now to the last kind of tasks that we have got to carry out.

Lemma 3.3 (CH). Let AV be an increasing set, and let f be a SOC of X, then
there_is_a_c.c.c. forcing set P of power X, such that ltp “A is increasing, and X

contains an f-homogeneous uncountable subset™.

Proof, Let us first assume that (*): there is no n=0 and an uncountable 1-1 h
such that Dom(h)c X, Rng(h)< A", every two distinct elements in Rng(h) are
disjoint and whenever X,y € Dom(h) and f(x, y)=1, {h(x), h{y)} is not OP. (Note
that for n =0 this means that there are no uncountable O-colored homogeneous
sets.)
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Let M be a model including enough set theory and including X, f, A. Let

P ={o e P (X)e o is homogeneous of color 1 and is Cy,-separated}.

Clearly by the proof of 1.1, | “X contains an uncountable homogeneous
subset”. Suppose by contradiction there is peP such that pltp “A is not
increasing”. Let B be a name of a subset of A™ such that p forces that B is a
counter-example to the increasingness of A. Let {(p., b*}| @ <X} be such that for
EVery @, Po =D, Do lFb* € B, and for every a# B, b%, b® are pairwise disjoint. Let

p*={ag,...,am i where ag<---<a® _y, let a*={(af,..., a1 and b=
(b%, ..., by). Wlo.g. (1) for every o, m,=m; (2) {p, | @ <R,} is a A-system with
kernel {ag, . . ., &} where for every a <R, and i=<r—1, a®= q; and for every a

and B, p, U pg is Cy,-separated; for every 0=<i<j=im and a <g8 <R, f(af, af)=
1; and (4) for every o, b3<<---<bi Let Dy={a*"b*|a<R,}. Hence Dyc
XTXA" let D be the topological closure of Dy. Let v<¥; be such that D is
definable in M by a parameter belonging to |M,}, and let @ be such that
po N|M,|={aq, ..., a,,} and Rng(b*) N|M,|=0.

We shall now duplicate a* b~ Let a®*=a={ay...,au_q1), bB*=b=
(by,...,by). Let EY, ..., E™ be the set of all those Cy,-slices which intersect
{G ..\ Gt U{by, ..., b,}. We represent @ as g™ *~a; and b as b, - -+ —b,
where ag={(aq, - - ., &—1), and for i >0, @, b; are respectively the subsequences of
a and b consisting of those elements which belong to E'. Note that since p, is
Cy-separated, then for every i >0, q; is either empty or consists of one element.

~ - Wedefine by a-downward induction formulas ¢;, i=k, ..., 0, with pataiiieters

in |M,| such that MFe[a., ..., a, by,..., B ]
Q=T KT TR YT T ED,

Suppose ¢;4, has been defined, and we want to define ;. There are two cases: (1)
x; consists of onme variable and (2) x; is an empty sequence. Since MF
Qi1 @1y o ooy Big1, Dy, o o o, by, it follows that

MFEQxtq, Yiv1 @il @1, - o0 %00, By, L b, ¥..1].

By () in case (1), and by the increasingness of A in case (2), there are ¢!, d,
1=1,2, such that MEg,i[a:,...,a,¢,by,...,b,d'], {d*,d%} is OP, and i
et ={(c"), 1=1,2, then f(c',c®=1. Let V},, be basic open sets in X such that
(c'e Viy and [=1,2, and f(Vi, X V&) ={1}, and let W', [=1, 2, be a product
of-basie-open-sets-in-A-sueh-that-d'e W-t=1;2-andforevery-ete- W-e*c W

fe', €% is OP. Let

2
‘P1Eaxél+1= xsz+1= ¥ive ¥ ([{\1 G (X1, .« .o, X X, Yoo ¥ YE+1)
A@Es, Viia} is OR)Afle, 2 =1).

The last conjunct is added only in case 1.
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Starting now Irom @o apd using successively @i,.-.»> Pk we can construct
c={c,..., ey, and d' 11,2, cuch that: (@g, ..., G- AC ~dleD, {d*, d%
is OP, and for every i=0,...,m~ 1, flcl, c?)=1. Since Do is dense in I, there
are B, B><R, such that a Ab® is close enough to {do, . --» a.ync ad, 1=
1,2; but then pg:Upg2¢ P and {b%*, b*"} is OP. A contradiction and hence P is as
desired.

So far we have dealt with the case when (5) holds. Consider now the case when
(+) holds. So, there is a sequence {{du b*) | a <R} such that the a,’s are distinct
and belong to X, the b= belong to A" and they are pairwise disjoint, and
whenever fla, ag)= 1, {b% b} is not OP. If n =0, then {a, | & <R} is already an
uncountable homogeneous set, sO P can be chosen to be the trivial forcing,
Suppose n>0. We color distinet b*,b? in two colors according to whether
(b=, b®} is OP or not. This is an open coloring hence by Lemma 3.2 there is 2
c.c.c forcing set P of power Ry which does not destroy the increasingness of A
and decomposes {b% | @ <R} into countably many homogeneous sets. We show
that P adds an uncountable homogeneous get to X Let {b* I cct=B be an
uncountable homogeneous set added by P. Since P did not destroy the increasing-
ness of A, for every a,Bel, {p*, b®} is OF, hence f(ae, ag)=0, and hence
{a, | e eI} is f-homogeneous of color 0. We have thus proved Lemma 3.3, and
since we skip the details of the iteration this conciudes the proof of Theoremr
3.1, 0O

- "Qiie_stion‘ﬂ'ﬁt:--ean---SOGA—-be..replacsd by SOCA1 in Theorem 3.17

In the remainder of this section we try to generalize OCA to colorings of
n-tuples rather than just colorings of pairs. Example 1.7 shows that the most
direct generalization of OCA is inconsistent. However, the following axiom
generalizing OCA might still be consistent with ZFC.

Axiom OCA(m, k). X isa second countable Hausdorff space of power R, and
a7 is a finite open cover of X', then X can be partitioned into {X; |i €} such
that for every i€, (X)" intersects at most k elements of .

Question 3.5. Is it true that for every m there exists a k such that QCA(m, k) is
consistent?

In fact we do not even know the answer to‘the*foi-lowing—Weakened—version.of
the above question. Is there k such that the following axiom is consistent: “If X is
a Hausdorff second countable space and 9 is a finite open cover of X3, then there
is an uncountable ASX such that A® intersects at most  elements of %™,

At this point it is worthwhile to mention the following theorem of A. Blass [4].
It % is 2 symmetric partition of the n-tuples of “2 into finitely many open sets,
then “2 contains a perfect subset in which at most (n—1)! colors appear.
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We will prove a weaker generalization of OCA; however rather than formulat-
ing this new axiom in topological terms, we translate it into an equivalent
statement on colorings of the binary tree.

We first introduce some terminology. Let T'=(“*2, <) be the trec of binary
sequences of length <w; let T="2 and L=%2. L is regarded as the set of
branches of T. For »,me T, v<<n denotes that » is a proper initial segment of
M, »An denotes the maximal common initial segment of » and 1, A denotes the
empty sequence, if »=in, then [, 9], (» m) denote respectively the closed and
open intervals with endopoints » and %, and [#], [») denote respectively [A, »]
and {4, »). f AcL let T[Al={vAn|v,ncA and v#n}; note that T[A] is
closed under A. For BT let B™'={o<B||o|=m and o is closed under Al.
Let »<\;m denote that » ~(0)<n and v<p7n mean that » (L= Fore T
then o~ means that {o,<\;,<g)=(r,<,, <g). A function f: 7™ >pn is
called an m-coloring of T; B< T is f-homogeneous if for every o, 7€ B"™ such
thet o~7:f(e)=f{r); AcL is f-homogeneous if T[A} is.

Let the tree m-coloring axiom be as follows.

Axiom TCAm. For every A =L of power X, and for every m-coloring fof T, A
can be partitioned into countably many f-homogeneous subsets.

Let TCA= A, .. TCAm.
We shall later present a toplogical formulation equivalent to TCA. For the time

being the reader can check the following proposition.

Proposition 3.6. (a) OCA=TCAL.
(b) MA,, +TCA1= OCA.

Our next goal is the following theorem.

Theorem 3.7. TCA+MA is consistent.

Lemma 3.8 (CH). Let A< L be of power R, and let @ ={D; | i e w} be a parition
of the levels of T into finite intervals, that is, D; can be written as [7;, .1} where
no="0 and m <n;,;. Then there is a c.c.c. forcing set P= Pu g of power 8, such thar
after forcing with P, A can be partitioned into countably many sets {A; | je w} such
that for every J, T[A;] intersects each D; in at most one point.

Proof. Let M be a model with universe R, which encodes T, A and @, and let
C=Cy P will consist of all finite approximations of the desired partition
{A;|j e @} in which each A, intersects each C-slice in at most one point. To be
more precise let {e;!i<R;} be an order preserving enumeration of C let
E; =[oy, @149), and let €={E, |i<R;}. € is called the set of C-slices. P=
{f| Dom(f) € Py (A), Rng(f)cw and for every jew: for every D, |TIfF YN
Di|=1 and for every E, [f X)) NE]|=<1}.
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By the standard duplication method one can easily show that P is c.c.c., and
clearly I-p “A can be partitioned into {A; |j € w} such that for every j and i,
|TIAIND =17, O

Let € Umeo T and v T, ¢ <v denofes that max{{r A& | E€ oPeo. Note
that (1) if o <w, then o U{v}e Upee T and (2) o can be written as {€4, . -2 Emt
where for each i<m, {£,..., &€ Th! and {&, ..., &1 <& Let o€ T and
p,meT; v~gmn if there is an isomorphism between (o U{v}, <y, <gzy and {cU
{0}, <, <g) which is the identity on & For v e T let Ith(z) be the length of v. Let
n={n|icw}bea gtrictly increasing sequence of natural numbers, let o =T and
ve T; we say that o, v are n -separated if for some i: for every m €0, Ith{n)<mn
and th{z)=n,.

Lemma 3.9 (CH). Let f .l 5y he gn m+l-coloring of T and AcL be
uncouniable. Then there is a c.c.c. forcing set P=DPL; of power ¥ such that after
forcing with P we have the following situation: there is a strictly increasing sequence
n with no=0 and an uncountable B c A such that for every o< T[BT™! and
p,meT[Bl: if o<v, M ¥~ and o, v are n-separated, then foU{v})=
floU{n}). (We call such B a prehomogeneous set.)

Moreover, (#) there is a countable A’'c A such that for every a€ A— A’ there is
peP such that plrpa€B.

Before proving Lemma 3.9, let us see how Theorem 3.7 follows from Lemmas

IR and 3°9. s

Proof of Theorem 3.7. As usual we deal just with the atomic step in the iteration.
So, given a subset A c L of power X, and an m-coloring f of T we have to find a
c.c.c. forcing set of power R, such that after forcing with it A can be partitioned
into countably many f-homogeneous subsets. We prove this by induction on m.

The case m =1 follows from the proof of the consistency of OCA.

Suppose by induction for every m —coloring f of T and every A = L of power ¥,
there i¢ a c.c.c. forcing set P=Pay of power ®; such that Irp “A can be
partitioned into countably many f-homogeneous subsets™.

let V be a universe satisfying CH, AcL be of power ®; and f be an
m +1-coloring of T. Let {Q; | i} {B: | i € w} be a finite support iteration, Qo is
trivial, P; is a Q;-name for the forcing set Ph ; from Lemma 3.9 in the universe
V2, and Q.= Q;*P:. Let Pi = Uicw @ We denote P4 by Q. In V2 we have

a family {B; | i € @} of prehomogeneous subsets of A, and corresponding toeach
B, we have a sequence 1'. By (¥) of 3.9 it is easy to check that |A — . Bl <o
Let Di={veT| ni=ith(v)<nj.t and @' ={D}|je w}. Let R be the Q-name of
the following forcing set. R is gotten by a finite support iteration of Pag: of
Lemma 3.8. After forcing with R each B; is partitioned into countably many sets
which we denote by {Bj | j € w}. It is easy 1o see that for every By: if o€ TIB; ™,
y,meTiByl, o<wn and v ~o M, then f(a U{pP=floU{nh.
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We can now define an m-coloring on each T[Byl. The color f;(c} where
o e T[B; Y™ is the sequence of colors of the form f(o U{»}) where the »’s belong
to T[Bjy] and they represent all equivalence classes of ~, in which o<y, More
precisely for every o e T[B; "™ let »5,..., ¥f_ >0 be such that for every v>¢
there is a unique i such that » ~, »{. Moreover we pick the »{’s in such a way
that if =~ », then for every i there is an isomorphism between {7 U{»7}, <r, <r)
and {(oU{¥{},<r,<g) which maps r onto o. We define fio)=
(fleV{piD, . ... fleU{»i D)

By the induction hypothesis there is a c.c.c. forcing set § of power ¥, such that
Ik “Each B; can be partitioned into countably many f;-homogeneous sets”. It is
easy to see that if B e B;; is f;-homogeneous, then B is f-homogeneous. Hence
after forcing with Q#R=*S, A can be partitioned into countably many f-
homogeneous subsets. This completes the proof of Theorem 3.7. O

Proof of Lemma 3.9. For Bc T and aeT, let B"™*={gcB™!|there is veo
such that »<<a}. Let f: T"* 1wy and A be as in 3.9, let M be a model with
universe R; which has T, f and A as predicates. Let {a; |i <X} be an order
preserving enumeration of Cyy, M, =M ey, E; =[ay, @) and A"= A N[ag Ry).
For every a€ A" we define a coloring f, : T"™*—n. Suppose a B, for every
finite subset C = T there is a funetion ge:CI™*—n such that for every formula
o(x) in the language of M, and with parameters from M;: if MEg[a], then for
every o <R, there are b,ce A such that b,c>e, MFp[b]ag[c] and for every
oeC"™ g <bac and f(oU{bac} = go(o): The existence of such g is proved,
as in the analogous argument in the proof of the consistency of OCA. By Konig’s
lemma we can choose the go's to be pairwise compatible. Let f,=
U ge | CePe(TH: |

We are ready to define the forcing set P= P} ; of Lemma 3.9. An element p of
P is an object of the form (n, C) where n={ny, ..., n 4} is a stricily increasing
finite sequence of natural numbers with ny=0, C is a finite Cy,-separated subset
of A" and the following conditions hold: (1) for every distinct a, b e C, Ith{a A b) <
Me—1, denote by n,, the maximal n; such that n;<lth(anb); (2) let f, | k
abbreviate f, | {v e T|Ith(v)<k}"™), then for every distinct a,beC, f, | ny, =
fo ! ap; and (3) for every distinct a,be C and for every oeDom(f, | n.),
flo U{anbp=f,(c). We denote n=n" n,=nf, C=C, and n,; =nl,.

Let p,qeP, then p<q if n"=<n® and C,c C,

We prove that P is c.c.c. Let {p. e <®c P. W.lo.g. {1) for every a, 8 <N,

nla=nPe=n={_ng,..., m_y), and {C, | <R} is a- A-system; (2) for every a <
B<Ry, G, ={la; - - s Qare1s Gap -+ + « > As—1f WheTe {@ug, . - ., Gor—y} 18 the kernel
of the A-system, and a,o<-:-<a,,-;<da,; (3) for every o, B<R, and i<s,
Qo [ 1= apy P gy and fo, b ey =fo,, P g

We regard each €, as an element of L°, We use the usual topology on L and
define D to be the topological closure of {C, | @ <R,}in L* D is definable from
some parameter e in M. Let i, be such that e, a,p, ..., 8,21 <oy, and let p, be
such that o, <@y ..., Oge-1.
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“We apply the duplication argument 10 P, Let us denote p. =D C,=C and
Opi = O We define by a downward induction formulas
P € S ) PP 0, (x), 9,1 Wwith parameters <@, such that M E
ola,...,al @l x.) s the formula  saying that
{Qps v vy Ormls Xrs e v s %,_1) €D. Suppose @11 has been defined. By the definition
of f, there are b*, b? such that MEolty, ... b i=12, th(b*AbD =y
and for every oeDom(fa,, | Mx-1); floU ' ab®=fa. (o). Let 1= biab?
and s

@i{%p -+ - x)=3y% y? (I/;\l @ar(Xgs -+ oo X Yj)/\(ylf\yz= Vi+1)) .

Next we construct by induction sequences (b, ..., bi_)=b’, j=1,2 such that:
{Ag, - - » Or—1) ~pieD, and for every i=f...,§ 1, blab2=w. Since
c, | o <R} is dense in D there are @, B <R, such that for every i=r,..., s—1,
Ooi/ Gp; = Vo LEE T > max({Ith(z) | i=1,...,s—1}); recalling that for every i,
faot 1= Fans b 7y, it is easy to see that (™ (1), Cp, U Cp,) € P. Hence P is
c.c.c.

P is not yet as required in Lemma 3.9, since if G is P-generic, 1{G, | pe G}
need not be uncountable. However, by a standard argument, it is easy to find a
countable set A’ A such that it pP={peP|C,NA'={}, then for every P-

generic filter & UliC, |lpe G}t is uncountable. P’ is obviously as required in

3.9. O

_Thi;, concludes the proof of Theorem 3.7
Remark. Asin Lemma 3.i *;ve can also prove that TCA + MA +ISA is consistent.
Question 3.10. Prove that TCAm=>TCAm +1.

QOur next goal is to find a generalization of OCA which is equivalent to TCA.

Let D,(A) be the set of 1-1 m-tuples from A. Let X be second countable and
of power X,. An open m-coloring of X is a finite open cover & ={U,..., U} of
D,.(X) such that each U, is symumetric. We next define what it means for an open
m-coloring to be strongly open. We define by a downward induction
@(Vy, ..., Vi) where o is a property of i-tuples of open sets from X.
@V, - V) =30; (Vo - X Vi, e U). Suppose ¢is1 has been defined;

eV .o os Vi)-_"(vxh Xp € \D| (xl’)": Xo—* (avla Vz) {x.€ Viax,e V2

I Z - 1 2
/\(V ] V are OPen)"\‘PHﬂVb vaey Vie1s ‘i’r ] TVT ))}:

‘-Pi(vla Ve -V;)E/\ {fpg(vw(l): [REE] Vw(i)) I misa pem—lutation of I}

Definition 3.11. Let % be an open m-coloring of X. % is strongly open if (X}
holds.

Let t,, be the number of isomorphism types of models of the form {0, <r, <r)
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where ¢ e TU™!, Let U be an m-coloring of X. A € X is % -homogeneous if there
is a subset U’'< % such that [%'|=<t, and D,.(A)cU{U|Ucu?.

Axiom OCAm. If X is second countable and of power ¥, and % is a strongly
open m-coloring of X, then X can be partitioned into countably many %-
homogeneous subsets.

Theorem 3.12. (a) OCAm +1=>TCAm.
(b) TCAm +MA, = OCAm+ 1.

Proof. (a) Assume OCAm+1, and let f: T —n be an m-coloring of T and
A < L be of power ¥,. For every ie N and ¢ & T'"™ we define a symmetric open
subset of D, :(A):

Ua,r_‘{(ao: LRI ] a’m) EDm(A) | (T[{ao, ey a'm}], <L= <R)E<G: <L= <R)
and f(T[{ag,...,ant] =i}

Clearly % €{U,.;| o e T" and i e n} is a finite open cover of D,,.;{A), and it is
easy to check that ¥ is a strongly open (m +1)-coloring of A. Applying OCAm +
1 to A and % one gets a countable partition of A into ¥ -homogeneous subsets.
It is easy to check that these sets are in fact f-homogeneous,

(b) Assume MAy, +TCAm. Let U ={U,, ..., U,} be a strongly open (m + 1)-
coloring of a second countable space X of power 8,. W.l.o.g. X is Hausdorff. Let
% be a countable open base of X. A tree approximation of % is a function g such
that: Dom(g) = T, Rag(g) =% and (1) if n<<v e Dom(g), then 1 € Dom(g); (2) let
v, 1€ Dom(g); then if » and m are incomparable with respect to =, then
g(v)Ng(n)=0, and if v<m, then g(¥)2g(n); and (3) if i=m and vy, ...,y €
Dom(g) are incomparable in T, then ¢4{g(vq), ..., 2(»))} holds. Let g be an
approximation of ¥, and let B = X; we say that g is an approximation of % on B
if: (1) for every b & B there is a branch #, of Dom(g) such that be N {g(¥} | vet,};
and (2) the function mapping b to & is 1-1.

Using MAy, it is easy to see that there is a family {(g, B;) | i € w} such that g is
an approximation of % on B; and | J;c, B;=X. Wlo.g. Dom{g)=T. Let A; =
{t, | be B}, hence A;< L. For every i we now define an m-coloring f, of T. Let
o€ T™); if there is no C< A, such that T[C] =g, define f.(¢) = 0; otherwise, let
fy - - - » Iy, D& such that T[{t,, ..., }=o and let f(g) =i where (b, ..., b,)e
U, Clearly, f(a) does not depend on the choice of by,..., b,. One can easily

checkthat if A=A isf-homogeneous,—then—{b{t; e A} is—U=homogeneous, ———————
hence OCAm +1 follows. [l

Remarks. (a) We did not mention the polarized versions of TCA, however the
proof that they are consistent resembles the proof that TCA is consistent.

(b) The consistency of OCAm or TCA implies by absoluteness a special case of
Blass’ theorem [4], namely that if % is a strougly open coloring of ©2, then “2
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contains a perfect set in which at most t.. colors appear. The existence of such a
perfect set is a 5} statement, and since it holds in some extension it must exist in
the ground model.

The main question in this matter is whether our consistency result can be
strengthened to include all open colorings as in Blass’ theorem.

An open coloring can be regarded as a continuous function from X X X to the
set of colors equipped with Its descrete topology. It seems thus natural to examine
partition theorems for general continuous functions. We did not investigate these
guestions thoroughly, however here is one example of such a theorem.

Let the nowhere denseness axiom be as follows

Axiom NWDA2. If X and Y are second countable Hausdorff spaces, |X|=R,
and Y is regular and does not contain isolated points, and if f:Dy(X)—Y isa
symmetric continuous function, then X can be partitioned into {A; | i€} such
that for every i,jEw, f(A; X A;) is nowhere dense.

Note that even the weakest form of NWDA does not follow from ZFC, for if
A R is an uncountable Lusin set (Le. its intersection with every nowhere dense
set is countable) and f(a, b) = a + b, then for every uncountable B A, f(BxB) if
of the second cateogry.

Question 3.13. Does NWDA?2 follow from MA,?
Theorem 3.14. MA+NWDAZ2 is consistent.

Proof. We deal with the atomic step in the interation, and we assume CH in
every intermediate stage. Let X, Y, f be as in the axiom, let & and € be
countable bases of X and Y respectively, and let M be a model whose universe is
R, and which encodes f, X, Y, @ and €. Let {E; | i <R} be an enumeration of the
C,-slices in an increasing order. Let U< Y be a finite union of elements of €,
and let a € E,. We say that U is permissible for a, if for every formula @{x) with
parameters in Up<a Eg: T MFop[a], then there are distinct b, ¢ such that
MFo[bl, MEp[c] and f(b, c)¢cl(U). Let

P=Pky;=Ho, U)| cePplX), o is Cpr-separated,
f(Da)) Nel(U) = @, and for every aea, U is permissible for a}.

oy, Up={op Uy oS0 and U, Us.

One can easily check that if U is permissible for a and VoY is open and
non-empty, then there is U; 2 U such that U, W V#@ and Y, is permissible for a.
Tt is easy to check by the duplication argument that P is c.c.c. Let G be P-generic
and A = {o|3U (o, Uye G}. Then f(D,(A)) is nowhere dense. Let P%y, be
the forcing set gotten by iterating Pk v @ times with finite support. It is easy to
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check that if G is Pk vy, generic, then in V[G], X has a partition {4, | i € 0} such
that for every i€ o, f(ID5(A;)) is nowhere dense.
The proof will be completed if we show the following claim. [

Claim. Let {A; | i€ w} be a family of second countable spaces of power ¥,, Y be a
second countable space without isolated points, and for everyi=<jleif;: A, x A;—Y
be a continuous function. Then there is a c.c.c. forcing set P of power R, such that
after forcing with P each A, can be partitioned into {A; | j € o} such that for every
distinct iy, j10» {las fa)s Fi A4y, X Ay, is nowhere dense.

We leave it to the reader to construct such P. (Here one does not have to
assume CH in the ground model.)

Question 3.15. Let NWDAm denote the axiom analogous to NWDAZ where
m-place functions replace 2-place functions. Prove that NWDAm is consistent.

4. The semi open coloring axiom does not imply the open
coloring axiom; the tail method

In this section we present another trick called the “tail method”. This method is
used in the proof of the following theorem.

Theorem 4.1. MA +SOCA+—0CA +2% =R, is consistent.

Indeed in Section 11 we prove that MA,, +OCA=>2% =R, and in Section 5 we
prove that MAy,, +SOCA+ 2%o>R, is consistent, hence this means that MAy,, +
SOCA+—10CA+2F >R, is consistent.

Still Theorem 4.1 adds some information, but more importantly it is a simple
application of the tail method and thus will well serve in presenting this method.

The consistency of MA,, with the existence of an entangled set which is proved
in [1], implies that MAy +=S0CA+—T0CA is consistent.

However we were unsuccessful in proving or disproving the following.

Question-4.2. Does OCA imply SOCA? Does MA+OCA_imply SOCA?

Proof of Theorem 4.1. We give a detailed description of the proof, but skip the
details which are standard; we also skip some formalities in order to simplify
notations.

Definition. (X, f} is a SOC pair if f is a SOC of X; it is called an OC pair if in
addition f~X0) is open in D{X).
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We want to construct a universe W in which MA +SOCA +—0CA holds. To
do this we start with a universe V and an OC pair (Y, g)eV such that
VE“CH+2% =R, and Y does not contain uncountable g-homogeneous subsets™.
W is gotten from V by a finite support iteration of forcing sets {P, | @ <Ry}, and
we want that (Y, g) will be a counter-example to OCA in W. So we prepare in
advance a list of tasks which will enumerate all possible SOC pairs (X, {3 and all
possible ¢.c.c. forcing sets of power R,. In addition we prepare a 1-1 enumeration
1ve | B <R} of Y. We define by induction on o <R, a forcing set Py and a club
C,cR,. Let Y,={ys|BeC} We call Y, the eth tail of Y. Our induction
hypothesis is that lFp, Y, does not contain uncountable g-homogeneous subsets.

Let P =P, It is clear that the induction hypothesis assures that ke “Y is not a
countable union of homogeneous sels”.

If & is 2 limit ordinal, then Ps= Ua<s Per We choose a club Cs =R, such that
for every a <8, |Cs —C,|<R, We want to check that the induction hypothesis
holds.

Case 1. cf(8)=R,. Suppose by contradiction for some Ps-generic filter G there
is A e V[G] such that A is an uncountable g-homogeneous subset of Ys. Since
{Y, g) is an OC pair we can assume that A is closed; and since Y is second
countable there is @ <8 such that AeV(GNP,]. ANY, is an uncouniable
homogeneous subset of Y, belonging to VIGNP,], and this contradicts the
induction hypothesis.

Case 2. cf(8)=7r,. Suppose by contradiction that there is a Ps-generic G and
A € V[G] such that A is an umcountable homogeneous subset of Y. Let {o|ie

'} bé an increasing sequence: converging to 8. Then there are A;, i€ @, such that

A=Uead; and AeVIG NP,). Some A; is uncountable, hence A;NY, 18
uncountable. This again contradicts the induction hypothesis.

1 et us see how to define P i1, C,.., in the successor stage. Tf our ath task is to
deal with a c.c.c. forcing set P, we will use a version of the explicit contradiction
method, this will be explained later.

We first deal with the case when the oth task is a P,-name of a SOC pair
(X, o). For a SOC pair {Z, h) such that Z does not contain uncountable
0-colored sets, let M(Z, b, Y, g) — M be a mode! whose universe is ¥,, and which
encompasses enough set theory, and Z, h, ¥ and g. Let Gy be the club of initial
elementary submodels of M. Let P(Z h, Y, g) be the forcing set consisting of all
Cyr-separated finite 1-colored subsets of Z.

Suppose X, does not contain uncountable O-colored sets. We want to add to X,

an—uneountable—l=colored sei without destroying the induction hypothesis. For

this we need the following lemma.

Lemma 4.3 (CH). Let (Y, g) be an OC pair which does not contain uncountable
homogeneous subsets, and let {ya | B<Ri} beal-1 enumeration of Y. Let (X, ) be
@ SOC pair which does not coniain uncountable O-colored subsets. Then there is a
club C< R, an uncountable X'c X and a c.c.c. forcing set Py.s=P of power ¥,
such that ip “{vas | B € C} does not contain uncouniable homogeneous subsets”.
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Let {8, | v <Ry} be an order preserving enumeration of C,. In order to define
P, 11, Cass We apply Lemma 4.3 to (¥, g), (X, ) and the enumeration {y, |v<
Ny} of Y,. Let X', C be respectively the subspace of X and the club whose
existence is assured in 4.3. We define P, to be P, *Px.;and C,.;=1{8, | ve C}
It is clear that P,.;, C,., satisfy the induction hypothesis.

Lemma 4.3 is broken into two claims.

Lemima 4.4 (CH). Let {X, f) be a SOC pair, (Y, g) be an OC pair and {ys | B <R}
be a 1-1 enumeration of Y. Suppose X does not contain uncountable Q-colored
subsets, and Y does not contain uncountable homogeneous subsets, then there are
uncountable X' < X and a club C <R, such that letting Y' be {y | 8 & C}, for every
uncountable 1-1 function hc X' XY’ and every [ €{0, 1}, there are x4, x, e Dom(h)
such that f(xy, x2}=1 and g(h{x,), h(x.)) =1

Lemma 4.5 (CH). Let (X',f), {Y', g) be as assured by Lemma 4.4, and let
P=PX"f,Y', g), then -p “Y’ does not contain uncountable homogeneous sub-
sets”. '

Proof of Lemma 4.4, We first prove the following claim. -

Claim 1. Let (X,[), (Y.g) and {yg|B<Ry} be as in 4.4, let FSXXY and
1€{0, 1}, and suppose that for every x,, x,€X and y;, v2€ Y if x1% X2, ¥1F Vo,
(%1, Y1), (%0 y2€F and f(xy, x))=1, then g(yy, y2)=1L Then there are at most
countably many x’s in X for which [{y|({x, y)e F}|>R,, and there are at most
countably many y’s in Y for which {{x [ (x, y)e Fi>R,.

Proof. Let F(x)={y|[{x,y)eF} and F*(y)={x|{x, vy F}. Suppose by con-
tradiction that A % {x ||F(x)|=R,} is uncountable. Since Y does not contain
uncountable I-colored sets, for every xe A there are yl, yZe F(x) such that
g(vi, y2)=1-1, and the choice of the yi’s can be made so that for every u# v in
A, {yi yBn{yL, y2}=0. By the second countability of ¥ and the openness of g,
there is an uncountable B = A such that for every distinct w, veB, g(y%, y3)=
1—1 Since X does not contain uncountable O-colored sets there are u, © € B such
that f(u, v)=1. This coniradicts the assumption about F, since f(u, v)=1, yo#y2
for (u, yu), (v, y2 e F but gy, yD#1
The agrument why [{y | |[F7(y)| >R}l <R is similar. O

We now return to the proof of Lemma 4.4. For F as above let D(F)=
{x | |F(x)|<Ro} and R(F)={y [\F(y)|=<Rc}. Let {F,]i<¥,;} be an enumeration
of all closed subsets F< X X Y which satisfy (#): there is I = Iz €40, 1} such that for
every x3, %;€X and yy, y2€Y: if floxy, x2) =1, y1#y2 and (x3, yp), {x2, y2)€F
then g(yy, y2)=1

We define by induction on i<¥,;, ;€ X and 8; <N, with the purpose that X'




The consistency of some partition thearems 157

will be {x, | i <R.} and C will be {8 | i <R,}. Suppose x;, B; have been defined for
every j<<i If i is a limit ordinal let B; =sup({f; | i <i}), otherwise let $; be an
ordinal greater than any ordinal in the set {y|y, e UiF(x) 1k, j<i and
% eD(FONULB i<} Let xeX—{y|j<d-ULF(e)lk<i, j=i and
ye ER (Fe)}-

Let C={B; |i<R;} and X'=1{x; | i <®;}. Clearly X' is uncountable and Cisa
club. Let Y'={yg | B € C}. Suppose by contradiction there is an uncountable 1-1
heX')XY' and 1 {0, 1} such that for every X, x,eDom(h): if f(x;, x2) =1, then
g(h{xy), h(xp) =1 Let FEXXY be the closure of h in X% Y. Since (1) is
open and g~*(]) is closed, F satisfies (+), hence for some i, F=F. Let (x; Vg ) ER
be such that i <j, By, x € D(F) and yg, e R(FF). If j=Fk, then we picked x; not in
F~*(yg,), a contradiction. If j<k and k is a successor, then we picked B, such
that yg ¢ Fi(x;), 2 contradiction. Suppose j<k and k is a limit ordinal. Let
j<k;<k be a successor ordinal. Then B> P, and By, is greater than any
element of the set {y | v, € F(x;)}, bence Bré{y | v € Fi(x;)}, a contradiction. This
concludes the proof of the lemma. [1

Proof of Lemma 4.5. Lemma 4.5 is very similar to the first part in the proof of
Lemma 3.3. We leave it to the reader to translate the first part of the proof of 3.3
to a proof of this lemma.

We next have to deal with the following case. Suppose P, C, have been
defined, and the ath task is as follows: we are given a P,.-name of a c.c.c. forcing
sel. R, of power <K,, and we bave either to add a generic filter to R, or to
destroy the c.c.c.-ness of K. I g, “V, does not contain uncountable
homogeneous sets”, then P,a.=P.,*R, and Cy 1= .. We deal with the case
when there is re R, such that rl-g_“Y, contains an uncountable homogeneous
set”. In this case we will construct a c.c.c. forcing set Q, such that fq, “R, is not
c.c.e., and Y, does not contain an uncountable homogeneous set”.

Lemma 4.6. Let (Y,g) be an OC pair that does not contain uncountable
homogeneous subsets, let R be a c.c.c. forcing set and re R be such that rikg “Y
contains an uncountable homogeneous set”. Then there is a c.c.c. forcing set Q of
power ¥; such that Irg “R is not c.c.c. and Y does not contain uncountable
homogeneous subsets”.

Remark. The proof resembles-Theorem-2-4-in [

Proof. Let M be a model with universe X, encompassing the space Y, the
function g and epough set theory. Let Cu={a|M! a< M} Let B be an
R-name, re R and le{0, 1} be such that rirg “B ig an uncountable !-colored
subset of Y. W.lo.g. r =0g and [ = 1. We choose a sequence {re vE v2 | @ <¥F

such that: for every a, r, lFr “¥Ya y2e B”; for every a <B <Ny, yl<yZ<yg, and
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{yi v2 v, vi} is Cy-separated. W.lo.g. there are basic open sets Uy, U, of Y
such that for every e <N, and ie{l,2}, yLe U; and g(U; x U,) ={1}.

We define Q as follows. Q={o Py (R:)|for every distinct a, B o there is
ie{1, 2} such that g(y., y5) = 0}. Note that the last clause in the definition of Q is
just the ‘explicit contradiction’ clause, hence if e, B€oe Q are distinct, then r,
and r, are incompatible in R. The partial ordering in Q is of course: o< if
TET.

The proof that @ is c.c.c. resembles the analogous proof in Section 3. The
argument why ko “R is not c.c.c.” is also as in Section 3.

Let us show that I+o “Y does not contain uncountable homogeneous subsets”.
Suppose by contradiction that the above is not true. Then there is 2 sequence
{(qs ve) | B<R.} and [ €{0, 1} such that for every e <8 <Ry, 4. € Q, Yo7 g and if
d. Ugg € Q, then g(y,, ys) =L As usual we uniformize the sequence e va) | B <
¥} as much as possible, hence we may assume that g
{atg, - - @eys @8, ..., B i} where for every B<7y, ap<:- <o ;<af<--:
af_;<a}. Let us demote yie by y(8,51), and yg by y(i). Let y
(y(0,0).y(0,1),...,y(k=1 1)), y(B. 1) ={y(B, 1, 0}, (B, k, 1}, y(B)=
yy(B k)™ -~y(B, n—1) and z(B)=y(B)"{(va). Recall that if we take two
pairs y(B,i{) and y(B,j) where i#j, then either their first or their second
coordinates have «color 0, ie. either g(v(B,i0),v(B.5,0)=0 or
g(v(B, i, 1), y(8,7, 1))=0. Hence by more uniformization we can assume that
there are my's for k=<<i<j=<n-—1 such that for every @, i and j, g(y(B, i, my),
v(8, j, my)) =0, and that there are basic sets U}", i=k,...,n—1, m=0,1, such
that for every B, y(B, i, m)e U and for every k<i<jsn-—1, g(Ufx U} =0.
Let F be the closure of {z(B8)| B <R} in Y™, let yoe Gy be such that F is
definable in M from a parameter belonging to vy,. Let 8 be such that all the
elements of z{B) except the first k of them do not belong to v,. We duplicate
z(B). Note that y(B) is separated. Let E be the C,,-slice to which yg belongs.
Hence there is at most one element of y(B) which belongs to E. To simplify the
notation let us assume that this element is y(B, k, 0). Hence by the duplication
argument, and since we know that Y does not contain homogeneous uncountable
subsets, we can find z' =y @ik 0), y'(k, 1), ..., ¥'(n—1,0), y'(n—1, 1}, y')e
F, i=1,2, such that g(y*, y3)#1L and g(y*(t 1), y*(t))=0 for {t)=(k 1),
(k+1,0), (k+1,1),...,(n—1,0),{n-1,1). Since g is continuous we can find
neighbourhoods V7, V, of z%, z* respectively such that the same equalities hold
whenever we pick z,€ V, and z,e V,. Let z{a)e V, and z(B)e V, it is easy to

Al

checkthat g5 Uqse Q-but glys v5) 7 acontradiction—{]

This concludes the proof of Theorem 4.1.

The tail miethod will be used again in Section 9 and 10. The reader can check
by himself that combining the club method, the explicit contradiction method and
the tail method one can e.g., get the following consistency result that was
mentioned in Section 2.
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Theorem 4.7. MA+SOCA+3A (A is increasing and rigid) is consistent.

5. Enlarging the continunm beyond Ro

According to our presentation in the previous sections, we always had to
assume CH in the pround model in order t0 apply the club method. Thus in the
resulting models of set theory 2% had to be equal {0 Ry

The goal of this section is to find a weaker assumption under which the club
method can work. Hence we will be able to prove that some of the axioms
considered in the previous sections are consistent with 25> R,.

Indesd CH was used in more than one way. In Theorem 1.5 we used CH in
order to prove the following claim. If {F, | ie I} is a family of closed subsets of X,
and X is not the union of countably many F’s, then there is an uncountable
X’ c X which intersects every F, in at most countably many points. In Section 3
we used CH in order to preassign colors, and in Lemma 4.4 we used CH in still
another way.

Tt so happens that MA+OCA implies 2% = X,. However, MA®-SOCA + 2% >
¥, is consistent. We present the new method by means of an example. We will
ghow that MA+SOCA + (%>R, is consistent. The reader will be able to check
that the consistency of MA +NWD2+ (2% >R,) can be proved by the same
method. The proof that MA+OCA= 2% =R, will be presented in Section 11.
But some.questions remain open, and we will mention them in Section 11.

Tn view of this section and Section 11, certainly MA + SOCA =) OCA, hence we
do not have to prove Lemma 4.4 in the absence of CH, however since the proof
exemplifies what can be done without CH we take the liberty to present its short
proof. This is done in Lemma 5.5.

Let A c B denote that |A —Bl=R,. Let M be a model in a countable language
such that |M|2R,, and let D be a finite subset of |M|; we denote Cyp “lae
N, | there exists N <M such that D = IN| and @ =|N|NR,}. Clearly Gy contains
4 club. A club C of R, is called M-thin, if for every finite D= M|, C< Cyp-

Let us reconstruct the proof of Theorem 1.1. The central point in the proof was
to construct for a given SOC f of a second countable space X, a forcing set Py
which adds to X an uncountable 1-colored subset. To do this we constructed a
model M which included all the relevant information about X and f, and defined
Py; to be the set of all finite, C,,-separated, 1-colored subsets of X. In the proof

that Px; was c.c.c., the only property of G that-was—tused;-was—its-M-thinness
Let W be a universe in which 2% >R, In order to be able to repeat the
construction of Theorem 1.1. starting with W as the ground model, we thus need
that W will have the following property. 1f Pe W is a c.c.c. foreing set of power
<2% G o P is a generic filter and M e W[G]is a model which is constructed for
some (X, fye W[G], then W[ G] contains an M-thin club.
We will show that such W’s can be constructed, and in fact, the W’s that we
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construct will contain M-thin clubs for a wider set of M’s rather than for just
those M’s that come from some {X,f). This fact will be important in other
applications of the method.

‘We define the countable closure of a set A. For i=N; we define by induction
ADA®=A. if § is a limit ordinal, then A®=J; AY; and AP =
APU{Bc A®|B|=Ry). Let A= A®Y A®is called the countable closure of A.
For a model M, let M® be the following model. |M°| =|M[°, the relations in M°®
are those of M, and in addition: the belonging relation on |M[°, and a unary
predicate which represents |[M] in M°. A model of the form M?®, where ||M]|<2%
and M has a countable language is called a low model.

Axiom Al. If P is a c.c.c. forcing set of power <2, and if M is a P-name of a
model, such that I-p “M is a low model”, then Iy “there is an M-thin club”.

Proposition 5.1. Let W be a universe of set theory which safisfies Al, then there is
a c.c.c. forcing set Q of power 2% such that W2 ESOCA.

To prove the above proposition one has to reexamine the proof of Theorem
1.1. and check the following fact. Let f be a SOC of X, and suppose X does not
contain uncountable O-colored sets. W.lo.g. X=%;; let M=®R U%; e, <, f
where @ is a countable base for X, & is the belonging relation between elements
of X and elements of 9%, and < is the ordering relation on K,; and let C be an
Me-thin club. Then if P is the set of all finite C-separated 1-colored subsets of X,

then PUis ¢.cie., and IFp **X contains am uncouiitable 1-colored subset”. We leave

all the other details to the reader.

Our next goal is to construct a W in which 2" >R, and which satisfies Al. Let
us explain how such a W is constructed. We start with a universe V which satisfies
CH. Let A be a regular cardinal in V such that A™ =X

We define a countable support iteration {{P,, 7.)| ¢ <A} in which each m, is
the name of a forcing set which adds a club C to N;, such that C is almost
contained in every club which belongs to V- We will show that in VB, Pi=)
and Al holds.

Let Po,={(D, f)| D is a closed and bounded subset of Xy, F is a club in ¥, and
DcF} let {Dy, Fy, {D,, Fy)€Pgy, then {Dy, Fpy<s(D,, F>) if Dy is an initial
segment of D, and F,c F,,

Proposition 5.2 (R. Jensen). (a) P, it w-closed.

{b) (CH) Pg, is Ry-c.c.

(¢) (CH) Let {Po{e) | @A}, {reu(e) | @ <A} be a countable support iteration;
Poo(0) is a wivial forcing set, and for every a <\, 7o) is & Po(a)-name of the
forcing set Pey, of the universe Vo, Then Po(A) is w-closed and R;-c.c., and if
A= A, then “_Pch) M=,

Proof. Well known.
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Lemma 5.3, Let P, QEV be forcing sets such that P is c.cc. in V and Q is
w-closed in V. Then V7 is closed under w-sequences in Ve,

Proof. Tt suffices to show that every w-sequence of ordinals in VF*2 belongs to
VP. Let 7 be a P X Q-name of an w-sequence of ordinals. We show that for every
go€ Q there is g, = qo with the following property:

(%) For every poeP and new there is p,=p and an ordinal « such that
{p1, gl 7(n) = . Suppose by contradiction g°e Q and there is no g,=q° which -
satisfies (*). We define by induction on i a seguence fa, po my | i <Ri}) Let
q00=q°, Po€P, mocw be such that there is @y such that {pg, Go)'7{ng) = ao.
Suppose {g;, pj, 1) has been defined for every j < i. Let ' =g; for every j <i. Since
q*>q°, (+) does not hald for ¢, and hence there is p' € P and n; € » such that for
every p=p' and an ordinal &, {p, gy r(m) = a. Let {p; g)={p,, q') and o; be an
ordinal such that {p;, g:)l-7(%)=a;. Let i<j be such that n, = n;; we show that p;
and p; are incompatible. Suppose by contradiction r=p,, p;. Hence {r, gk m(m) =
. But g, =g, hence {r, ') 7(n) = . But r=p =pl, hence there is p=p' and o
such that (p, '}l 7(n;) = e This contradicts the choice of p', q' and n;. Let n be
such that [{i | m = n}| =Ry, hence {p; | m;=n} is an uncountable antichain in P, a
contradiction.

For a PX Q-name T of an w-sequence of ordinals let D, ={gqe Q| q satisfies
(+)}. We have thus shown that for every = as above D, is dense in Q.

Let GSPxQ be a generic filter, and let ae V[G] be an w-sequence of
ordinals. Let Gy, G be the restrictions of (G to P and Q respectively. We show
that a € V[G,L Let  be a Px Q-name of a. Let g€ D; N G,. For every ne o, let
p, € G, and @, be such that {p,, @}l-7(n)= e, Hence a = {o, | n € w) and clearly
acV[G,] O

Let {P, |a@=<A}, {m, | & <A}) be an iteration of length A. We denote by 13‘!3 and
P;-name of the iteration which is formed from the sequence of names {m, | B <
a<\}. Hence Pg#Py=P.

Lemma 5.4. Let VECH and let A be a regular cardinal in V such that A=A
Then Irp o) Al

Proof. Let Qy= Po,(r). Let G < Qg be a generic filter and W=V[G]. Let Pe W
be a c.c.c. forcing set of power <2, let HS P be generic and U= W[H]. Let

Me U be a model in a countable Janguage such that X; M M2 Since
Q, is ®y-c.c, |Pl<2% and (2™ =1 it follows that for some a <A, Pe
V[G NPe(e)]. Similarly for some a<f <A, MeVIGNPoBY[H] Let Gi=
GNPa(B), Vi= V(G and Q; = VGl(PCh(B)), and Iet G, be the generic filter of
Q, determined by G. Hence P is c.ec. in Vo, Qg is w-closed in V;, HXG; is
P % Q,-generic and V,{H]G,]=U. By the previous lemma V[ H ] is closed under
w-sequences in U, and thus since M € V,[H], also M®e V,[H]. Let D be the club
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of ¥, which is added by the restriction of G to 7o,(), hence D is almost
contained in every club of V,. However since H is c.c.c. in Vi, every club of
V,[H| contains a club of V;, and hence D is almost contained in every club of Vy,
and hence D is almost contained in every club of V,[H], and obviously this
implies that D is M®thin. O

Lemma 5.5. Lemma 4.4 is true in a universe V- where VFAL and P is a c.c.c
forcing set of power <2

Proof. Let (X, ), (Y, g), {vs | B <Ny} be as in 4.4, and let M be a model which
encodes X, f, Y, g and {yg | 8 <¥;}. Let C be M°-thin, and let {E, | & <X} be an
enumeration of the C-slices in an increasing order. Let D be a club in ¥, such
that {e | B, N{y, | ye D}=§} is uncountable, and let X'= X be an uncountable
set such that for every a <X, if X'NE,#f, then {y, |ye D}NE,=§. We show
that D and X' are as required. Let Y'={y, | y ¢ D}, and suppose by contradiction
for some heX'x Y’ and l€{0,1}, h is uncountable and 1-1 and whenever
x1, %€ X' and f(x;, x;)=1, then g(h(xy, h(xy))=1 Let F=cl(h). Then F is
definable in M°®. Using the notation of 4.4, F satisfies {*). Hence by the proof of
4.4 for all but countably many elements x € X', F(x) lies in the same C-slice that x
does. This contradicts the choice of X' and Y’. [

6. ‘MA, OCA and the embeddability relation on X,~dense real order types

Let A<R. A is X -dense if it has no first and no last element, and if between
any two members of A there are exactly ¥; members of A. If A, BSR, let
A¥*={—a|aeA}, let A=B mean that the structures (A, <) and (B, <) are
isomorphic, let A< B mean that (A, <) is embeddable in (B, <), and let A1 B
mean that for no R,~dense CcR:C< A and CX B. f: A—B is order preserving
(OP), if for every a,, a,€ A, a,<a;=> f(a,)<f(ay); it is order reversing (OR), if
for every a,, a,€ A, a;<ay,> fla;)<flay); f is monotonic if F is either OP or
OR. Let K={A cR|A is R,-dense}. A =R is homogeneous, if for every a, be A
there is an automorphism f of {A, <) such that f(a)=b. Let K¥={AeK|A is
homogeneous}. It follows easily from ZFC that for every A €K there is Be K"
such that A = B. Let {A;|i<a}cK, and let B € K. We say that B is a shuffle of
A, i<} if there are A} such that Af=A, B=|},, A} and for every i<w and

by, bye B such that b, <b, there is a a € A} such that b;<a <b,.

et AeK; BeK is a mixing of A if for every rational interval I there is A;
such that A; =1, A;=A and B=\J{A;|I is a rational interval}.

Baumgartner [2] proved that it is consistent that all members of K are
isomorphic. Shelah [1] invented the club method and used it to show that
MA+R, <2" does not imply Baumgartner's axiom (BA). He constructed a
universe in which MA holds but R contains an entangled set. An entangled set A
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has the property that there is no uncountable monotonic function g with no fixed
points such that Dom(g), Rug(g)c A. Thus A is rigid in a very strong sense. The
consistency of MA +8; < 2% with the exictence of an increasing set was proved by
Avraham in [1]. An increasing set is an analogue of an entangled set when
monotonic functions are replaced by OR functions.

Tt was natural to ask how much freedom do we have in deiermining the
structure of the category whose members are the elements of K and whose
morphisms are the monotonic functions. In this scction we start investigating such
questions under the assumption of MA+ §y < 2%,

‘We shall first see that MAy, already implies many properties of K. Next we
shall see that MAy, +OCA determines K quite completely, namely if we conjunct
MAy, +OCA with the existence of an increasing set, then K* consist up to
isomorphism of three elements and every element of K is built from these
elements in 2 simple way. On the other band MAy, +OCA+—ISA implies
Baumgartner’s axiom.

Theorem 6.1. (MA,). (a) If AcKH ay, by, 02, b2€ A, and a;<by and a;<b,,
then there is an automorphism f of (A, <) such that f(a)) = ao and f(b1) = ba.

(b) Let A,BeK and let {g |icw} be a family of OP functions such that for
every ac A and by<by in B there is i € @ such that g € B N (by, by). Then A<B.

(©) Let A, B and {g |i€w} be as in (b), and suppose in addition that for every

beB and a,<a, in A there is iew such that g7 (b)e AN{a,, az). Then A=B.

{d) FAB ceK¥, AXBand BX A, then A =B. (Hence < is a partial ordering
of K¥=.)

(e) If AcK® ihen A is isomorphic to every non-empty open interval of A.

(@ Let {A;|i<a=<w}s K™ Then (a) all shuffles of {A; |i<a} are isomorphic
and they belong to K™, In particular,if all the A;’s are isomorphic to some fixed A,
then every shuffle of {A; |i<a} is isomorphic to A; and (b) if B is a shuffle of
{A/]i<a}and C e K¥ and for every i<a, A;<C, then B C.

() If AeK and B,, B, are mixings of A, then B;=B, and BseK*®, and if
CeKH and A<C, then B;<C.

(h) If AeXK and for every BeK A<B, then A e K.

(@) If for every A,Be K A<B, then BA holds.

() If |K*/=|=1, then BA holds.

Proof. All parts of 6.1 follow easily from (b) and (c). We prove (¢}, (a} and (3},

and leave the other parts to the reader.

(¢) Let P={fe Py (AXB) | f is OP, and for every a e Dom(f) there is g such
that fla)=g(a)}. f=gif feg It is easy to see that P is c.c.c.. It is also easy to
see that for every acA, D, & {feP|aeDom(f)} is dense in P, and for every
beB, D& {feP|beRng(f)} is dense in P, hence if G is a filter in P which
intersects all D,’s and D"’s, then UA{f | fe G} is an isomorphism between A and
B.




