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(Communicated by Andreas R. Blass)

ABSTRACT. Let us recall that a Boolean algebra is superatomic if every subalge-
bra is atomic. So by the definition, every subalgebra of a superatomic algebra
is superatomic. An obvious example of a superatomic algebra is the interval
algebra generated by a well-ordered chain. In this work, we show that every su-
peratomic subalgebra of an interval algebra is embeddable in an ordinal algebra,
that is by definition, an interval algebra generated by a well-ordered chain. As
a corollary, if B is an infinite superatomic subalgebra of an interval algebra,
then B and the set At(B) of atoms of B have the same cardinality.

1. SURVEY OF THE RESULTS

In a Boolean algebra B we denote by Op and 1p, respectively the smallest
and the largest elements of B. For x and y in B, we denote by x Uy and
x Ny, respectively, the supremum and the infimum of x and y in B, by —x
the complement of x in B,and x—y =xN(-y). So —-x =1p—-x—x.
Moreover, x Cy means x Cy and x #y.

For Op # a € B, we denote by B | a the Boolean algebra induced by B on
the set {¢t € B|t C a}. So 1p;, = a and the complement of ¢ in B [a is a—¢.

For a Boolean algebra B and a subset D of B, we denote by At(B) the set
of atoms B, and by clg(D) the subalgebra of B generated by D.

For example, if I is an ideal of B, then clg(I) = IU—I, where —I = {—x €
Blx eI}.

Definition. A Boolean algebra B is said to be superatomic if every quotient of
B is atomic.
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Day [3] (see also Koppelberg [5] and Roitman [7]) has shown the following
result: )

Proposition. Let B be a Boolean algebra. The following properties are equiva-
lent:
(i) B is superatomic;
(i1) every subalgebra of B is atomic;, and
(ii1) there is no embedding from the atomless countable algebra into B. O

If E is a set, then p(FE), the power set of E, is regarded as a Boolean
algebra.

Let (C, <) be a partial ordered set. We say that (C, <) is a chain if every
pair of members of C are comparable, and (C, <) is well ordered if (C, <)
has no strictly decreasing sequence. Let (C, <) be a chain with a first element
denoted by O¢ (if (C, <) has no first element, then we must add one). Let

ct®cu {ooc} be the chain, obtained by adding a greatest element oo . We
denote by B(C) the subalgebra of (C) generated by the set of [a, b) for
a€ C and b e C*,ie. clyc)({la,b)lac C and b e C*}). B(C) is called
the interval algebra on C (see Koppelberg [5]).

Theorem 1. Let B be a superatomic Boolean algebra. If B is embeddable in
an interval algebra, then B is embeddable in an interval algebra generated by a
well-ordered chain C. More precisely, B is isomorphic to a subalgebra B' of
B(C) and At(B') = At(B(C)).

Obviously Theorem 1 holds if B is countable, since B is isomorphic to an
interval algebra (see Mayer and Pierce [6], Koppelberg [5]).

Example and comment. Let B be a superatomic subalgebra of an interval alge-
bra B(C). The question is as follows: Is there a superatomic interval algebra
A such that B C A C B(C)? The answer is negative. Indeed, let C = 2.4,
where A denotes the chain of real numbers, and thus C is the chain obtained
from the chain A by replacing each real number by the 2-elements chain. Let
BY clpcy(At(B(C))). Let 4 &f B(D) be a superatomic interval algebra, gen-
erated by a chain D, containing B . First, because At(B) is uncountable, the
scattered chain D is uncountable. By a theorem of Hausdorff (see Rosenstein
[8, Theorem 5.28]), D contains a copy of the chain w; or w}. For a contra-
diction, let us suppose that B(D) C B(2-1). Because B(D) satisfies: there is an
uncountable family of pairwise disjoint elements such that each element con-
tains infinitely many atoms, the algebra B(2-1) has the same property. Now, we
obtain a contradiction with the fact that in A, every family of pairwise disjoint
nontrivial intervals is at most countable.

For an infinite well-ordered chain C, the sets At(B(C)) and B(C) have the
same cardinality; hence Theorem 1 implies the following result, proved by M.
Rubin and S. Shelah [1988]:

Theorem 2. Let B be an infinite superatomic Boolean algebra, embeddable in
an interval algebra. Then At(B) and B have the same cardinality.

This result completes the different characterizations of superatomic subal-
gebras of an interval algebra, developed by R. Bonnet, M. Rubin, and H. Si-
Kaddour [1988]. Let us give an application of the above theorem. A Boolean
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algebra B is said to be the thin-tall if B is uncountable, and for each ordi-
nal «, the set At(D,(B)) is countable (the algebra D,(B) is defined in 2.3).
In particular At(B) is countable. From Theorem 2, for example, it follows
that a thin-tall Boolean algebra is not embeddable in an interval algebra (for an
application, see R. Bonnet and S. Shelah [2]).

2. NOTATION AND DEFINITION

2.1. Chains. Let (C, <) be a chain, u € C, and D be a subset of C.

(C, <) is a complete chain if every subset of C has a supremum and an
infimum.

(C, <) is a relatively complete chain if every bounded nonempty subset A
of C (i.e. there are b and ¢ in C such that b < a < ¢ for every a € 4) has
a supremum and an infimum in C.

Assume that C is complete. We denote by ¢(D, C), or more simply ¢(D),
the closure of D in C by supremum and infimum. For the following result,
see e.g. Rosenstein [8]:

Every chain (C, <) is embeddable in a complete chain (C?, <) ; namely, its
Dedekind completion, (completion by cuts), which satisfies: for every ¢ € C d,
if ¢ is not the first element of C?, then ¢ = sup{p € C|p < ¢}, and if ¢ is
not the last element of C¢, then ¢ = inf{p € C|p > c}.

u is a predecessor in C if there is an (unique) element u* € C such that
ut > u and [u, ut) = {u}. We denote by Pred(C) the set of predecessors of
C.

(C, <) is totally disconnected if for every v <w in C, we have [v, w)N
Pred(C) # @ . Consequently B(C) is atomic if and only if C is totally discon-
nected. The word “totally disconnected” comes from the fact that a chain C is
totally disconnected if and only if C, endowed with the interval topology, is a
totally disconnected space.

Let = be an equivalence relation on C. For a € C, we denote by a/ =

its equivalence class, i.e. a/ o def {a’ € C|a’ = a}. We suppose that each
equivalence class is an interval of C. For a@’, @”" € C/ = weset a’ < a" if for
every @' € @' and a” € @", we have a' < a”. If each equivalence class is an
interval of C, then (C/ =, <) is a chain. Moreover, if (C, <) is a complete
chain, then (C/ =, <) is too.

2.2. Boolean algebras. An element a of an interval algebra B(C), different
from Op, has a unique decomposition (called the canonical decomposition), of
the form: a = J{[a2, a2i+1)|i < n} where 0 <n<w, Oc <ay<a; <a; <

e < @y < ooc,and az € C* ¥ CU{ooc}, (k=0,1,...,2n—1). For
such an element a, we set o(a) = {ax|k < 2n} C CU{ooc}. The integer n is
called the length of a, and is denoted by /(a).

Every finite product of interval algebras is isomorphic to an interval algebra,
and thus if B is a subalgebra of a finite product of interval algebras, then B is
embeddable in an interval algebra.

More precisely, let us recall the following fact concerning chains and Boolean
algebras (see [5, Proposition 15.11]). Let C; and C, be chains with first ele-
ment Oc, and Oc, respectively. Let C = C; + C; be the chain, lexicographic
sum of C; and C, (so ¢; < ¢, for ¢; € Cy and ¢; € ;). Note that C has
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a first element, namely Oc,. A canonical isomorphism f from B(C) onto
B(C)) x B(C,) is obtained by letting: f(c) = (cN Cy, cN ;). Let us remark
that we identified ooc, with O¢c,. B(C;), B(C;) are factors of B(C); and by
identification, B(C) | C, = B(C}) and B(C) | C; = B((3).

Let D be a subset of C, containing Oc-. Hence D is a chain with a first
element. We denote by B¢(D) the subalgebra of B(C) consisting of those
elements a such that g(a) C D U {ococ}. Let us remark that the Boolean
algebras B¢(D) and B(D) are isomorphic.

2.3. Let B be a Boolean algebra. By induction, we define a sequence (I,(B),
D,(B), n8), with the conditions D,(B) = B/I,(B) and n2 is the canonical
homomorphism from B onto D,(B) (the algebra D,(B) is called the a-th
Cantor Bendixon derivative of B). Let Iy(B) = {0}, and thus Dy(B) = B.

Suppose that I,(B) has been defined. Let J,(B) be the ideal of D,(B), gen-

erated by At(Dy(B)). Then I,.;(B) % (zB)~!(J.(B)). Suppose that J is a

limit, and 1,(B) has been defined for every a < d, then I;(B) = U, 5 1a(B).
The following additional equivalences are well known and their proofs are
straightforward (see Koppelberg [5]).

Proposition. Let B be a Boolean algebra. The following properties are equiva-
lent:

(i) B is superatomic, and
(i) there is an ordinal y such that 1g € I,(B). O

Clearly the first ordinal y for which 1p € I,(B) is a successor ordinal, say
a+1,and «a is o is denoted by rk(B). Hence 1p € Iip)+1(B) — I (B) and
Dy g)(B) is a nontrivial finite algebra isomorphic to p(n) (n > 0 integer), and
if n=1, then Iyp)(B) is a maximal ideal of B. Let I(B) and D(B) denote
Ixs)(B) and B/I(B) respectively.

For b€ B, b # 0p let rkg(b) be the first ordinal « such that b ¢ I,(B).
Hence b € Iy, p)+1(B) — Ly, ) (B) . For instance rkp(b) = 0 for b € At(B),
and rkg(lp) =rk(B).

Notation 2.4. Let B be a subalgebra of an algebra 4, and ¢ € 4. We denote
by B | c thesetof bnc for b € B. We regard B | ¢ as a subalgebra of the
factor A | ¢ of A, and thus as a Boolean algebra. Remark that if ¢ € B, then
B | ¢ is a factor of B.

By the definition, B | ¢ is an homomorphic image of B. From the fact that,
for every superatomic Boolean algebra A and every ideal I of A, we have
rk(A4/I) < 1k(A), it follows that:

Lemma 2.5. Let B be a subalgebra of a superatomic Boolean algebra A, -and
ce€A. Then tk(B | c) <rk(B) =rkg(lpg). O

The following result is due to M. Rubin and S. Shelah [9], and is one of the
ingredients of the original proof of Theorem 2.

Proposition 2.6 (Rubin and Shelah). Let B be an atomic subalgebra of an in-
terval algebra. Then there are a totally disconnected complete chain C and an
embedding ¢ from B into B(C) such that B(C) is an atomic algebra and
At(¢[B]) = At(B(C)).
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Note that the property of C implies that c(|J At(B(C)), C) = C. The proof
of Proposition 2.6 needs some preliminary results. Let C be a chain such that
B C B(C).

Claim 2.7. We can suppose that C satisfies (1): C is a complete chain, and
(2): every atom of B is a finite subset of C.

Proof. We can suppose that C is a complete chain (consider its Dedekind
completion). Let C = |J{o(a)|a € B} be the set of endpoints of elements of
B. Weset C°=c(C, C). The function ¢ from B into the subalgebra B¢(C)
of B(C®) defined by ¢(b) = bn C is trivially a one-to-one homomorphism,
and C°¢ is as required (note that by the construction, (2) is satisfied). O

Claim 2.8. We can suppose that C satisfies (1) and (3): every atom of B is a
singleton of C.

Proof. For every a € At(B), we have a = U,.<,(a)[a2,~, Aiy1) = U,-<,(a){a2,~}
with @, € Ct = CU{ooc}, and ay;, azi41 consecutive in C. Let ~ be the
equivalence on C defined by ay; ~ az;41 for 0 < i < /(a) and a € At(B).
Let C = C/ ~. Hence C, with the induced linear order by C, is a complete
chain. Let ¢ be the function from B(C) into B(C) defined as follows: if
b = Uiplb2i, baiv1), then @(b) = U, qplb2i/ ~, bairi/ ~). Obviously ¢
is a homomorphism from B(C) onto B(C). It suffices to show that ¢(a) =
[ag/ ~, a1/ ~) = {ao/ ~} # 0 for a € At(B), and ¢ restricted to B is
one-to-one. But this is trivial. O

Proof of Proposition 2.6. To prove the proposition, there is no loss in assuming
that B and C satisfy the assumptions (1) and (3) of Claim 2.8. Let = be the
equivalence on C defined by x =y if x =y, orif x <y and [x, y) does
not contain an atom of B, orif y < x and [y, x) does not contain an atom of

B . Then the quotient chain C e ¢ / = is complete and totally disconnected.
Let p be the canonical increasing function from C onto C. Note that if
x <y in C are such that p(x) < p(y) in C, then there is a € At(B) such
that a C [x, y). This shows that the function ¢ from B into B(C) defined
by #(a) = U{lp(az), p(azi+1))li < l(a)} for a = U{[az, azit1)li < l(a)} in
B C B(C), is as required, and satisfies At(¢[B]) = At(B(C)). That finishes the
proof of Proposition 2.6. 0O ‘

3. PROOF OF THEOREM 1

3.1. To prove Theorem 1, there is no loss in assuming that (1): B satisfies both
the premises and the conclusions of Proposition 2.6, and (2): I(B) = L) (B)
is a maximal ideal of B. We denote by = the relation on C defined by x =y
if x <y and there is b € B, with rkg(b) < rkp(lp), containing [x, y), or
y < x and there is b € B, with rkg(b) < rkp(lp), containing [y, x). We
show:

Lemma 3.2. Each equivalence class is an interval of C. Let b € B be such that
tkp(b) < rkp(1p). Then there is a finite subset ag/ =, ay/ =, ..., an—1/ = of
equivalence classes such that b C J{ax/ = |k < n}.

Proof. The first part of the claim is trivial. Let us show the second one. Let
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b = U{[b2i, bai+1)|i < n}. It suffices to show that b; = by;4; for i < n. But
this is a trivial consequence of the definition of . 0O

The following two claims are obvious.
Claim 3.3. If a € At(B), then a is contained in an equivalence class. 0O

Claim 3.4. Let a be an equivalence class. If 4 has a last element v, then
v ¢ Pred(C). O

Definition 3.5. Let C be a complete totally disconnected chain, B a super-
atomic subalgebra of B(C), A an ordinal, and y a function from B into
B(A). We say that (B, C, 4, v) is a good system if At(B)=At(B(C)), vy is
a one-to-one homomorphism from B into the interval algebra B(4), and the
restriction y | At(B) of w on At(B) is a one-to-one function from At(B)
onto At(B(4)). We say that there is a good system for (B, C) if there are 4
and ¥ such that (B, C, 4, y) is a good system.

Note that At(w[B]) = w[At(B)]. Equivalently a good system is the (B, C,
A, Wo), where At(B) = At(B(C)), and yp is a one-to-one function from
Pred(C) into the chain 4 such that the function y  from At(B(C)) into
At(B(4)) defined by y ([u, u*)) = [wo(u), wo(u)+1) for u € Pred(C) can be
extended in an embeddmg v from B into B(4).

We prove by induction on «, that the following statement Th(a) holds:
for every chain C and for every superatomic subalgebra B of B(C), such that
rk(B) < a and At(B) = At(B(C)), there is a good system for (B, C).

Th(0) and Th(1) hold. Indeed B is isomorphic to the Boolean algebra
F.(X) of finite or cofinite subsets of a set X, where X = At(B(C)) (since
I(B) = Iy(p)(B) is a maximal ideal of B). Consider A be the (initial) ordinal
corresponding to the cardinality of the set At(B(C)). In what follows, we
suppose that rk(B) > 2.

Claim 3.6. Let d/cong be an equivalence class, and

a*® ((a/ 2) U {infl(a/ 2))) ~ {max(a/ =)} = [inf(a/ ), sup(a/ ).
There is a good system for for (B [a, a).

Proof. By induction. If a = {a}, then it is trivial. Assume |a| > 2. Let
¢ € Pred(a), at = {x € alx > c}, and @~ = {x € ajx < c}. Note that g
is the lexicographic sum a~ + at, and 4% has a first element (the successor
of ¢). If a~ has no first element, then we must add one, namely inf(a/ =).
Suppose that (B | a*,a*, A*, y*) and (Bla~,a ,A", y~) are good. Let
(Bla,a,A +A%, y), where y is defined in the following way: for b€ B [ a,
wehave b= (b—, b*) € B(a~)xB(at) andweset y(b) = (y~(b7), y*(b*)) €
B(A~) x B(A*) (that is identified with B(A~ + A*)). Trivially, (B a, a,A™ +
A*, w) is as required. So, it suffices to prove that Claim 3.6, whenever 4* = a
or d— = d. We prove the case at = a. The case @~ = a4 is similar: but
note that if a/ = has no first element, then a = (a/ =) U {inf(a/ =)}, and the
algebras

Bl(a/%) and B ((a/¥)U({inf(a/ 2)})
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are isomorphic. 4+ = a satisfies: d has a first element, denoted by e, and for
every element x of 4, we have x = e.

Case 1. a/ = has a last element e*. Hence et = ¢ and 4 o (a/ =)
—{e*} =[e, e+) (that is the case of the example which follows from Theorem
1). Let b € B be such that & C b, andrkg;,(15;,) = rkp(b) < rkp(1p). Let

B a {cnalce B}. Notethat B|a=(B|b)|a. Weregard B | a as a
Boolean algebra. By the definition, B [ @ is a homomorphic image of B | b.
From the fact that for every superatomic Boolean algebra 4 and every ideal
I of A, we have rk(A4/I) < rk(A4), it follows that rk(B | @) < tk(B | b) =
rkp(b) < rkp(1p) = rk(B). By the induction hypothesis there is a good system
for (Bla,a).

Case 2. a/ = has no last element. Hence d@ = a/ =. Let (€,)a<sc be a
stricly increasing sequence, cofinal in d@. We can suppose that ¢y = e, and
eg = sup{e,Ja < B} for every limit ordinal f < o (because 4 is relatively

complete). Let a < o be given. Let b, € B be such that rkg(b,) < rkz(lp)

and [e,, €,4+1) C b We set B, d—efB [ [€qs €a+1). Since Lemma 2.5, we have

rk(B,) < tk(B | b,) = rkp(b,) < rkp(lp) = rk(B). Applying the induction
hypothesis to (B., [€a> €a+1)) , there is a good system (B,, [€4, €at1)s Uas Vo) -
Hence yol[€n, €ar1)] = fa- Let p =3, ta, and y = U{¥ola < g}. We
have Pred(u) = 4. We extend ¥ in an one-to-one homomorphism y from
B | a into B(u): let b€ B. We set: -

Z(b) = U{,ual[ea 5 ea+1) C b}UU{Wa(bn[eaa €a+1))|bﬂ[€a s ea+1) 76 OBn 5 an} .

We must remark that y is well defined, because b is a finite union of half-
open intervals and thus {a < d|[es, €at+1) C b} € B(g), and the sct {a <
albNles, €xr1) # 0p,, 1.} is finite. Consequently y(b) is a finite union of
half-open intervals of x, and thus (B | &, &, u, y) is a good system. That
finishes the proof of Claim 3.6. O o

End of the proof of Theorem 1. Let (a;/ =)r<p be an enumeration of the set
of equivalence classes. By Claim 3.6, for { < 6, let (B | ag, d¢, Aa, > ¥a,)
be a good system. Let A = } ., 45 . Each 1 is an interval of 4. Now,
let y be the function from At(B) into A defined by y(a) = yj (a) where
d; is the unique class such that a € At(B)N B | 4;. Let b € B. First,
suppose that rkp(b) < rkg(lp). There is a finite subset {ag, di, ..., dn—1}
of equivalence classes such that b C J{ax|k < n}, follows from Lemma 3.2.
We set w(b) = U{wa (b Nax)k < n}. Now, because I(B) = Iusz)(B) is a
maximal ideal of B, if rkg(b) = rkp(lp), then rkz(—b) < rkp(lp), and we
set w(b) = —w(—b). The fact that y is a one-to-one homomorphism from B
into B(A) is a consequence of the following obvious result:

Claim 3.7. Let B’ and B” be two atomic algebras and y be a one-to-one
function from At(B’) onto At(B”). We suppose that, for each b € B’, there
is an unique element of B”, denoted by w(b), such that for every a € At(B’),
we have a C b if and only if w(a) C x//(b) Then y is a one-to-one homo-
morphism from B’ into B, extending y . This finishes the proof of Theorem
1. O
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