17 7/)

Informal and Formal -Correctness Proofs for Programs

'(For the Critical section Problem.)

Abstract

Uri Abraham and Shai Ben- -David :
Ben Gurion University and Cornell University; Toronto University

1. Introduction. Proofs in mathematics can have different

aspects, but two are prominent. The first one, of course, is that
a proof is used to validate a statement - to establish a theorem.

Yet there night be another aspect of a proof: A proof is a way to

convey ideas and to explain Why things work. 50, for exmaple,

when we see a proof of-Pyﬁhagoras theorem not'bnly are we
copvinced that the theorem holds, put we also learn something else
about triangles; we have 2 better understanding of_right angle
triangles. Usually, there is no sharp distinctioﬁ between those
twé aspects and they are blended together - sometimes with\more
emphasis onn the one than on the other. So when a mathematician

i
wants to explain the idea of a proof he or she do not present a
formal proof, put outline a description of a formal proof or of
what can be_transformed into such. Usually, arguments are given
in order to explain and to communicate, and sometimes examples are
given or pictures. Then, if more details are needed, they are
provided; until, at least in theory. a complete formél proof can
be given - one which is the counterpart of the informal one.

Unfortunately, the situation does not seem to be like that in

computer science. The proofs which we have seen for showing the

-1 -




-

correctness of parallel algorithms are hard to follow. A&nd very e
often even after the sequence of statements which constitute the
proof have been followed line by line, the algorithm remains
engimatic as before. (See for example the interesting Manna and
Pnueli [1984].)

— We feel that there is a need for a way to present intuitive
and informal ﬁroofs for program correétness, and in a form which

can easily be altered to a formal proof if need arises. The frame

for correctness proofs should be large and flexible enough to
allow both informal and formal proofs. We.db”ﬁbt.héﬁé.én answér
to this need and our aim is moderate: to explain by means of some
examples what we meaﬁﬂby "an intuitive proof" and how a solid
formal background can support such a proof. The examples we give
are taken from therarea known as "the critical section problem".
The algorithms we inspect are simple and complex at the same time.
Simple in that a few lines suffice to describe them. And complex,
because when several processes execute simultanecusly it ié
difficult to imagine and contrel all possible interieavings and
connections between the processes. So one would like a general
guiding idea to make sense out of this apparently arbitrary

movenent.

2. The Critical Section Problem. This problem arises when

several processes that run in parallel, or in a time sharing
environment, want from time to time to access a resource {such as
a printer) that cannot be shared between two processes. The

solution consists of a protocol (a piece of a program) that each



" process has to execute before and after entering this Teritical

section", and such that the following hold:
5.1. & safety property: No two processes are at the same time
in their critical section.
5.2 A liveness property: {for éxample) any process that wants to
abcess the critical section can do that after some time.
We shall concentrate here only on the safety property and the

case of only two DProCesses.

_Let us describe Peterson's algorithm for two processes A

and B. There is a giobal variable that can.be read and written
by any of the two processes and which can hold any of the two
values: A or B. We call this global variable Last_visited.
Initially‘it can be of any wvalue. Then there are two boolean
variables,_A_WantsJTo_Enter and B Wants_To_Enter, which are
initially félse. They can be read by both prdcesses but are
written only by A _and B respectively. "Also, each procéss
maintains a local variable for any global one. ITf X iz a global
variable then we let (X)A and (X)B denote the local vafiables.

Now the protocol for process A is given:

EO part of program which does not involve the .critical section;
81 A Wants_To_ Enter := true;

e, Last_Visited := B;

23 wait until

~1

(*) (B__Wants_To_Enter)A = false or (Last_ViSited)A =B

84 critical section;
65 A_Wants_To_Enter := false;
¢, go to €qi

Process B algorithm is symmetrically obtaiﬁed.




Observe that line 83 is not an atomic operation, but in

fact can be decomposed in the following way:

tq 4 (B__Wants__To__Enter)A 1= B_WantsﬂTodEnter;

¢ p (Last_] Visitad)A;:= Last Visited;

83 3 compute the truth value of (¥)

K I1f the result in 3‘3 is false then jump to 83_1;

Now we want to texplain® Peterson's algorithm in the

following intuitive térms. For process A condition (*)} for

entering the critical*section is equivalent to the conjurnction——of
statements 1A and 2A

enter the critical section and it knows

(1A) Process A wants to
. %

that, no matter how the programs develop, provided it does not

reset its wish to enter, then if process B executes its protocol

it finds (or will find) that A wanis to enter.

(2,) A knows +hat as long as it still wants to enter the critical

A

section, then (1B) is false. (1B is the eguivalent of .‘LA with &

and B interchanged.)

Iin order to prové that this is indeed the case we must éet an

appropriate frame in which the terms "A know" etc. can be given a

clear and definite meaning. We outline this in the next section

for a time sharing environment.

3. The Model. The setting is for two processes A and B working

in a time-sharing environment, and running some fixed programs. A

state is defined 1O be a description of all relevant information

holding at a particular moment. So & state includes the values of

all variablés, the places of the program counters (of the

different processas), and which of the processes Was lastly




.

2

executing. PC(A) and PC(B) are the values of the program counters

-

of A and B. These values are in [éo—eej
On the collection of all states we can define the following

relations: (s and t are states)

t is a successor of s = execution of a single step can lead
from s to t.

s.< t (t develops from s) = there is a computation of =zero or

more steps that leads from s to t.

SiRAS = states '51‘ and s, are 1ndlst1ngulshable by process

g8

A, i.e., have the same values for the local variables of A.

isBs2 = as above, but for B.

For any statement ¥ (in fact we shall use only very simple ¥'s)

al<? s, = there is a computation taking state S, into S,

{in zero or more steps) such that all states involved
satisfy Y.

There is an initial state from which all states are developed.
Now to these aCCESSlbllltY relations there corresponds the

y, A, (for R

modal operators B, (for R B sl

a D< and 0¥ (for <P).

A

The meaning of these operators and the definition of the
satisfaction relation s F ¥ is done as usual for Kripke's

models. The intuitive meaning of sk O,¥ is "in state s,

process A Knows that ?". (See ' o)
Now we can write down the precise formulations of 1 and 2.

(iA) A_Wants_To_Enter = true and Op 0A Wants_To_Enter = true (if

PC(B) € [83 1—94] then (A_Wants_To_Enter)B = true).

({2 o DA_Wants_To_Enter = true(ﬂ(lB)).

A) A

With this background we can prove the following:



Theorem. For any state S, if process A (or B) is in 83 g then

£y 3 :
{(*) is equivalent to 1A and 2A (1., and ZB).

B
The proof will be given elsewhere. It is easy to see that

the theorem implies the safety property. We feel that this

approach explains intuitively as well as rigorously Peterson's

algorithm (but of course it does not diminish:the ingenuity taken

to find that algorithm):




4. On Lamport's Axioms. ' |

In accordance with our aim, we prefer to argue with meodels
and relations father-fhan through axioms. However, in order to
ensure that a formal proof is always present, it is good to have a
- complete set of axiom%. For then what is frue'can also be derived
from,the axioms.

Now Lamport 11985, Part I] shggested some axioms and frame to

argue about concurrent processes. We shall add an axiom and prove

that the resulting set is complete. But firéf we presént some
definitions and notiohs of Lamport.

‘A realization1 for a system execution consists of a partial
(irrefle#ive)'order, <, defined on a set P and of a collection
¢ of non empty subsets of P. The following two relations are
then defined on C. _

(1) x - v = (¥Yp € x)(¥Yqg € ¥) P < 4.
(2) % -——> vy = (3p,g){p € xand q € Y and P < d4).

We want to find axioms for the theory of models of the form

{(C,»,—~—->) arising as above. Lamport suggested the following
axions Al to A4 (and other axioms which do not concern this
note). We suggest to add A5 as well. (It is easy to see that
A5 is not a conseguence of Al—A4.)

(Al) The relation - is an irreflexive partial ordering.

(Az) If . - B them A -——> B and B -/-> A.

(a,) If A B ——->¢C or A -——>B 4 C them A ---> C.

'lLamport uses the term model .




(A4) If A4+ B —~—> C 4 D then A - D.
(A5) If A ——=> B o C —~-> D then A -——2> D.

Now we define, as z_aﬂﬂpondoes, a system execution to be a

structure with abstract relations ¥ = (8,+,~——>) satisfvying
axions Al to A5. 5 representgtion for such a structure is a
pair p = (¥,(P,<,C)) where is a function defined on S with

values in C, and_ (pP,<,C) is a realization such that the

following holds for any X,¥ € s.

m

(1w vy (in ¥) = p(x) o ply) (30 ©).

(ii) ® -—-> y & p{x) ——=> ply).

Theorem. Any system execution has a representation.

o

Proof. So let ¥ = (S,»,———>) be a EYStem execution (i.e., an
abstract structure satisfying axioms A1 to As). We need first
three definitions: Let R = (P,<,C) be any realization. {So <

is a partial ordering and C ¢ #(P)-{$}.) Let u:S - C be a

function.

Definition. (a) We say that (@,R) is almost a representation
of ¥ iff |

(1) x o ¥ => p(x) - #(y)

(2) % -——>y = p(xE) -—=> ply)

(b} We call (u,R) a partial representation iff

(1) x o y => p(x) » #{y)
(2) x ——=> vy <= p(x) -—> ply}
(c}) We say that a representation (or almost or partial

representation) is pairwise disjoint if

x # y in § => p(x) N oply) = 6.
Now {for clearness) the construction of a representation for
¥ ‘is done in'two stages: In the first stage an almost
mrépreéénféfish‘ié obtained, and then a representation.

-B—




" Definition. Let p

i = (pi,Ri), i=1,2, be two partial

representations fer p. (So Ri = (Pi,fi,ci) and pi:S - Ci')

We say that P extends P (pl < p,) iff:

(1) P, ¢ P and <, < < {(i.e.

1 £ Py 1 5 » a <, b idmplies a <, b).

1 2
(2) For all =x e s, pl(x) - y2(x).

For any system execution ¢, there is the identity partial
representation. It is defined as (u,(S,-,singletones) where

H(x) = {x}.

wa, let- p = (p,(P,<,C)) be any pairwise disjoint partial

“———representation. We Want to extend P to an almost representation

p*. For any X,y € S with x --~> vy, add to P two new elements
a = a(x,v), b = b{x,y}. Let P' be the set thus obtained, and
define:

H'(®) = u(x) U {ala = a(x,y) for some v such that x —-——> vi U

U {b|b = b(y,x) for some y ---> x}.
Now, let <* beé the extension of < obtained by adding all
relations a(x,v) <* b{x,yv) for x —-——> vy. And let <** be the
relation obtained by adding to <* all pairs in p‘(x) x'p’(y)
when 2 -+ vy in S. Finally, let <' be the transitive closure
& i

of <

Claim. <' is irreflexive partial order on P'.

ok

Proof. We make first some observations on <

: £
(1} If a < b, a € p{u) and b € u(v), then if both a and b

are in P, then a < b. If exactly one of them is new, then

U+ v. And if both are new then u ——-> v.
* % % % .
(2) If a< b < c are in P', and -u, v, w are such that
a € u(u), be p{v) and c e u{w), then either u 4 v =——> w. or
un ~——> v 4‘W..
_9._




% %k * %
(3) Hence assume D { g, and let p = Py < B, - < Ph.q = @
* ¥k
be an increasing seguence in < of minimal length going from p

to g. This sequence does not contain three consecutive members

of P. So if we let W S be such that P; € y(wi), then the

wi's are coﬁnected by arrows that alternate: - and -—-——>.
Now to show that <! is irreflexive, we have to prove that
*® ¥
there are no cycles in < . If there was a cycle, then pick one
. R 1 k& EI S )
of minimal length: p = py < see < P,_q = P- Let w, € 5 be
with__pi € p(wi). n = 2 is not possible. We can assume that the

first arrow, from D, to py is =.

Case 1. n is even. Use A, to get w_ -+ W For example, if

4 0 n-1°
n = 4 then wo -+ Wy —-—> W, o Wq and then* WO -+ W But this is
a contradiction, as wW, = W .
¢ n-1
Case 2. n 1is odd. Then by &,, Wy = W, - But we also know that
W, o ~77F W, = g This contradicts A,.

¢laim. ', P', <' form an almost representation.

Proof. The only nontrivial part is to show that p(x) ——=2> ul(y}
implies =x ---> y. 5o assume P € uix), g € p{y) and p <' d.

k%
Pick a minimal length seguence increasing in < from p to 4g.
P = Py < cen € Ph-1 = g. Let Wy € 5 e such that
p; € y(wi). So- Wy = X and W, = Y-

case 1. The first arrow is -+. S50 Py ~ Py- Then use of A4 and AB

gives that W, ———> W g S X ———> Y.

Case 2. The first arrow is --—>. Then use of Ay and A, gives
that w, W g For example, if Wy - W, s W, ——=> v,

- Wy then w, -—=> W, by A5, and then also w, f"—> Wy by AS.
Again x®x ——2> Y.




Now we want to show how to get from an almost representaticn
to a_representation for ¢¥. So let p = (u4,{(P,<,C})) be an almost
representation which is pairwise disjoint. ' What could stop p
from being a.representation is that u(x) - My} can hold fﬁr
some %,y € S with x 4-y.__$p define P' we add to P ﬁew
members a{x) for every x € S. We define -p'(x) = u(x) U
{a{x)|x & S}. )

, *
Now we define < by adding to < the following relations:

for any u,v € 5 such that u -+ v add

g {u) x pt(v}.

*
We let < be the transitive closurs of < . Then we have

to argue that < ig irreflexive and that we get a representation
& ’ ‘

{ur(Pt,<',C')) for ¥. All is a consequence of the following

=

obhservations:
* o : . .
(1) If a < b, aep(z) and b € pu(w) and a or b is a new

element (not in P), then =z - w. If both are in P then a < b.

ES ¥

(2) Suppose that p <' g and let Py = P < Py - < P4 =d
he a.minimal length sequence. 3Say W, < S are such that

.Pi = y(wi). There are no‘th:ee consecutive members of P in this
sequence. But also theré are no three consecutive new members.
Because if ai, ai+1, ai+2‘ are new, then wi 4‘wi+1 - wi+2,-and
SO Wy - Wi, and hence a; <* 2.0 and the sequence could be
shortened. It follows that fur any if Wy, Wi, OT W —_—— Wiiq

and these arrows alternate.

{3) Suppose p <' g and Py Wy are as above. We shall prove

by induction on n that Wy —mm> W and that if beth p and
g are new, then wo - wn*l' For n = 2 +*his follows from {1)
above. So now n > 2. If either P,y ©°T Py, are new, then

_31o

| ey




W - W and as W, ——=72 W, o by induction, Wy ——> W g by

n-2 n-1' Q n- -
Ay 1f both D, _4 and p,_, B&F¢ old, then P,_g is new; SO
W, ——=> W__a * Wn_o ———> W and A4 implies Wy —772 Wpog° Now
it Py and P4 are new, then Wgq = W, and Wo_, & Wn_1° But
wl'__;; wn_é by induétion; .SQ A4 implies Wj ;.dn—LT |
Now, to-show that <° is irreflexive we should prove that
<* .has no cycles. But a cycle mﬁst contain a new element, and SO

we can assume that it begin with a new element

* ™ . . \I
Po < Py - < Pn—1.= Pq- BY (3) apove W W A |
contradiction. k
|

_To prove that pt 1is = representation, W& have to show that i

. - |

(1) wm'{x) ~ H’ (y) dimplies ¥ =+ ¥

(2)  p' (%) —— p{(y) jmplies X i—> y. [(The pther directions
are trivials.) | |

To prove (1) observe that if -(x - ¥) ahd xi# v then #‘(x)
and p'(y) contain two new elements P € ut (%)} and .q = y'ky).

so by (3) ahove -{p <' g)}. For (2), assume P € y'(x) and g €

pr{y) and p <' 49- Then by (3) above, X —=2> ¥-
References
.. Lamport [19886]. 0n interprocess communication, Part I,

Distributed Computing {1986}, 1. pp.77-85.
7. Manna and A. pnueli [1984]. Adequate-proof'principles for

jnvariance and liveness properties of concurrent programs,
Science of_Computer‘Programming {1e84), 4, pp.257-289.

_12_

et



