
Miscellaneous Programming Issues

This section contains:

• High-level language support

• Co-routines and introduction to processes

• The process of assembly and linking

• Monitors and debuggers

1



High-level language support

In a high level language, we have storage types:

• Global variables

• Local variables

• Function/procedure arguments/parameters

• Returned values

• Dynamically allocated data

Global variables: each variable can have a con-
stant address.

int x = 40;

In assembly language:

X DD 40

Address of X in memory - determined by the
location counter at the time the line is pro-
cessed.

2



Local values and parameters: need special names
to avoid collision.

x=foo(x,&y);

foo(int a, int * b){

int c = *b;

return (c);

}

Can use names: foo a, foo b, foo c

Like return address at constant address -
recursion impossible

Most languages have activation frames

3



Activation frame allocated per function
activation.

Activation frame contains:

• Return address

• Other machine state (flags)

• Function arguments

• Local variables

• In some languages, nested scope

Simple solution - activation frame on stack

4



Calling conventions

Scheme for activating a procedure is called a
calling convention.

For assembly language can use:

• Arguments in agreed registers

• Returned values in registers (or even flags!)

Advantage: in many cases optimal speed.
Disadvantages:

• Hard to generalize

• Convention non-portable

Intermediate solution: arguments on stack, re-
turned value in registers.

Advantages:

• Reasonably fast

• Reasonably portable

• Works for HLL with single return value

In fact, used by most C compilers

5



Calling convention for C

Simplest general HLL convention - only call
by value.

Allows for variable number of arguments.

Push arguments in reverse order.
Result: first argument always nearest TOS

Function expecting only k arguments but called
with n greater than k, works OK, without even
being aware of the extra
arguments!

To support nargs, push number of
arguments after left-most argument.

Returned value in registers:

• (Intel 80X86) - AL, AX, or EAX.

• (Motorola 680X0) - D0 for data,
A0 for pointer

• (VAX) - r0

6



Calling function cleanup after return - add
value to SP

Code for calling the function:

sub esp, 8 ; stack align

push dword y

push dword [x]

call foo

add esp, 16

mov [x], eax

7



Called function in C

Saves registers used in function

Local variables in registers + stack

If available, BP register simplifies access

Intermediate variables also on stack.

To return, transfer value to result
registers, restore used registers, use RET.

Local variables “disappear” (though still on
stack)

8



Called function code for C

foo:

push ebp

move ebp, esp

sub esp, lo ; lo=size of locals

push ebx ; push some registers

mov ebx, [ebp+12] ; get second arg

mov ebx, [ebx] ; dereference

mov [ebp-4], ebx ; initialize c local

... ; function code

mov eax, ... ; return value

pop ebx ; pop registers

mov esp, ebp

pop ebp ; "leave" instr.

ret

9



Other High Level Languages

Common example - PASCAL

Different argument categories:
var arguments

Can be implemented by passing pointers

Push starting with left-most

Called procedure can clean up:
(Intel 80X86): RET n

Other parameter passing:

• Optional arguments

• Keyword arguments

10



HLL support instructions

Motorola 680X0

LINK An, #d ; Push An, move SP to An,
subtract d from SP.

UNLK ; Move An to SP, pop An.

Intel 80486

BOUND reg, addr
Compare reg against bounds
INT 5 if out of bounds
addr and addr+2 (or 4) contain bounds

ENTER framesize, level

LEAVE

11



Co-routines and “Processes”

Coroutine1::

DoSomeWork();

Resume(Coroutine2);

DoSomeMoreWork();

Resume(Coroutine2);

exit();

Coroutine2::

DoSomeWork();

Resume(Coroutine1);

DoSomeMoreWork2();

Resume(Coroutine1);

exit();

12



Using several stacks

Some processors have multiple SPs

Motorola 680X0: USP, ISP, MSP
Also, any An can be a SP

In general case can save SP,
then re-load SP (Intel 80X86):

mov [spsave1], esp

mov esp, [spsave2]

13



State of computation (process)

For an executing program, state is:

• All registers (including IP, SP, PSW)

• Local variables and arguments

• Other variables (global)

• Other state (files, devices)

If all state is saved, program can be suspended
and then resumed without adverse effect.

We ignore, for now, global variables and IO
state

State = all registers + the stack

Code that can run independent of other code
(including copies of itself) is called
re-entrant

14



Reentrant code

Does not change global variables and IO state

Local variables and other local state
separate for each activation

Using stack for activation frame, code that
changes only local variables is reentrant

As a special case, reentrant code supports re-
cursion

15



Implementing co-routines

Each co-routine has its own stack.

Co-routines are initialized, then can be
SUSPENDED and RESUMED at any point.
(Synonyms: co-init and co-call)

Co-routines can call procedures normally.

Keep a struct for each co-routine, with:

• Initial entry point

• Stack pointer

• (Optionally) base pointer

• (Optionally) initialization flag

• Actual stack

16



Data structure for coroutines

numco: dd 3

CORS: dd CO1

dd CO2

dd CO3

STKSZ equ 16*1024

CODEP equ 0 ; constant offsets

FLAGSP equ 4

SPP equ 8

; Structure for first co-routine

CO1: dd CO1code

Flags1: dd 0

SP1: dd STK1+STKSZ

STK1: resb STKSZ

17



Code for CO-INIT

; Assuming EBX is pointer to COn

co_init:

pusha

bts dword [EBX+FLAGSP],0 ; initialized?

jc init_done

mov EAX,[EBX+CODEP] ; Get initial IP

mov [SPT], ESP

mov ESP,[EBX+SPP] ; Get initial SP

mov EBP, ESP ; Also use as EBP

push EAX ; Push initial "return" address

pushf ; and flags

pusha ; and all other regs

mov [EBX+SPP],ESP ; Save new SP

mov ESP, [SPT] ; Restore old SP

init_done:

popa

ret

18



Code for CO-CALL (RESUME)

EBX: pointer to co-init struct of co-routine
to be resumed.

CURR: pointer to co-init structure of the curent
co-routine.

resume:

pushf ; Save state of caller

pusha

mov EDX, [CURR]

mov [EDX+SPP],ESP ; Save current SP

do_resume:

mov ESP, [EBX+SPP] ; Load SP (resumed co)

mov [CURR], EBX

popa ; Restore resumed co-routine state

popf

ret ; "return" to resumed co-routine!

19



Process of Assembly and Linking

This section covers the following issues:

1. Macros (outline)

2. Assembly: pass I

3. Assembly: pass II

4. Address fixup tables,
relocatable object files

5. The linking process and executable files

6. Libraries, dynamic linking

20



Macros (outline)

A macro is a re-write rule

A user makes definitions and then uses the
definitions

Macro processor processes data, substitutes
data based on definitions

Macro processors exist in:

• Editors, word processors, and other user in-
terfaces

• Script languages,
stand-alone macro processors (m4)

• High level languages
(example - C pre-processor)

• Macro-assemblers (example - NASM, MASM)

21



Macro definition and expansion

A macro is like a compile-time function!

It is first defined, then can be used.

When a defined macro name is seen by macro
processor, it is expanded

%define STK_UNIT 4

%macro Iamalive 0

push Str1

call printf

add esp, STK_UNIT

%endmacro

section .rodata

Str1: db ’I am alive’, 10, 0

22



The code: Iamalive
becomes after expansion:

push Str1

call printf

add esp, 4

23



Macros with parameters

%macro my_printf 2

section .rodata

Str2: db %2 , 10, 0

section .text

push %1

push Str2

call printf

add esp, STK_UNIT*2

%endmacro

To use the macro in a program:

my_printf 35, "The number is %ld"

24



Expanded into:

section .rodata

Str2: db "The number is %ld", 10, 0

section .text

push 35

push Str2

call printf

add esp, 8

Problem: next use of macro will cause
multiple definition of label - need a local label.

%macro my_printf 2

section .rodata

%%Str2: db %2 , 10, 0

section .text

push %1

push %%Str2

call printf

add esp, STK_UNIT*2

%endmacro

25



Assembler - Pass I

1. Open input file and temporary file

2. Initialize symbol table, location counter

3. Scan input file while:

(a) Perform macro processing

(b) Obey directives: org, db, section, etc.

(c) Add symbols to symbol table

(d) Translate instructions

(e) Continually update location counter

(f) Save locations where labels used

(g) Write translated code into temp file

(h) Find and list errors

4. Write final symbol table and relocation table
(fixup table) into temp, close files.

26



Assembler - Pass II

1. Open temporary, object, and listing files

2. Read symbol and fixup tables

3. Scan tranlated code, fix up addresses by us-
ing symbol table

4. Find and list errors (e.g. jump too far)

5. Generate listing

6. Write fixed code into relocatable

7. Write symbol table (publics) and fix-up table
(externs) into relocatable

27



Linking and Loading

Linking - a 2 pass operation. In pass I:
Open all relocatable objects and libraries
Resolve all externs - with other objects and

libraries.
If no errors (unresolved externs, duplicates),

create final symbol table (MAP).

In pass II, use fixup tables to fix all references
in code to extern symbols.

Merge all fixed code (inluding some of
library code) into a single executable file.
Executable contains:

• Code and initialized data

• Program entry point

• Size and location of code and data

• Optionally, symbol table (for symbolic de-
bug)

Loading: read executable file, place code and
data in appropriate memory locations.

28



Monitors and Debuggers

Monitors allow for:

• Loading a program

• Viewing and modifying registers and
memory data

• Running, single-stepping

Full debuggers allow, in addition:

• Disassembly

• Breakpoints

• Trace and watch

• Other source code viewing
(symbolic debugger)

29



Architecture support for debuggers

Some machines allow for:

• Single step mode

• Breakpoint interrupts (80486: INT 3)

• Trace and watch registers

Definition and use of breakpoints:

1. List code address of breakpoint

2. Save instruction of breakpoint location

3. Place a breakpoint interrupt instruction at
breakpoint location.

4. When breakpoint interrupt occurs, restore
original instruction, re-activate debugger user
interface.

Trace and watch registers (80486): DR0-DR3
contain linear address.

Interrupt on execute, or write, or access, to
address in any of DR0 to DR3.

30


