Communication and Error
Processing

Communication is central to computing.
ISO: 7 levels of communication protocol.
Here we discuss basics of low level.

Communication passes through a noisy
channel, which can introduce errors and
erasures.

Transmitter sends data X.

Data X passes through channel, which changes
or erases some parts of X, resulting in a
received data Y.

Errors also occur in memory and disks.

We begin with some error detection and
correction basics.



How to detect and correct errors?

If what we receive is impossible we know
there is an error.

For example - if we know the sender sends
only correct English words, anything else is
an error.

Fixing an error - find closest
legal replacement.

In general, any bit pattern is possible.

Introducing redundancy allows detection
and possibly correction.

Trivial example: send everything twice.

Anything where we do not get the same
thing twice must be an error!

What to do if there is an error?

Simple solution: ask for re-transmission.

2



Error correction

Alternately, allow correction at receiver:
Send everything 3 times...

Decide by majority (which is closest match).
Erasure: easier to fix than an error.
What if there is more than 1 error?
Can use even more redundancy...

Problem: very ineflicient!



Error detecting and correcting codes

Much better efficiency when using error
detecting codes.

Simplest efficient error correcting code:
parity

Compute p, parity of bits of X (e.g. p =
number of bits of 1 in X, mod 2).

Send code word
C = X concatenated with p

Receive Y - which 1s assumed be same as
C except, possibly, error in 1 bit.

Error detected by finding parity of Y:

Even parity - no error.
Othewise - error.



Hamming distance between two words

d(a, b) = number of 1 bits in XOR a, b

Distance of code - minimum distance
between all pairs of code words.

For parity code, d=2. Any code with d=2
can detect 1 bit error.

With parity, can fix one bit erasure.
Example: X=10110, parity 1

Code word C=101101 (last bit is parity).
Receive Y=1U1101 (second bit erased),
Erased U bit = parity of other bits.

To correct an error, need at least d=3.



Hamming Code

Simple code with d=3
With » parity bits, word size n = 2" —r —1.
For r = 3, we have n = 4 data bits:

pg = X3 ® X7 @ X
p1 = X3 d X9 @ X
pp = X3& Xo® Ay
In receiver, recompute parities from Y.

Compare to actual values of py,p1,pgin Y.
XOR of bit vectors is called syndrome.

Simple algorithm - order bits:
Xg Xo Xy pa Xg p1 Ppo

Non-zero syndrome is position of error bit
(rightmost is position 1).



Beyond Hamming Code

Can add 8th bit, overall parity: d=4

Will correct 1 error, and detect 2.
(or fix 3 erasures)

k-dimensional-array codes: d=k+1

011
1 100
1 010
0 101

Codes with any required d available.
Efficiency improves with code size.

Encoding, and esp. decoding complexity
may be high.



Parallel Communications

Used for fast data transfer - short dis-
tance.

Wastetul in hardware - esp. wires.
Requires handshake to synchronize.

Control signals to latch data, ready signal.



Serial Communications - USART

Use of bit-wide com. saves wires.
Conversion: parallel to serial, and vice versa.
Usually done by special hardware.

USART allows several communication rates.

Can also encode/decode with simple codes.

Other possibilities: MODEM, ETHERNET.



Signal level: RS232, RS422

RS232: common (early) terminal standard.

Signal is +/-12V

Asynchronous: start bit,
1 or more stop bits.

Other standards: current loop, differen-
tial.

Hardware/Software Handshakes

Optional hardware hand-shake: DSR, CTS
Software handshake: “X-on/X-off”.

Usually done by sending “CTRL S” char-
acter for X-off, and “CTRL Q" character

for X-on.

10



