
Main Memory is : an ARRAY OF BYTES
 Addresses: 0 to 0 xFFFFFFFF
 (machine dependent)
A Pointer is : AN ADDRESS IN MEMORY

Data is : contents of some area in memory.
Code is : contents of some area in memory.

(Virtual) MEMORY MAP of a process

Basic Principles:
Memory Organization

(Function call) STACK: a region of memory.

Storage for:
Local variables
Function arguments
Return address

Calling convention: language dependent.
For C: push argument VALUE from right to left.

Example: f(a, b, c);

Basic Principles: Stack

f locals
temp

ret addr

a

c

bhigh address

SP

CPU contains some registers:
Program counter ("pointer")
General purpose registers

 (used as data or pointers)
Internal status/control registers

Structure of registers: very machine
dependent (more in architecture course).
Structure of memory: (almost) machine
independent (as seen from most HLL)
C programming language: allows easy access
to "raw" memory.

Basic Principles: CPU Registers

Computer programs (compiled code):
1 Start as high7level language like C.
2 Run compiler to generate binary OBJECT CODE

file.
3 Linkage editor ("linker") combines OBJECT and

LIBRARY files to create binary EXECUTABLE FILE.
4 Excutable loaded/mapped into main memory by

PROGRAM LOADER and can then run.
5 Additions: dynamic linking/loading.

Operating system provides SYSTEM SERVICES to a
running program through SYSTEM CALLS.

Basic Principles: Programs

NOT same as window manager and/or
command interpreter.
Command interpreter is a USER
program, can be either:
1 Command7line interpreter.
2 Windows point7and click interpreter.
Operating system provides basic
services:
1 Process scheduling
2 Memory management
3 Communications
4 File system
5 Other device access
In UNIX/LINUX most things visible
as "files".

Basic Principles:
Operating System

C Programming Language

1 Basics.
2 Main differences from Java.
3 Data and storage types, pointers and

structures.
4 Functions.
5 Input7output in C (or lack of).

C Language � Basics

Simple example program blah.c:
#include <stdio.h>
int i = 1;

main() {
 printf ("%d There is no magic\n", i);

}

Includes:
Preprocessor commands
(Global) Declarations
Functions

C Language � Basics

Compiling:
 gcc blah.c
Creates (eventually) an executable file.
(called "a.out" by default).
To learn on your own: command flags
(e.g. 7o).
Steps:
1 Preprocessor+27pass compiler
2 Linker (link with C stdlib+init)
For better control over multiple program
files (re7learn on your own): make files

C vs. Java

1 Compiled, not interpreted.
2 Useful pre7processor.
3 No "magic" objects.
4 No garbage collection (explicit malloc /

free).
5 WEAK type system.
6 Can access (almost) anything using

POINTERS.
7 Very simple semantics (direct

translation, very efficient).
8 No IO as part of language (!)

C Data and Storage Types

Basic data types: (define before use)
 int x;
 char y;
 unsigned char c;
 float BloodyLongVarName ;
 double Whatever ;
 char * p;

Structure definitions and typedefs:
 typedef struct element {
 struct element *next;

int ID;
char name [NAME_LENGTH];

} element;
element my_element, elements[4];

my_element.ID = 666;
elements[0].next = &my_element;

C Data and Storage Types:
Storage

C storage types:
 Global variables:

 Define outside functions.
 Constant memory address.
 Names used across files.

 Local variables:
 Define in functions (at
 beginning, not middle!).
 Allocated on stack.

 Static variables (NOT like Java)
 Heap (dynamic) storage:

 Allocated by library functions and
system calls.

C Data and Storage Types:
Pointers

Pointers: contain a MEMORY address.
Definitions:
 char *p; /* Pointer to char */
 char (*f)(); /* Pointer to function returning char */
 int *f(); /* Function returning pointer to int */
 On 80X86/LINUX: 32 bit number
Access through a pointer:
 *p = 3;
 Next7>ID = 8;
 (*f)();

Operations on pointers:
 if(p == q) { exit(0)};
 p = p + 1; /* increment by size of... */

"Address of" operator:
 f = &main;
 p = &c;

C Data and Storage Types:
Pointers and Casting

Consider:
int i=2;
char c = 5;
float num;

"Automatic" conversion:
 i = c;

 Forcing conversion casting:
 i =((float)i)/5 * c;

Especially used for pointers:
 p = (element *) malloc (sizeof (element));
Can be used to (deliberately) "cheat":
 i = num;
 i = *((int *)(& num));

Or even:
 i = *((int *)(&main));

C Data and Storage Types:
"Strings"

Strings are NOT a true C data type.
Implemented as: array of char.
 char my_ str[] = "There is no magic";

Convention: NULL TERMINATED string.
 (NULL is 0).
Convention used in most standard library functions,
such as open, strcmp, etc.

IMPORTANT: "char"s are simply
short, 1 byte integers.
They can REPRESENT characters
if we so wish, using, e.g. ASCII
(the default), or ANY OTHER
representation.

Functions in C

All code in C is in some function.
 (But one CAN "cheat"...)

main() is the function called by
INIT after program is loaded.
A function receives arguments
BY VALUE, and (possibly) returns one
value.
Function PROTOTYPE:
 void main(int ac, char *av[]);

Types LOOSELY checked.
Functions definition is FLAT.

Functions in C

Arguments to function:
foo(a, b, c);

Pushes COPY OF VALUES onto stack starting with
rightmost.

Called function can access LESS:
 foo(int a, int b) {

a=5; /* Changes LOCAL copy */
return(a+b);

 }
Works perfectly OK if it passes the compiler (e.g. in
different files).

Variable definitions at BEGINNING of
function!
 foo() {

int x, y=4; /* local variables (stack) */
 static int z=3; /* single storage inst */
 < function code>
 }

C language has NO defs. for I/O
Use: system calls + stdlib funcs.
(stdlib functions use system calls)
 int fd, size, count, mode;

char buf[BUF_SIZE];
 fd = open("filename", flags, mode);
 size = read(fd, buf_addr, count);
 close(fd);

 Default file descriptors (UNIX):
 0: standard input
 1: standard output
 2: standard error

Also available 7 stream functions:
 FILE *f;
 f = fopen ("filename ", "rw");
 printf ("Debug: just before crash?");
 fflush(stdout);
By default, BUFFERED IO.

(Lack of) I/O in C

