
Computer Architecture
Assembly Language

Computer executes a PROGRAM stored

in MEMORY.

Basic scheme is - DO FOREVER:

1. FETCH an instruction (from memory).

2. EXECUTE the instruction.

This is the FETCH-EXECUTE cycle.

More complicated in REAL machines (e.g.

interrupts).

FETCH EXECUTE

Block Diagram of a Computer

CENTRAL

PROCESSING

UNIT

(CPU)

MEMORY

INPUT-OUTPUT

(I/O)

Refined Block Diagram

CENTRAL

PROCESSING

UNIT

(CPU)

MEMORY

INPUT-OUTPUT

(I/O)

DEVICE DEVICE

Data path

Contains: registers, program counter,

ALU, and address/data interconnections

or BUSes.

Registers (Accumulators)

Basic operations: WRITE and READ.

Important properties: WIDTH (in bits)

and ACCESS TIME.

Sometimes - other operations possible

(e.g. shift, compare, increment, mask).

Most CPUs have 1 to 32 registers.

REG 2k-1

REG 0

REGISTER

FILE

.

.

.

Flags

Each FLAG represents a BIT of

important information:

MACHINE STATUS (error, interrupt, mode)

COMPUTATION STATUS (carry, overflow,

zero, sign)

Usually also ``packed'' into a special

``register''

Arithmetic Logic Unit
(ALU)

Performs actual computations:

Arithmetic (add, subtract, multiply, negate)

Logical (bitwise or, and, invert)

Example: bitwise and
1 0 1 0

0 1 01

0 0 1 0

Instruction Sequencing

Instructions usually fetched from

consecutive memory locations.

Use ``incrementer'' to advance PC

Except for JUMP, CALL, or INTERRUPT.

PC
MUX+m

TO BUS

INTERFACE

Bus Interface

Data

Interface

Address

Interface

Control

Interface

MMU

To the

Cache

Internal Bus

32

Data

32

Address

Control

BIU

To the Prefetch

Unit

Microprocessor

S
y
s
te

m
 B

u
s

To the

CU

Control

Generates control/timing signals

Selects OPERATIONS performed in:

• ALU - select function

• Register file - which to read, where to

write

• Program counter - advance or jump?

• Bus control: memory address from

where? Read or write?

• Interrupts

Performance

Timing is based on a CLOCK CYCLE or

FREQUENCY (e.g. 4GHz).

Every action takes 1 or more clock cycle.

Main memory access usually more than 1

cycle - memory ACCESS TIME is critical!

EXECUTION contains several steps - may

require MEMORY ACCESS.

Performance depends heavily on:

• How many instructions to execute

program or function?

• How many cycles per instruction?

Thus, PERFORMANCE ENHANCEMENTS:

instruction prefetch, cache, pipelining, etc.

Programming in Assembly
Language

ASSEMBLY LANGUAGE is (almost) 1

to 1 with MACHINE CODE

Assembly language constructs are:

• Symbolic version of machine

instructions

• Labels (standing for constants and

memory addresses)

• Pseudo-operations

ASSEMBLER converts program to

object file in 2 passes:

• Pass I: translate symbolic instructions

into binary code, create SYMBOL

TABLE of labels.

• Pass II: translate labels into

(relocatable) addresses, fix binary

code, and create object file with

relocation information.

