Machine and Assembly Language
Principles

Instruction Categories

e Data transfer instructions

e Integer arithmetic and logic instructions
e Shift and rotate instructions

e Control transfer instructions

e Bit manipulation instructions

e System control instructions

e Floating point instructions

e Special function unit instructions

Data transfer instructions

Types of transfer:

e register to register
e register to or from memory

e memory to memory

Multiple addressing modes available for
mMemory
Size of operands usually 1, 2. 4, or 8 bytes,

Some machines allow moving MULTIPLE data
1tems 1n one Instruction.

e [ixchange instructions
e Push/pop multiple operands
e String copy and other operations

e Special move instructions

Multiple Data Transfers

Exchange - one instruction to exchange 2
operands

Example (80X86): XCHG srcl, src2

Otherwise would require 3 instructions

In some machines this operation is ATOMIC

Move multiple - move to or from several
registers. Examples:

e (80486): PUSHA, POPA - to push or pop all
general-purpose registers

e (680X0): MOVEM ea, list of registers
(implemented as a mask in machine code)

Saves several instructions on saving sets of reg-
1sters

String operations and special moves

(nearly) UNLIMITED data size.

Uses registers for source and destination point-
ers

Uses count registers

Examples:

e (80X86): (REP) MOVS
o (S0X86): CMPS
e (VAX): Move string

Conditional termination possible (REPNZ in
80486)

Translate while moving.

e (830X86): XLAT ; AL gets [EBX+AL)]
e (VAX): translate string using table

Move to/from control registers

4

Arithmetic, logical, and shift

Seen In exercise sessions - how to extend?

For example, need to implement long, or even
unlimited precision integer operations.

For ADD, SUBTRACT, SHIFT - use carry
flag , or extend flag

Examples (80X86):

ADD EAX, [X_LOW]

ADC EBX, [X_MID]

ADC ECX, [X_HIGH]

SHL dword [X_LOW], 1
RLC dword [X_HIGH], 1

(MOTOROLA 68000)

ADD.L. X_LOW, DO
ADDX.L X_HIGH, D1

Bit manipulation instructions

Flag manipulation

Flags change as a result of ALU operations
Sometimes can be manipulated directly

Examples (80X86)

e Carry flag: STC, CLC, CMC
e Direction flag: CLD, STD

[nstructions to move to/from flag register:

(30X86): LAHF, SAHF

Push and pop flag register:
(80X86): PUSHF, POPF

Used to save state, but can be used to
manipulate flags:

LAHF

AND AH, mask
SAHF

Bit and Bit Field Manipulation

Individual bit Manipulation - (80X86):

BT dst, bit ; Test bit

BTC dst, bit ; Test and complement
BTS dst, bit ; Test and set

BTR dst, bit ; Test and reset

Bit string operations: scan bits (80X86)

BSF dst, src ; Bit scan forward (f
BSR dst, src ; Bit scan reverse

Bit field operations: compressed structs.
Examples (MOTOROLA 680X0):

BFCLR, (ea)o:w ; Clear bit field
BFEXTS (ea)o:w, Dn ; Sign extend
BFFFO (ea)o:w, Dn : Find first 1
BFINS Dn, (ea)o:w ;: Insert to field

Also has: BFCHG (invert), BFEXTU (zero ex-
tend), BFSET, BETST

Program flow control

Branching addressing modes:
Relative, absolute, indirect, others

Jump and branch: JMP, BRA

Conditional jump and branch:
Jece (80X86)

Other conditional operations:
SETcece (80X86)

Condition types (examples - 80X86):

e Arithmeric: 7Z (E), NZ (NE), GT, LT, LE,
LT, S, NS, O, NO

e Other: PE, PO, CX7

Hybrids: do operation, test and conditional
jump.

Examples (80X86): LOOP, LOOPZ, LOOPNZ

(680X0): DBcc Dn, label (decrement, branch

on cc)

Support for precodures

Procedure called from more than one spot,
need to save return address. Where?

Scheme in old machines (CDC): word prior to
procedure

Advantages: simple, allows multiple levels

Disadvantages: no recursion!

Most machines use a stack.

Call - push return address (IP) on stack and
jump Examples:

e (80X86): CALL addr ; Push IP and jump
o (VAX): calls addr, mask ; Push PC and reg-

1sters, jump

Return - pop return address form stack
Examples:

e (80X86): RET ; Pop IP
e (80X86): RET cnt ; also add cnt to SP
o (VAX): rets ; restore registers and PC

9

Input - Output Operations

From programmer’s perspective: read or write
IO device registers - by read or write of 10O

ports.
Examples (Intel 80X86):

OUT port-number, AL ; (or AX, or EAX)
IN AL, port-number

Device registers usually in I0 address space.
This means:

e Address bus emits address in 10 space

e Control lines signify 10 read or write

Hardware - usually at least total of 4
registers at 2 addresses:

e Address for data in/out registers
e Address for control and status

Example - serial 10 port.

10

Memory Mapped 10

[O can share address/data busses or use spe-
cial 1O bus.

Likewise, can use special ID address space, or
share with the memory address space.

Some “memory address space” reserved for

10.

Device registers activated by “memory access” .
with decoders enabled by memory access control
signals.

From programmer’s perspective, access to mem-
ory mapped IO looks just like move to/from
memory'!

Caveat: but this is NOT exactly like mem-
Or'y access.
For example, what you write to an address is

NOT necessarily what you get when you read
the address!

11

Machine control and interrupts

Remember that in a real machine,
especially servers:

e Multiple IO devices
e Multi process and multi user

e Sometimes also multi processor

How to achieve the above? Hardware must
support:

e Protection and security support
e Interrupts: internal and external
e Atomic operations and bus locking

e Special control operations

12

Protection and security

Much of this issue is handled by the
operating system.

Some hardware support essential:
e Memory block tagging or even mapping

e At least 2 machine modes, one for
operating system, one for user.

More on memory protection and mapping - in
operating systems course.

Machine mode: determined by 1 or more flag

bits in CPU.

In user mode many instructions
inaccessible:

e Cannot just change mode flag!

e Limits access to memory and IO

Example (Motorola 680X0):
S=0 is user mode, S=1 is supervisor mode.

13

Interrupts - internal and external

Internal interrupts:

e By using a deliberate, legal, instruction.

INT n ; Intel 80X86
TRAP n ; Motorola 680X0

e Generated internally by CPU due to
exceptions (faults). Usually causes pro-
gram termination.

— Arithmetic error: divide by 0, floating point
overflow

— Memory related: bus error, alignment er-
ror, segmentation violation

— Illegal istruction

— Protection violation

Deliberate (software) interrupts (also called
traps, supervisor calls).

Controlled access to privileged parts of
machine, via system calls.

14

Interrupts (cont)

External interrupts: external signal.

Used by IO devices and internal controller.
Usually does not cause program
termination. Can occur at any time.

e [O devices: Keyboard character available.
Disk seek complete. Input buffer full.

e Internal controller: Page fault.
Timer interrupt.

All interrupts behave like a special call:
1. Save state (IP, PSW)

2. Change machine mode to supervisor

3. Jump to address according to interrupt vec-
tor

Code at interrupt vector:
interrupt handler

To return - use special instruction (IRET in
80X86).

15

Atomic operations

Data in memory shared between processes may
need to be accessed.

Interrupts can occur at any time - may cause
race conditions.

One possibility - disable interrupts. But:

e Not available in user mode
e Not all interrupts can be disabled (NMI)

e Does not work in multi processor systems

Solution: read-modify-write bus-locked
mstructions.

e TAS (test and set in Motorola 680X0)

e LOCK XADD (exchange and add in Intel
S0X86)

When executed, cause asserting a (bus) LOCK
control signal.

16

Special control operations

Breakpoint and other debug control
System timer control

Floating point processor control
Co-processor control

Interrupt controller operations
DMA control

Memory management unit control

Cache control

17

