
Machine and Assembly Language
Principles

Instruction Categories

• Data transfer instructions

• Integer arithmetic and logic instructions

• Shift and rotate instructions

• Control transfer instructions

• Bit manipulation instructions

• System control instructions

• Floating point instructions

• Special function unit instructions

1



Data transfer instructions

Types of transfer:

• register to register

• register to or from memory

• memory to memory

Multiple addressing modes available for
memory

Size of operands usually 1, 2, 4, or 8 bytes,
Some machines allow moving MULTIPLE data

items in one instruction.

• Exchange instructions

• Push/pop multiple operands

• String copy and other operations

• Special move instructions

2



Multiple Data Transfers

Exchange - one instruction to exchange 2
operands

Example (80X86): XCHG src1, src2
Otherwise would require 3 instructions
In some machines this operation is ATOMIC

Move multiple - move to or from several
registers. Examples:

• (80486): PUSHA, POPA - to push or pop all
general-purpose registers

• (680X0): MOVEM ea, list of registers
(implemented as a mask in machine code)

Saves several instructions on saving sets of reg-
isters

3



String operations and special moves

(nearly) UNLIMITED data size.
Uses registers for source and destination point-

ers
Uses count registers
Examples:

• (80X86): (REP) MOVS

• (80X86): CMPS

• (VAX): Move string

Conditional termination possible (REPNZ in
80486)

Translate while moving.

• (80X86): XLAT ; AL gets [EBX+AL]

• (VAX): translate string using table

Move to/from control registers

4



Arithmetic, logical, and shift

Seen in exercise sessions - how to extend?

For example, need to implement long, or even
unlimited precision integer operations.

For ADD, SUBTRACT, SHIFT - use carry
flag , or extend flag

Examples (80X86):

ADD EAX, [X_LOW]

ADC EBX, [X_MID]

ADC ECX, [X_HIGH]

SHL dword [X_LOW], 1

RLC dword [X_HIGH], 1

(MOTOROLA 68000)

ADD.L X_LOW, D0

ADDX.L X_HIGH, D1

5



Bit manipulation instructions

Flag manipulation

Flags change as a result of ALU operations
Sometimes can be manipulated directly

Examples (80X86)

• Carry flag: STC, CLC, CMC

• Direction flag: CLD, STD

Instructions to move to/from flag register:
(80X86): LAHF, SAHF

Push and pop flag register:
(80X86): PUSHF, POPF

Used to save state, but can be used to
manipulate flags:

LAHF

AND AH, mask

SAHF

6



Bit and Bit Field Manipulation

Individual bit Manipulation - (80X86):

BT dst, bit ; Test bit

BTC dst, bit ; Test and complement

BTS dst, bit ; Test and set

BTR dst, bit ; Test and reset

Bit string operations: scan bits (80X86)

BSF dst, src ; Bit scan forward (find first 1)

BSR dst, src ; Bit scan reverse

Bit field operations: compressed structs.
Examples (MOTOROLA 680X0):

BFCLR, (ea)o:w ; Clear bit field

BFEXTS (ea)o:w, Dn ; Sign extend

BFFFO (ea)o:w, Dn ; Find first 1

BFINS Dn, (ea)o:w ; Insert to field

Also has: BFCHG (invert), BFEXTU (zero ex-
tend), BFSET, BFTST

7



Program flow control

Branching addressing modes:
Relative, absolute, indirect, others

Jump and branch: JMP, BRA

Conditional jump and branch:
Jccc (80X86)

Other conditional operations:
SETcccc (80X86)

Condition types (examples - 80X86):

• Arithmeric: Z (E), NZ (NE), GT, LT, LE,
LT, S, NS, O, NO

• Other: PE, PO, CXZ

Hybrids: do operation, test and conditional
jump.

Examples (80X86): LOOP, LOOPZ, LOOPNZ
(680X0): DBcc Dn, label (decrement, branch

on cc)

8



Support for precodures

Procedure called from more than one spot,
need to save return address. Where?

Scheme in old machines (CDC): word prior to
procedure

Advantages: simple, allows multiple levels
Disadvantages: no recursion!
Most machines use a stack.

Call - push return address (IP) on stack and
jump Examples:

• (80X86): CALL addr ; Push IP and jump

• (VAX): calls addr, mask ; Push PC and reg-
isters, jump

Return - pop return address form stack
Examples:

• (80X86): RET ; Pop IP

• (80X86): RET cnt ; also add cnt to SP

• (VAX): rets ; restore registers and PC

9



Input - Output Operations

From programmer’s perspective: read or write
IO device registers - by read or write of IO
ports.

Examples (Intel 80X86):

OUT port-number, AL ; (or AX, or EAX)

IN AL, port-number

Device registers usually in IO address space.
This means:

• Address bus emits address in IO space

• Control lines signify IO read or write

Hardware - usually at least total of 4
registers at 2 addresses:

• Address for data in/out registers

• Address for control and status

Example - serial IO port.

10



Memory Mapped IO

IO can share address/data busses or use spe-
cial IO bus.

Likewise, can use special ID address space, or
share with the memory address space.

Some “memory address space” reserved for
IO.

Device registers activated by “memory access”,
with decoders enabled by memory access control
signals.

From programmer’s perspective, access to mem-
ory mapped IO looks just like move to/from
memory!

Caveat: but this is NOT exactly like mem-
ory access.

For example, what you write to an address is
NOT necessarily what you get when you read
the address!

11



Machine control and interrupts

Remember that in a real machine,
especially servers:

• Multiple IO devices

• Multi process and multi user

• Sometimes also multi processor

How to achieve the above? Hardware must
support:

• Protection and security support

• Interrupts: internal and external

• Atomic operations and bus locking

• Special control operations

12



Protection and security

Much of this issue is handled by the
operating system.

Some hardware support essential:

• Memory block tagging or even mapping

• At least 2 machine modes, one for
operating system, one for user.

More on memory protection and mapping - in
operating systems course.

Machine mode: determined by 1 or more flag
bits in CPU.

In user mode many instructions
inaccessible:

• Cannot just change mode flag!

• Limits access to memory and IO

Example (Motorola 680X0):
S=0 is user mode, S=1 is supervisor mode.

13



Interrupts - internal and external

Internal interrupts:

• By using a deliberate, legal, instruction.

INT n ; Intel 80X86

TRAP n ; Motorola 680X0

• Generated internally by CPU due to
exceptions (faults). Usually causes pro-
gram termination.

– Arithmetic error: divide by 0, floating point
overflow

– Memory related: bus error, alignment er-
ror, segmentation violation

– Illegal istruction

– Protection violation

Deliberate (software) interrupts (also called
traps, supervisor calls).

Controlled access to privileged parts of
machine, via system calls.

14



Interrupts (cont)

External interrupts: external signal.

Used by IO devices and internal controller.
Usually does not cause program
termination. Can occur at any time.

• IO devices: Keyboard character available.
Disk seek complete. Input buffer full.

• Internal controller: Page fault.
Timer interrupt.

All interrupts behave like a special call:

1. Save state (IP, PSW)

2. Change machine mode to supervisor

3. Jump to address according to interrupt vec-
tor

Code at interrupt vector:
interrupt handler

To return - use special instruction (IRET in
80X86).

15



Atomic operations

Data in memory shared between processes may
need to be accessed.

Interrupts can occur at any time - may cause
race conditions.

One possibility - disable interrupts. But:

• Not available in user mode

• Not all interrupts can be disabled (NMI)

• Does not work in multi processor systems

Solution: read-modify-write bus-locked
instructions.

• TAS (test and set in Motorola 680X0)

• LOCK XADD (exchange and add in Intel
80X86)

When executed, cause asserting a (bus) LOCK
control signal.

16



Special control operations

Breakpoint and other debug control

System timer control

Floating point processor control

Co-processor control

Interrupt controller operations

DMA control

Memory management unit control

Cache control

17


