
On a Hardy space approach to the analysis of spectral factors*

P. A. FUHRMANN² and A. GOMBANI ³

The paper presents a study of several problems related to spectral factorizations.
We assume only a very weak form of coercivity for the p ´ p spectral function U

and look at the set W m of all rectangular, p ´ m spectral factors. The main object is
the arithmetization of the geometry of the set of minimal, stable spectral factors by
employing Hardy space techniques and the arithmetic of inner functions. Particular
attention is paid to the study of various partial orders associated with the set of
spectral factors.

1. Introduction

The object of this paper is to present a study of the spectral factorization problem
in the multivariable case. We will consider rational spectral function U of dimension
p ´ p, of rank m0 £ p and degree 2n and we will characterize all the minimal, in the
sense of the McMillan degree, spectral factors of a given size p ´ m in the spectral
domain, removing all constraints on rank and zero location. In particular only very
weak coercivity assumptions will be made.

The topic of this paper has a long history, with roots in stochastic theory. We
mention Anderson (1973), Faurre et al. (1979), Ruckebusch (1980), and in particular
the series of seminal articles of Lindquist and Picci (1979 a± c, 1985 a, 1991) and
Lindquist et al. (1995) as well as some papers by Pavon which have been the main
inspiration of our work. This problem has been widely studied in the existing litera-
ture, although a particular aspect of the problem seems to have escaped all these
investigations and this was the motivation for starting this work. For example, it is
well known how to characterize all the spectral factors in terms of a Riccati inequal-
ity [see Anderson (1973) and Faurre (1976)]; nevertheless, a state space approach
does not allow a precise characterization of the spectral factors of ® xed dimension m
where the usual constraints (m0 £ m £ p + n) are satis® ed (these constraints come in
a very natural manner from the Positive Real Lemma: we refer the reader to
Anderson (1973) for details). In Lindquist and Picci (1979 c) an alternative spectral
domain characterization is given for non-full-rank U , but only for the internal case.
In Lindquist et al. (1995) the external, but full-rank problem is treated. In conclu-
sion, the sets of external factors of given size m of a non-full-rank density U (which
we will call W m) are not very well characterized even today. Some properties of these
sets are known [for example it is known it is a manifold for each m, see Batatchart
and Gombani (1994)], but the underlying structure of these sets was quite unclear.
The reasons for understanding such a problem are quite practical and come from
time series analysis and multichannel signal transmission. The ® rst problem occurs in
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econometrics, when a time series with a lot of variables should be explained in terms
of the dynamics of few variables (factors) and some (white) disturbance error. The
second occurs in decoding the signals which come to a cellular phone from all the
antennas which are operating on that cell and are of course broadcasting also to
other phones. It can be shown that both situations can be brought to a non-linear
minimization problem on W m (and the non-full-rank assumption on U is crucial),
and this explains why it is interesting to know that it is manifold and why, more
generally, it is important to understand its structure. We do so in continuous time
(even if the problems we just mentioned have a discrete time formulation), because of
some simpli® ed features of this setting. The discrete time version can be obtained by
a suitable version of the Cayley transform.

With this problem in mind, we were led in a natural way to an approach which
di� ers from that of Lindquist and Picci. Since we have removed the rank constraints
we obtain some technical results which are more general than those previously
obtained. The main di� erence however is one of emphasis. In the Lindquist ± Picci
approach to stochastic realization theory, geometry is reigning supreme. The
approach is abstract with all the corresponding advantages and disadvantages.
The ® rst big advantage is that working with a space directly constructed from the
stochastic process, stochastic objects like the past and future spaces are conceptually
clearly de® ned and are independent of any representation. The disadvantages arise
from the di� culties in the computational process: since every subspace has its own
functional representation, the geometry of the stochastic setting is lost in the fre-
quency domain. For better or worse, we do away with all that. The basic idea is to
map the stochastic domain with a single isomorphism to the frequency domain. With
each spectral factor we get corresponding representation spaces which are subspaces
of a ® xed vectorial L 2 space of the imaginary axis. For normalization purposes we
single out the minimal, stable, maximum phase spectral factor W+ . We study all
other spectral factors in terms of their relation to W+ . The big advantage from our
point of view is that the functional representations of these spaces in terms of inner
functions, obtained using Beurling’s theorem, are all geometrically correlated (the
Hilbert space structure is preserved). This allows us to replace the abstract geome-
trical constructs by the arithmetic properites of inner functions, making computa-
tions much easier. A second important feature of our approach that it solves the
problem we considered in the beginning, namely the characterization of W m .

The paper is structured as follows. We introduce some notation in §2. In §3,
given a spectral function, we study the four minimal, extremal spectral factors. These
factors are completely characterized by the requirement that all their zeros and poles
lie in either the open left or right half-planes. Section 4 is devoted to a study of
Toeplitz operators whose symbol is a quotient of inner function. This class of
Toeplitz operators is important because of the many connections to geometry. For
some di� erent applications to system theoretic problems, see Fuhrmann and Helmke
(1997).

In §5 we extend the scene by looking at the set of all minimal, stable rectangular
spectral factors of a given size. Here the ground is laid for the use of factorization
theory in the analysis of spectral factors. This is done via the use of the algebra of
inner functions. The ® ne structure of the various factorizations associated with a
given, stable spectral factor is analysed in Theorem 4. Since, via Beurling’s theorem,
inner functions are closely related to the geometry of invariant subspaces in Hardy
spaces, this leads to many geometric relations. These connections are studied in
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depth, as well as various associated projection operators. Some of this is summarized
in Proposition 15. Special attention is given to two extreme cases, those of internal
and external factors and characterizations of these factors are given. This study is
closely related to geometric control theory, however the results obtained are beyond
the scope of this paper. These results are relegated to future publications, see Gom-
bani and Fuhrmann (1998) and Fuhrmann (1998).

We pass on, in §6, to the study of a functional representation of the set of all
minimal Markovian splitting subspaces, a key element in stochastic realization the-
ory. With each minimal, stable spectral factor we associate a canonical state space,
which serves also as the state space of a shift based realization. This allows us to link
the geometry of splitting subspaces with the arithmetic properties of inner functions.
One of the principal themes is to study a partial order relation in the set of all
minimal, stable spectral factors. We begin, in Theorem 8, by studying the standard
case of square, non-singular spectral factors. While it does not generalize trivially to
the singular, rectangular case, it indicates the direction. In keeping with the spirit of
this paper, which is functional oriented, we avoid the use of the Riccati equation and
inequality. This theme will be picked up in a di� erent publication. Once the various
partial orders, related to spectral factors, are introduced, we proceed to show the
equivalence of these orders. This is the heart of this section and one of the principal
results of the whole paper. This is summarized in Theorem 9. We proceed, in
Theorem 10, to characterize, functionally, the various spaces that appear in the
scattering approach to stochastic realization theory. We conclude by studying
some lattice properties of the set of all p ´ m stable, spectral factors. We note how-
ever that this set is not a complete lattice. The set of all minimal Markovian splitting
subspaces spans a canonical subspace of H2

+ . We give a characterization of this space
in §7.

The reader who studies this paper will notice immediately that there are many
important topics that have been omitted. In particular, little emphasis has been
placed on state space techniques. Also, topics relating to geometric control theory,
in the context of Hardy spaces, had to be avoided. The reason for this is simple.
Inclusion of these topics, important as they are, would have been beyond the scope
of a single paper. As indicated above, these topics will be treated in subsequent
papers.

In a sense, the content of this paper is an attempt to understand stochastic
realization theory in the style of Lindquist and Picci from a di� erent point of
view. Our debt to their work is evident throughout.

2. Preliminaries and notation

We work in the Hilbert space setting of the plane; we de® ne, see Ho� man (1962),
L 2 ( I ) to be the set of the vector or matrix valued (the proper dimension will be clear
from the context) square integrable functions on the imaginary axis, and H2

+ to be
the subspace of L 2 of functions that are the boundary values of analytic functions in
the right half-plane and such that

sup
x>0

1
2p ò

¥

- ¥
tr[F*(x + iy)F(x + iy)]dy < ¥

where * denotes transposed conjugate. If F and G are column vectors, the inner
product in H2

+ is
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k F,G l =
1
2p ò

¥

- ¥
G*(ix )F(ix ) dx

Analogously, H ¥
+ is the subspace of L 2 of functions analytic in the right half-plane

and such that

sup
Re s>0

i F(s) i < ¥

where i F(x + iy) i denotes the usual matrix norm. (H2
- and H ¥

- are de® ned similarly
on the left half-plane).

Let F be function of L 2: we denote by P+F (P- F) the orthogonal projection of
L 2 onto H2

+ (H2
- ) .

A p ´ m matrix valued function ^R Î H2
+ is said to be row rigid if ^R ^R* = Ip

(clearly this entails p £ m). It is column rigid if p ³ m and ^R* ^R = Im . A function
Q Î H ¥

+ is inner if it is square and Q*Q = QQ* = I. It is well known that a column
vector space M in H2

+ is invariant under multipication by E- ix t for t ³ 0 if and only
if it is of the form M = QH2

+ (Beurling’s Theorem). Similarly, a row space N
is invariant if and only if it is of the form N = H2

+Q. We set Hc (Q) := {QH2
+ }̂

and Hr (Q) := {H2
+Q}̂ . Analogously, we de® ne Hc (Q*) := {Q*H2

- }̂ and
Hr (Q*) := {H2

- Q*}̂ , the orthogonal complement in these cases taken in H2
- .

Clearly, we have P+eix tHc (Q) Ì Hc (Q) and similarly for Hr (Q) . A full column-
rank p ´ m rational matrix function G in H ¥

+ is said to be minimum-phase or outer
(on the right) if rank G(s) = m for Re s > 0. It is well known that a rational function
F in H ¥

+ admits an outer inner factorization

F = F0Q

This factorization is unique up to a unitary constant matrix. For any W in L 2 or in
L ¥ we de® ne W *(s) := W (s) T, where - denotes conjugation and T denotes trans-
position. It should be noted that for an inner function Q* = Q- 1.

We say that an inner function Q1 divides Q2 on the right (left) if Q*
1Q2 Î H ¥

+
(Q2Q*

1 Î H ¥
+ ) . Given two inner functions Q1 and Q2 we denote the greatest common

right (left) divisor by Q1 ^ R Q2 (Q1 ^ L Q2) and the least common right (left) mul-
tiple by Q1 ~ R Q2 (Q1 ~ L Q2) . Two inner matrices are right (left) coprime if their
greatest common right (left) divisor is the identity.

Two m ´ m inner matrix X and Y are equivalent if there exist inner matrices U, V
such that X ^ L V = I and Y ^ R U = I and XU = VY . Given an inner matrix X, it
can be shown that there exists an (essentially) unique diagonal inner matrix
D = diag {d1, . . . ,dm} such that di|di+ i for i = 1, . . . ,m - 1 which is similar to X.
The inner factors di which are not identically 1 are called invariant factors of X.

Remark: To distinguish between operators on row and column spaces, we will
denote the operations on columns in the usual manner, whereas operations on
row spaces are denoted by writing the argument before the operator. For example,
given an operator T acting in a row space X with a subspace V , we would write
V |T for the restriction of T to V . Ker V |T would denote the kernel of this map.
This notation is immediately applied in the following de® nition.

De® nition 1: Let G be a p ´ m matrix function in L ¥ . We de® ne the Hankel op-
erator Hc

G acting on the column Hardy space as
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Hc
G : H2

+ ® H2
-

f |® P+Gf

ü
ý
þ

(1)

Similarly, we de® ne the Hankel operator Hr
G acting on row Hardy space by

Hr
G : H2

+ ® H2
-

f |® fGP+

ü
ý
þ

(2)

The function G is called the symbol of the Hankel operator. Similarly, conjugate
Hankel operators are de® ned, with the role of H2

+ and H2
- interchanged. We will

use the notation ^Hr
G and ^Hc

G for these operators.

From now on we assume all the functions to be rational. We denote a realization
of a rational function W as

A B

C D
æ
è

ö
ø

With A# we denote the Moore± Penrose inverse of a matrix A.

3. Extremal spectral factors

Our object is to study the set of all minimal, not necessarily square, spectral
factors of a given spectral function.

We assume we are given a rational spectral function U , that is a p ´ p proper
rational matrix function which is non-negative on the imaginary axis. We do not
assume, as is usual, that U is regular on the imaginary axis. We do assume however
that it is weakly coercive, namely that U has constant rank, m0 £ p, on the extended
imaginary axis, i.e. including at the point of in® nity. Furthermore, we assume that U ,
which clearly satis® es U (s) = U (- s)*, has McMillan degree 2n.

A p ´ m proper rational matrix function W is called a spectral factor if
U = WW *. Here, as elsewhere W *(s) = W (- s)*. A spectral factor W is called stable
(antistable) if W Î H ¥

+ (W Î H ¥
- ) .

It turns out that the study of the set of minimal spectral factors is facilitated if we
study it in relation to four extremal spectral factors. These four spectral factors are
determined by the requirement that all their poles are located in either the left or
right half-planes, and the same for the zeros.

It is well known that spectral factors exist. Moreover, using the Beurling±
Lax± Halmos theorem, there exists a stable, minimum phase, or outer spectral factor,
which we denote by W- . Our weak coercivity assumption implies actually that W- is
left invertible over H ¥

+ . In a completely analogous way, there exists an essentially
unique antistable and maximum phase spectral factor W+ , which has also dimension
p ´ m0. By the same argument as before W+ has an antistable left inverse.

Let K+ and K- be the minimal essentially unique, that is unique up to a right
constant unitary factor, m0 ´ m0 inner functions for which W+ = W+K+ is stable
and W- = W- K*- is antistable. W- is the minimal, antistable minimum phase spec-
tral factor and W+ is the minimal, stable maximum phase spectral factor, and the
above factorizations are just the Douglas, Shapiro, Shields (DSS) factorizations of
W+ and W- over H ¥

- and H ¥
+ respectively. For more on this see Fuhrmann (1981).
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We will assume in the following that the multiplicity of K+ equals m0. This
basically means that if

W- =
A B-

C D-
æ
è

ö
ø

then rank B- = m0. In other words, if we seek decompositions of the form
U = ^

U + ¢ with ¢ constant and U of rank lower than m0, we rule out that the
problem has trivial solutions, namely those given by internal spectral factors. For
more on this, see Baratchart and Gombani (1994).

Proposition 1: L et W be a minimal, stable p ´ m spectral factor. Then there exists
an essentially unique m0 ´ m row rigid function ^Q for which

W = W-
^Q (3)

Without loss of generality, we will assume ^Q ( ¥ ) = (I 0) .

Proof: We consider H2
+ W which is an invariant subspace. Since rank W = m0

then, by Beurling’s theorem, there exists a rigid function ^Q for which

H2
+ W = H2

+
^Q

Since W- is outer, it follows that

H2
+ W = H2

+
^Q = H2

+ W-
^Q

This implies W = W-
^Q. h

The following proposition gives a characterization of the image of all
Hankel operators induced by minimal, stable, not necessarily square, spectral
factors.

Proposition 2: L et W- be the minimal, stable, minimum phase, spectral factor of a
rational spectral function. Let W be any minimal, stable, not necessarily square,
spectral factor. L et ^Hc

W : H2
- ® H2

+ be the associated conjugate Hankel operator.
Then

(1)

Im ^Hc
W = Im ^HW c- (4)

In particular we have

Im ^Hc
W+ = Im ^Hc

W - (5)

(2) L et

W- = KH*- = (K*)- 1H*- (6)

be a right coprime DSS factorization of W- over H ¥
- . L et W be any stable,

minimal spectral factor. Then it has a right coprime DSS factorization of the
form

W = KH* (7)
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Proof:

(1) Let W be any minimal, stable, not necessarily square, spectral factor. We
know, by Proposition 1, that there exists a row-rigid function ^Q such that
W = W-

^Q or, equivalently, that W- = W ^Q*. By Lemma 3.5.7 in Fuhrmann
(1981), we conclude that

Im ^Hc
W - Ì Im ^Hc

W . (8)

Now Im ^Hc
W can be taken, using the shift realization, as the state space of a

minimal realization. Since W is, by assumption, a minimal spectral factor we
have dim Im ^Hc

W - = dim Im ^Hc
W . Thus (4) follows. Equality (5) is a special

case.
(2) We have Im ^Hc

W = {KH2
+ }̂ . Since Im ^Hc

W = ^Hc
W - , this implies a factoriza-

tion, necessarily left coprime, of the form (7). h

Equality (4) has practical implications for the realization of minimal spectral
factors.

Corollary 1: L et

W- =
A B-

C D-
æ
è

ö
ø

(9)

the realization being minimal and let W be any, not necessarily square, minimal stable
spectral factor. Then W has a minimal realization of the form

W =
A B

C D
æ
è

ö
ø

(10)

Proof: We consider the shift realization, see Fuhrmann (1981, 1995), based on
the left coprime factorizations (6) and (7). Since the (C,A) operators in such a
realization depend only on the inner function Q, the result follows. That (10) is a
minimal realization follows from the minimality of W . h

It might be tempting to use the previous result to try and study the set of all
minimal, stable, spectral factors of given size by using the realizations with the same
state space. This is not necessarily a good idea. In fact the main contribution of this
paper comes from following very di� erent route, as will become apparent in §6.

Proposition 3: L et W+ be the minimal, stable, maximum phase, spectral factor. If
S is any non-trivial row rigid function, i.e. SS* = I, then

d (W+S) > d (W+ ) (11)

Proof: Since W+S is a stable spectral factor, and W+ = (W+S)S*, we have

Im ^Hc
W+ S É Im ^Hc

W+
(12)

If d (W+S) = d (W+ ) then necessarily Im ^Hc
W+ S = Im ^Hc

+ . By Proposition 1, there
exist H ¥ functions R, T such that

W+S = W+ R* + T*
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Now W+ has an antistable left inverse W - L , so S = R* + W - L T*. Thus S is both in
H ¥

+ and in H ¥
- hence necessarily a constant coisometry, contrary to our assumption

that S is non-trivial. h

We proceed to derive a characterization of W+ which is analogous to Propositon
1. For this we will need the following proposition.

Proposition 4: Let

K- 1
1 H1 = HK- 1 (13)

be coprime DSS factorizations over H ¥
+ . Then if H1 is outer, so is H.

Proof: We prove it by contradiction. Assume H = EH with E non-trivial. Let

Y1 - X1

- H1 K1( ) K X

H Y( ) =
I 0

0 I( )
be a doubly coprime factorization. This implies also

K X

H Y( ) Y1 - X1

- H1 K1( ) =
I 0

0 I( )
In particular we get HY1 = YH1 and hence EHY1 = YH1, which can be rewritten as
HY1 = E- 1 YH1. Now E, Y are left coprime as H, Y are. Let ^Y ^E- 1 be a right
coprime factorization of E- 1 Y . So

HY1 = E- 1 YH1 = ^Y ^E- 1H1

Now the right coprimeness of ^Y , ^E implies the existence of H ¥ functions P, Q which
solve the following Bezout identity

P ^Y + Q ^E = I (14)

This implies P ^Y ^E- 1H1 + QH1 = ^E- 1H1. Now L = P ^Y ^E- 1H1 + QH1 = PHY1 +
QH1 is clearly in H ¥ , so H1 = ^EL contradicting the outerness of H1. h

Proposition 5: Let W+ be the minimal, stable, maximum phase, spectral factor.
Let W+ = KH*

+ be a left coprime DSS factorization over H ¥
- . Then H+ is outer.

Proof: Let W+ be the minimal, maximum phase antistable spectral factor. Thus,
in analogy to W- , W+ is conjugate outer, i.e. left invertible in H ¥- . Let W+ be the
minimal, maximum phase stable spectral factor. We have W+ = W+K+ = W+K- *

+ ,
which is a right coprime DSS factorization over H ¥

- . Let W+ = K- *H*
+ be a left

coprime factorization of W+ over H ¥
- .

Now, by construction, W+ is outer in H ¥
- , i.e. it is left invertible over H ¥

- .
Applying Proposition 4 in its H ¥

- version, we conclude that H*
+ is left invertible in

H ¥
- . Equivalently, H+ is right invertible in H ¥

+ , or it is row outer. h

We proceed with the characterization of W+ .

Proposition 6: L et W be any minimal, stable not necessarily square spectral factor.
Then there exists an m ´ m0 column rigid function ^QÂ Â for which W ^QÂ Â = W+ .

Proof: Let W+ = KH*
+ and W = KH* be right coprime DSS factorizations. Since

both W and W+ are spectral factors, we obtain
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H*H = H*
+H+

Applying Proposition 1 in its H ¥
- form, we infer the existence of a row rigid function

( ^QÂ Â )
* Î H ¥

- , that is satisfying ( ^QÂ Â
* ^̂
QÂ Â = I, for which H* = H*

+ ( ^QÂ Â )
*. This implies

W = KH* = KH*
+ ( ^QÂ Â )

* = W+ ( ^QÂ Â )
*

and hence W+ = W ^QÂ Â . h

Proposition 7: There exist unique, m0 ´ m0 square inner functions Q- and Q+ for
which

W+ = W- Q+

W+ = W- Q- } (15)

Moreover, we have

K- Q+ = Q- K+ (16)

Q+ , K+ are right coprime and Q- , K- are left coprime.

Proof: W- , W+ are both of dimension p ´ m0. Since W- = W- K*- and W+ =
W+K+ with K- , K+ inner of dimension m0 ´ m0, it follows that W+ , W- are also
of dimension p ´ m0. By Proposition 1, there exists an m0 ´ m0 rigid, hence
inner, function Q+ such that W+ = W- Q+ . We easily compute that

W+ = W- K- Q+ = W- Q- K+

The left invertibility of W- implies (16).
That Q+ and K+ are right coprime follows from the fact that K+ is the minimal

inner function for which W+K+ is stable. The second assertion is proved similarly.
A non-trivial right common factor for Q+ , K+ would contradict the fact that

W+ = W+K*
+ is a right coprime DSS factorization over H ¥

+ . Similarly, for the left
coprimeness of Q- and K- . h

It is convenient to arrange the four spectral factors as in ® gure 1.
To get some intuition into the role of the inner functions Q 6 , K6 , we recall that

one convenient way to describe zeros and poles of rational functions is in terms of
polynomial coprime factorizations.

Consider the minimal stable, mininum phase p ´ m0 spectral factor W- . If we
consider a polynomial left coprime factorization, then W- = D- 1

- E- . Here D- is a
p ´ p stable non-singular polynomial matrix, whereas E- is a p ´ m0 polynomial
matrix all whose invariant factors are stable polynomials. The p ´ m0 numerator
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polynomial matrix admits a factorization EE- with E a p ´ m0 polynomially left
invertible matrix and E- stable. Solving the polynomial spectral factorization problem

E- E*- = F+F*
+ (17)

with F+ antistable and E- 1
- F+ biproper, we conclude that Q+ = E- 1

- F+ is an m0 ´ m0

inner function and

W- Q+ = D- 1
- E- (E- 1

- F+ ) = D- 1
- EE- (E- 1

- F+ ) = D- 1
- (EF+ )

Obviously all the invariant factors of EF+ are antistable. So W- Q+ = W+ , where
W+ is the minimal stable maximum phase spectral factor.

Thus, the inner function Q+ describes the ¯ ipping of zeros from the open left half
plane to the open right half plane. Given a factorization Q+ = Q1Q2 into square
inner factors, the left factor Q1 describes the set of all zeros of W- ¯ ipped to the right
half plane by Q1, i.e. the set of antistable zeros of the spectral factor W- Q1. Simi-
larly, the right factor Q2 of Q+ describes the set of stable zeros of
W = W- Q1 = W+Q*

2 that remain to be ¯ ipped. The sets of zeros of this type are
called internal zeros and the corresponding spectral factors are called internal spectral
factors. We will discuss their role in more detail in §5.

As usual, we de® ne the phase function T0 corresponding to the spectral functon U

by

T0 = W - L
+ W- (18)

Here, since W+ is a p ´ m0 function which has full column rank on the extended
imaginary axis, W - L

+ denotes any left inverse. The phase function is an m0 ´ m0 all-
pass function. It plays an important role in understanding the set of all minimal
spectral factors.

The next lemma relates the inner functions K6 , Q 6 to the phase function.

Lemma 1: L et W- , W+ , W- , W+ be the extremal spectral factors corresponding
to the spectral function U and let T0 be the associated phase function. Then we have

W+ W - L
+ W+ = W+ (19)

W+ W - L
+ W- = W- (20)

W+ W - L
+ W- = W- (21)

T0 = W - L
+ W- = K+Q- 1

+ = Q- 1
- K- (22)

Proof: Since W - L
+ W+ = I, we have W+ W - L

+ W+ = W+ . Now

W+ W - L
+ W+ = W+ W - L

+ W+K+ W+K+ = W+ (23)

This proves (19). (20) follows, using the fact that W- Q+ = W+ . Substituting
W+ = W- Q+ in the equality W+ W - L

+ W+ = W+ and eliminating Q+ leads to (21).
Finally, using (21), we compute

T0 = W - L
+ W- = W - L

+ (W+ W - L
+ W- ) = (W - L

+ W+ ) (W - L
+ W- ) = K+Q- 1

+

That K+Q- 1
+ = Q- 1

- K- was proved in (16). h

As a result of this lemma, it is clear that the phase function is inner if and only if
Q 6 = I, i.e. if and only if there are no internal zeros. The principal di� erence from

286 P. A. Fuhrmann and A. Gombani



the regular case is that the degrees of the determinants of Q+ and K+ are no longer
necessarily equal. This di� erence manifests itself geometrically, as well as in the
invertibility properties of Toeplitz operators. This will be studied in §4. The phase
function is a powerful tool for the analysis of spectral factors. It turns out that for a
® ner analysis we need localized versions of the phase function corresponding to
ordered pairs of internal spectral factors. We postpone the introduction of these
functions until, in §5, we have constructed the right notation for it.

We will ® nd it convenient to deal with square inner functions. To this end we
de® ne the extended, extremal spectral factors, W e

- , W e
+ , W e

- , W e
+ , as the p ´ p matrix

functions which are obtained by augmenting with p - m0 zero columns. For example
W e

- = (W- 0) . Similarly, we extend the inner functions Q 6 , K6 in an obvious way to
m ´ m inner functions by letting

Qe
6 =

Q 6 0

0 I( ) , Ke
6 =

K6 0

0 I( ) (24)

Clearly, we obtain the commutativity of ® gure 2.
The previous coprimeness conditions extend also in a natural way to the extended

inner functions. Thus Qe
+ , Ke

+ are right coprime and Qe
- , Ke

- are left coprime.

4. On Toeplitz operators

In this section we will turn our attention to a study of the phase function and
some Toeplitz operators related to it. The invertibility of Toeplitz operators has
both goemetric and arithmetic characterizations. By arithmetic characterizations
we refer to Wiener± Hopf factorizations and the corresponding factorization indices,
whereas the geometry refers to the invariant and coinvariant subspaces of Hardy
spaces.

We recall the de® nition of Toeplitz operators. As we are working with both row
and column spaces we must distinguish between two types of Toeplitz operators.

De® nition 2: Let G be an m ´ m matrix function in L ¥ . We de® ne the Toeplitz
operator T c

G acting on column Hardy space by

T c
G : H2

+ ® H2
+

f |® p+Gf

ü
ý
þ

(25)

Similarly, we de® ne the Toeplitz operator T r
G acting on row Hardy space by
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T c
G : H2

+ ® H2
+

f |® fGP+

ü
ý
þ

(26)

In both cases G is called the symbol of the corresponding Toeplitz operator.

The adjoints of Toeplitz operators are also Toeplitz operators. In fact we have

(T r
G)* = T r

G*

(T c
G)* = T c

G*

We say that

G = G- ¢rG+ (27)

is a right Wiener± Hopf factorization if G6 1
- Î H ¥

- , G6 1
+ Î H ¥

+ and

¢r (s) = diag
s - 1
s + 1( )

·1

, . . . , s - 1
s + 1( )

·m[ ] (28)

with ·1 ³ ´´´ ³ ·m . The indices ·1, . . . ,·m are called the right Wiener± Hopf factor-
ization indices. Left factorizations and left factorization indices are similarly de® ned.

It is well known that if G Î L ¥ is continuous, and in particular if it is rational,
then Wiener± Hopf factorization exist and the factorization indices, though not
necessarily the factorizations, are uniquely de® ned.

Proposition 8: L et G Î L ¥ and G = G- ¢rG+ its right Wiener± Hopf factorization.
Then

(1) The following statements are equivalent.
(a) The Toeplitz operator T c

G is injective.
(b) The Toeplitz operator T c

¢ r is injective.
(c) ¢r is full column rank and all the right Wiener± Hopf factorization indices

are non-negative.
(2) The following statements are equivalent.

(a) The Toeplitz operator T c
G is surjective.

(b) The Toeplitz operators T c
¢ r is surjective.

(c) ¢r is full row rank and all the right Wiener± Hopf factorization indices are
non-positive.

Proof: The maps T c
G- , T c

G- 1
- , T c

G+ , T c
G- 1

+
are all invertible. In fact (T c

G- = T c
G- 1

-
and (T c

G+
)- 1 = T c

G- 1
+

. Clearly we have the commutative diagram (® gure 3) as

288 P. A. Fuhrmann and A. Gombani

Figure 3.



T c
G- T c

¢r
T c

G+ f = P+G- P+¢rG+ f = P+G- ¢rG+ f = T c
G f

In particular this shows that T c
G is injective if and only if T c

¢ r is injective. Now, if ¢r

is given by (28), then clearly

T c
¢r = T s- 1

s+1( ) ·1 % ´´´ % T s- 1
s+1( ) ·m

So it su� ces to analyse a Toeplitz operator of the form T s- 1
s+1( ) · operating on the

scalar H2
+ space. Since s - 1 /s + 1 is inner, we have for · ³ 0 that T s- 1

s+1( ) · is isometric

and hence injective. The codimension of the image is equal to ·. For · £ 0 the
operator T s- 1

s+1( ) · is surjective and the dimension of the kernel is ·. In fact we have

Ker T s- 1
s+1( ) · =

s - 1
s + 1( ) - ·

H2
+{ } ^

This implies

dim Ker T s- 1
s+1( ) · = - ·

Going back to the operator T c
¢r we obtain

dim Ker T c
¢ r = - å

·i<0

·i

codim Im T c
¢ r = - å

·i>0

·i

Thus injectivity is equivalent to all the right Wiener± Hopf indices being non-negative
and surjectivity to all the right Wiener± Hopf indices being non-positive.

In view of the preceeding proposition, the following corollary is obvious.

Corollary 2:

(1) The Toeplitz operator T c
G is invertible if and only if G is invertible and all the

right Wiener± Hopf factorization indices are trivial.
(2) The Toeplitz operator T r

G is invertible if and only if G is invertible and all the
left Wiener± Hopf factorization indices are trivial.

The following proposition connects invertibility properties of Toeplitz operators
acting in row and column Hardy spaces.

Proposition 9: Let G Î L ¥ be rational. Then

(1) The Toeplitz operator T c
G is injective if and only if T r

G* is surjective.
(2) The Toeplitz operator T c

G is surjective if and only if T r
G* is injective.

(3) The Toeplitz operator T c
G is injective if and only if T r

G is injective.

Proof:

(1) Let G = G- ¢rG+ be a right Wiener± Hopf factorization. Then G* = G*
+ ¢*

r G*-
is a left Wiener± Hopf factorization of G*. The factorization indices of G are
all non-negative if and only if the factorization indices of G* are all non-
positive.
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(2) The proof is similar.
(3) Since (T c

G)* = T c
G*, T c

G is injective if and only if T r
G* is surjective. By part (2)

this is the case if and only if T r
G is injective. h

Note that, if G = G- ¢rG+ is a right Wiener± Hopf factorization with non-nega-
tive factorization indices, then we have an explicit formula for the left inverse of T c

G,
namely

(T c
G)- L g = G- 1

+ P+¢
- 1G- 1

- g

We do not have such a formula for the right inverse of T r
G based on the same right

Wiener± Hopf factorization.
The principal tool in our analysis are Theorem 1 and Proposition 11. Most of the

content can be found in Nikolskii (1985). The connection with Wiener± Hopf factor-
ization indices is a direction application of well known results in the study of Toe-
plitz operators, see for example Gohberg and Feldman (1971). In the proofs we need
the following simple lemma.

Lemma 2:

(1) L et V , W be two subspaces of a Hilbert space H, with dim W < ¥ . L et PV be
the orthogonal projection of H on V. Then

PV W = V

if and only if

H = V ^ + W

(2) L et U, V, W be subspaces of a Hilbert spce H. If W is orthogonal to both U and
V, then

U ´ V = U ´ (V + W ) (29)

Proof:

(1) If H = V ^ + W , then clearly V = PV H = PV (V ^ + W ) = PV W . Conver-
sely, assume PV W = V . Let x Î (V ^ + W ) ^ = V ´ W ^ . Let w Î W be
such that PV w = x, then necessarily (x,w) = 0. Therefore

0 = (x,w) = (PV w,w) = i PV wi 2 = i xi 2

So x = 0, i.e. V ^ + W = H. Since W is ® nite dimensional, we have also
V ^ + W = H.

(2) Clearly U ´ V Ì U ´ (V + W ) . Assume conversely that f Î U ´ (V + W ) ,
i.e. f = u = v + w. Since w = u - v, we have w Î (U + V ) ´ (Û ´ V ^ ) =
(U + V ) ´ (U + V ) ^ . So necessarily w = 0 and u = v, i.e. f Î U ´ V . h

Proposition 10: L et Q, Q, K1, K2 be rational inner functions satisfying

K1Q = QK2 (30)

with K1, Q left coprime and Q, K2 right coprime. Then

dim Ker T r
QK*

2
= dim Hr (K1)Q ´ Hr (K2) = dim K2

+Q ´ Hr (K2) (31)
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Speci® cally, the map g |® gQ is a bijective linear map from Ker T r
QK*

2
to

Hr (K1)Q ´ Hr (K2) .
We have

dim Ker T r
QK*

2
= dim{f | i Hr

QK*
2
f i = i f i }.

Proof: Assume f Î Hr (K1)Q ´ Hr (K2) , i.e. f = g1Q = g2 = h2K2 with
g1 Î Hr (K1) , g2 Î Hr (K2) and h2 Î Hr (K*

2 ) . Thus g1QK*
2 = h2. Applying the ortho-

gonal projection P+ , we obtain g1QK*
2 P+ = h2P+ = 0, i.e. g1 Î Ker T r

QK*
2
.

Conversely, assume g1 Î Ker T r
QK*

2
, i.e. g1QK*

2 P+ = 0. This means that
g1QK*

2 = h2 with h2 Î H2
- . From the equality f = g1Q = h2K2 we conclude that

f Î H2
+Q ´ Hr (K2) . Now, using the equality K1Q = QK2, we can write

H2
+ = H2

+K1 % Hr (K1) and hence

H2
+Q = H2

+K1Q % Hr (K1)Q = H2
+QK2 % Hr (K1)Q

Obviously H2
+QK2 ^ Hr (K2), and hence, applying Lemma 2 (ii), we get

Hr (K1)Q ´ Hr (K2) = H2
+Q ´ Hr (K2) . h

For the notation used in the following theorem, as well as in the rest of the paper,
the reader is advised to consult the remark preceeding De® nition 1.

Theorem 1: L et Q- , Q+ , K- , K+ be rational inner functions satisfying

Q- K+ = K- Q+ (32)

and the coprimeness conditions

K- ^ L Q- = I

K+ ^ R Q+ = I

ü
ý
þ

(33)

Then

(1) The following statements are equivalent
(a) The Toeplitz operator T r

K+ Q*
+

+ T r
Q*- K- is injective.

(b) The Toeplitz operator T r
Q+ K*

+
= T r

K*- Q- is surjective.
(c) All left Wiener± Hopf factorization indices of K+Q*

+ = Q*- K- are non-
negative.

(d) We have

Ker Hr (Q+ )|PHr (K+ ) = Hr (Q+ ) ´ H2
+K+ = {0} (34)

(e) We have

H2
+Q+ + H2

- K+ = L 2 (35)

(f) We have

H2
+K+ ´ H2

- Q+ = {0} (36)

(g) We have

H2
+Q+ + Hr (K+ ) = H2

+ (37)

(h) We have
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Hr (K+ )PHr (Q+ ) = Hr (Q+ ) (38)

(i) All the singular values of the Hankel operator Hr
K+ Q*

+
= Hr

K*- Q- are < 1.
(2) The following statements are equivalent

(a) The Toeplitz operator T c
K+ Q*

+
= T c

Q*- K- is injective.
(b) the Toeplitz operator T c

Q+ K*
+ = T c

K*- Q- is surjective.
(c) All right Wiener± Hopf factorization indices of Q+K*

+ = K*- Q- are non-
negative.

(d) We have

Ker PHc (K- ) |Hc (Q- ) = Hc (Q- ) ´ K- H2
+ = {0} (39)

(e) We have

Hc (K- ) + Q- H2
+ = H2

+ (40)

(f) We have

K- H2
- + Q- H2

+ = L 2 (41)

(g) We have

PHc (Q- )Hc (K- ) = Hc (Q- ) (42)

(h) All the singular values of the Hankel operator Hc
K+ Q*

+
= Hc

K*- Q- are < 1.
(3) The following statements are equivalent

(a) The Toeplitz operator T c
K+ Q*

+ = T c
K*- Q- is surjective.

(b) The Toeplitz operator T c
K+ Q*

+
= T c

K*- Q- is injective.
(c) All right Wiener± Hopf factorization indices of Q+K*

+ = K*- Q- are non-
negative.

(d) We have

Ker PHc (Q- ) |Hc (K- ) = Hc (K- ) ´ Q- H2
+ = {0} (43)

(e) We have

K- H2
+ + Q- H2

- = L 2 (44)

(f) We have

K- H2
+Hc (Q- ) = H2

+ (45)

(g) We have

PHc (K- )Hc (Q- ) = Hc (K- ) (46)

(h) All the singular values of the Hankel operator Hc
K+ Q*

+
= Hc

K*- Q- are < 1.
(4) The following statements are equivalent

(a) The Toeplitz operators T c
Q+ K*

+
+ T c

K*- Q- and T r
Q+ K*

+
= T r

K*- Q- are both
invertible.

(b) All, left and right, Wiener± Hopf factorization indices of Q+K*
+ = K*- Q-

are trivial.
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(c) We have

Hc (K- ) ´ Q- H2
+ = {0}

Hc (K- ) + Q- H2
+ = H2

+

ü
ý
þ

(47)

(d) We have

PHr (K- )Hr (Q- ) = Hr (K- )

PHc (Q- ) Hc (K- ) = Hc (Q- )

ü
ý
þ

(48)

(e) We have

K- H2
- ´ Q- H2

+ = {0}
K- H2

- + Q- H2
+ = L 2

ü
ý
þ

(49)

(f) All singular values of the Hankel operators Hc
q+ K*

+
are less than 1.

dim Ker T c
Q+ K*

+
= dim{f |i Hc

Q+ K*
+

f i = i f i } (50)

Proof:

(1) The equivalence of (a) ± (c) follows from Proposition 8.
(a) Û (d)
We have f Î Ker T r

K+ Q*
+

if and only if 0 = fK+Q*
+P+ , i.e. if and only if

fK+ Î H2
- Q+ , that is if and only if g = fK+ Î H2

- Q+ ´ H2
+K+ . Since K+ is

inner, the equivalence follows.
(e) Þ (g)
Applying P+ to equality (35) yields (37).
(g) Þ (h)
We apply the projection PHr (Q+ ) to equality (37) to get (38).
(h) Þ (a)
Assume Hr (K+ )|PHr (Q+ ) is surjective, i.e. Hr (Q+ )|PHr (K+ ) is injective. This
implies (34), and hence also (a).
(a) Û (i)
Since for any L ¥ matrix A and f Î H2

+ we have

i fAi 2 = i fAP- i 2 + i fAP+ i 2 = i fHr
A i 2 + i f T r

A i 2

it is clear that if A is an all-pass function, i.e. isometric valued, then we have

i f i 2 = i fHr
A i 2 + i f T r

A i 2

In particular we have f Î Ker T r
A if and only if i f i = i fHc

A i . Specializing to
the all-pass function K+Q*

+ = Q*- K- , we get

Ker T r
K+ Q*

+
= {f | i fHr

K+ Q*
+ i = i f i }

In particular T r
K+ Q*

+
is injective if and only if all the singular values of the

Hankel operator Hr
K+ Q*

+
= Hr

Q*- K- are < 1.
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All other statements are proved analogously. h

We would like to point out that, in view of Proposition 9, the statements in parts
(1) and (3) of the previous theorem are equivalent. The equivalence of some of the
relations can be proved directly. As an example we prove the equivalence of (41) and
(35), using the equality (32) and the fact that multiplication by all pass functions is a
unitary map in L 2.

L 2 = K- H2
- + Q- H2

+ = H2
- + K*- Q- H2

+

= H2
- + Q+K*

+H2
+ = Q*

+H2
- + K*

+H2
+

The equality L 2 = Q*
+H2

- + K*
+H2

+ for column spaces is clearly equivalent to the
equality L 2 = H2

+Q+ + H2
- K+ for row spaces.

One other thing worth noting is the close connection between Toeplitz operators
and projection operators. In the context of polynomial models it was put to e� ective
use in Fuhrmann (1981).

The previous theorem was essentially about a special class of Toeplitz operators,
but did not relate to a spectral function or a spectral factorization problem. In that
case, more can be said. Heutistically, based on our assumptions, the number of zeros
of a spectral factor, as measured by Q 6 cannot exceed the number of poles as
measured by K6 . We state the result as a one sided invertibility of the Toeplitz
operators with the symbol equal to the phase function.

Proposition 11: L et U be a p ´ p, rank m0, weakly coercive, spectral function, and
let W 6 , W 6 be the p ´ m0 extremal spectral factors. Then both Toeplitz operators
T c

W - L
+ W- = T c

K+ Q*
+

= T c
Q*- K- and T r

W - L
+ W- are injective.

Proof: For the injectivity of T c
W - L

+ W - we show an explicit left inverse, namely the
map f |® W - L

- P+ W+ f . Indeed, using (20), we compute

W - L
- P+ W+O+ W - L

+ W- f = W - L P+ W+ W - L
+ W- f

= W - L
- P+ W- f = W - L

- W- f = f

The injectivity of T r
W - L

+ W - follows from Proposition 9. h

Corollary 3: With the notation of Proposition 11, we have the following.

(1) The maps Hr (Q+ )|PHr (K+ ) and PHc (K- ) |Hc (Q- ) are injective.
(2) The maps Hr (K+ )|PHr (Q+ ) and PHc (Q- ) |Hc (K- ) are surjective.

Proof: Follows from Proposition 11 and Theorem 1. The second statement
follows by duality. h

5. Rectangular spectral factors

In this section we study the main object of the paper, namely the set W m of all
minimal stable, rectangular spectral factor of size p ´ m for m0 £ m £ p + n. In
particular, we are interested in the parametrization of this set for a given m. We
will study ® rst two of these sets of minimal, stable rectangular spectral factors: those
that are internal (i.e. such that m = m0) and those that are external (in a sense that
will be made precise later). The understanding of these, in a sense opposite, special
cases enables us to fully understand the general rectangular case. Our approach is
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relating the set of spectral factors to the arithmetic of inner functions and their
factorizations. This will also be interpreted later on geometrically.

As in the case of regular spectral factors, the four extremal spectral factors studied
in §3 provide the framework for our analysis of all rectangular spectral factors.

The next proposition studies the embedding of rigid functions in inner ones. This
is a special case of Darlington synthesis [see Dewilde (1976)].

Proposition 12:

(1) Let ^R be a p ´ m0 column rigid function, that is ^R* ^R = I. Then there exists a
p ´ (p - m0) column rigid function ~R such that
(a) R = ( ^R ~R) is inner.
(b) We have the equality of McMillan degrees

d (R) = d ( ^R) (51)
~R is uniquely determined up to a right constant unitary factor.

(2) Let ~R be a m0 ´ p row rigid function, that is ^R ^R* = I. Then there exists a
(p - m0) ´ p row rigid function ~R such that

(a) R =
^R
~R( ) is inner.

(b) We have the equality of McMillan degrees

d (R) = d ( ^R) (52)
~R is uniquely determined up to a left constant unitary factor.

Proof:

(1) Assume ^R* ^R = I, then ^R ^R* £ I. Assume an inner embedding of ^R exists, i.e.
there exists an ~R such that R = ( ^R ~R) is inner. Since R*R = RR* = I, we
have ~R~R* = I - ^E ^R* ³ 0. Thus ~R is a spectral factor of I - ^R ^R*. To mini-
mize the McMillan degree of R, which is clearly bounded below by d ( ^R) , we
take ~R to be the outer spectral factor of I - ^R ^R*.

We show now that in this case

Im H~R Ì Im H ^R (53)

This inclusion is equivalent to

ker H*̂
R Ì ker H*~R (54)

Note that f Î ker H*̂
R if and only if ^R*f Î H2

+ and similarly f Î ker H*~R if and
only if ~R*f Î H2

+ . If the inclusion (54) does not hold, there exists an f Î H2
+

such that ^R*f Î H2
+ and ~R*f = g + h, with g Î H2

+ and 0 /= h Î H2
- . Now

f = ( ^R ~R)
^R*

~R*( ) f = ^R( ^R*f ) + ~R(g + h)

which shows that there exists a non-zero h Î H2
- for which ~Rh Î H2

+ or,
equivalently, ~Rh ^ H2

- . However this implies h ^ ~R*H2
- . Since ~R is row

outer, we have H2
+

~R = H2
+ and hence ~R*H2

- = H2
- . This shows that h = 0,
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contradicting our assumption. Thus the inclusion (53) holds. This inclusion
immediately implies

Im H( ^R ~R) = Im H ^R

and hence, by realization theory, that d ( ( ^R ~R) ) = d ( ^R) .
(2) The proof is similar or can be obtained from the ® rst part by duality con-

siderations. h

We will refer to the extensions obtained in the previous proposition as minimal
inner embeddings.

The next proposition relates the extremal factors to other minimal, stable and
antistable, spectral factors via the use of inner functions. Since inner functions are,
by Beurling’s theorem, intimately related to invariant subspaces, this result opens up
the possibility of a geometric approach to the study of spectral factors.

Proposition 13:

(1) L et W e
- and W e

+ be the extended, stable, minimum and maximum phase re-
spectively, spectral factors. Given any minimal stable spectral factor W, there
exist, essentially unique, inner functions QÂ , QÂ Â , of minimal McMillan degree,
for which

W = W e
- QÂ

W e
+ = WQÂ Â

ü
ý
þ

(55)

The inner functions QÂ , QÂ Â are uniquely determined by the normalization
QÂ ( ¥ ) = QÂ Â ( ¥ )I. We shall refer to the factorization W = W e

- QÂ as an
outer-inner factorization.

(2) L et W e
- and W e

+ be the extended, antistable, minimum and maximum phase
respectively, spectral factors. Given any minimal antistable spectral factor W ,
there exist essentially unique inner functions QÂ , QÂ Â for which

W = W e
- QÂ

W e
+ = WQÂ Â

ü
ý
þ

(56)

The inner functions QÂ , QÂ Â are uniquely determined by the normalization
QÂ ( ¥ ) = QÂ Â ( ¥ )I.

Proof:

(1) Let W be a minimal p ´ m stable spectral factor. Then, by Proposition 1,
there exists an essentially unique row rigid m0 ´ m function ^QÂ for which
W = W-

^QÂ . Let

QÂ =
^QÂ
~QÂ

( )
be the minimal inner extension of ^QÂ . This extension exists by Proposition 12
and is unique up to a constant left unitary factor of the form
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I 0

0 V( )
We clearly have

W = W-
^QÂ = (W- 0)

^QÂ
~QÂ( ) = W e

- QÂ

By Proposition 12, we have d (QÂ ) = d ( ^QÂ ) .
Conversely, let W = W e

- QÂ1 with QÂ1 inner of minimal McMillan degree.
Set

QÂ1 =
^QÂ1
~QÂ1

( )
Then W = W-

^Q1 = W-
^QÂ , which by the left invertibility of W- implies

^QÂ1 ( ^QÂ1)
* = ^QÂ ( ^QÂ )

* = I, it follows by minimality that ^QÂ1 = V ^QÂ for some
inner function V . If d ( ^QÂ1) = d ( ^QÂ ) then this implies that V is necessarily
constant.

(2) The proof is similar and we omit it. h

As a consequence of the previous proposition, we have the following character-
ization of minimal, stable, spectral factors.

Theorem 2: Given a rational spectral function U , let W e
+ be its extended maximum

phase, stable spectral factor. Then W Î H ¥
+ is a minimal, stable, spectral factor if

and only if there exists an inner function QÂ Â such that W = W e
+ (QÂ Â )

*.

Proof: By Proposition 13, if W is a minimal, stable, spectral factor, we have
W = W e

+ (QÂ Â )
* for some inner function QÂ Â .Conversely, assume W = W e

+ (QÂ Â )
* Î H ¥

+ for an inner function QÂ Â . Clearly, W
is a stable spectral factor and it remains to show that it is a minimal factor. Applying
Lemma 3.5.7 in Fuhrmann (1981), we have Im ^Hc

W Ì Im ^Hc
W e

+
and hence

d (W ) = dim Im ^Hc
W £ dim Im ^Hc

W e
+

= d (W e
+ )

In turn, this implies

2d (W e
+ ) = d ( U ) £ 2d (W ) £ 2d (W e

+ )

Thus we must have equality throughout, which proves the minimality of W . h

Proposition 13 dealt with the zeros of a stable or antistable spectral factor. The
next theorem utilizes the DSS factorization to bring in the pole structure of spectral
factors and its relation to zeros.

Theorem 3: L et W be a minimal, p ´ m, stable, spectral factor W, and let

W = W K = W K- * (57)

be its right DSS factorization over H ¥
- . Then

(1) W is a minimal, antistable spectral factor. Moreover
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W = WK- 1 = WK* (58)

is a right DSS factorization of W over H ¥
+ .

(2) L et QÂ , QÂ Â , QÂ , QÂ Â be the inner functions whose existence is guaranteed by
Proposition 13. Then ® gure 4 is commutative.

(3) The following coprimeness conditions hold. Ke
- ^ L QÂ = I, K ^ L QÂ Â = I,

K ^ R QÂ = I, Ke
+ ^ R QÂ Â = I.

Proof:

(1) Since K is inner, W is clearly an antistable, spectral factor. From (57) we get
(58). Since W is a spectral factor, we have

d (W ) £ d (W ) = d (WK- 1) £ d (K*) = d (K) = d (W )

Thus we have equality throughout and W is a minimal spectral factor. This
also shows the right coprimeness of W , K, i.e. (58) is a right coprime DSS
factorization.

(2) The upper triangle of ® gure 4 follows from (15) and (55). Similarly, the lower
triangle follows from (15) and (56). The square is the same as ® gure 2.
Finally, (55), (56) and (57) yield W e

+ = WQÂ Â = W KQÂ Â = W e
- QÂ KQÂ Â

which is the middle part of the diagram.
(3) The ® rst relation follows from the fact that from (56) and (58), we can write

W e
- W (QÂ )

* = W e
- (Ke

- )*. If QÂ and Ke
- were not left coprime, then we could

multiply on the right by the inverse of the common factor, obtaining another
factorization of W e

- ; but then (58) would not be a DSS factorization. A
similar argument applies to the relation W = W e

+ (QÂ Â )
* = WK* [derived

also from (56) and (58)], to W = W e
- QÂ = W K and to W e

+ = WQÂ Â =
W e

+Ke
+ [both from (55) and (57)]. h

We will ® nd the following lemma useful in the sequel.
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Lemma 3: L et W1, W2 be two minimal, stable spectral factors having the right co-
prime DSS factorizations, over H ¥- , given by W i = W iKi. Assume W2 = W1T for
some inner function T, and assume T is the inner function with smallest McMillan
degree such that the relation holds (in the sense of Proposition 12). Then there
exists a unique inner function T for which K1T = TK2 and W2 = W1 T .

Proof: By our assumption we have W2K2 = W2 = W1 T = W1K1 T . Thus we have
two right DSS factorizations of W2 of which W2K2 is right coprime. There exists
therefore a unique inner function T for which W1 = W2 T* and K1T = TK2. This
also implies the equality W1T = W2. h

The rigid functions, characterized by Proposition 13, can be further factored and
this leads to a ® ner analysis of the set of spectral factors.

Thus we consider next the subsidiary factorizations
^QÂ = ^QÂ1

^QÂ2
^QÂ Â = ^QÂ Â2

^QÂ Â1

ü
ý
þ

(59)

Here ^QÂ1,
^QÂ Â1 are m0 ´ m0 inner whereas ^QÂ2,

^QÂ Â2 are right and left outer, i.e. are right
and left invertible respectively over H ¥

+ . That such factorizations are possible is a
direct result of Beurling’s theorem. We will say that ^QÂ1 and ^QÂ Â1 describe the internal
antistable and stable zeros respectively of W , whereas ^QÂ2 and ^QÂ Â2 describe the
external antistable and stable zeros respectively of W . We shall refer to the factor-
izations (59) as the internal ± external and external± internal factorizations of ^QÂ and
^QÂ Â respectively. The terminology is ® tting as the factorizations in (59) are inner±

outer and outer± inner factorizations.
We recall that we need not deal with rigid functions if we utilize the results of

Proposition 13. Let W be a p ´ m minimal stable spectral factor. Let W e
- , W e

+ be the
appropriately extended, i.e. of dimension p ´ m, extremal spectral factors. The exten-
sion is obtained by adding m - m0 zero columns to W- and W+ respectively. Let QÂ ,
QÂ Â be the inner functions whose existence is guaranteed by Proposition 13. Thus

QÂ =
^QÂ
~QÂ

( ) , QÂ Â = ( ^QÂ Â
~QÂ Â )

with ~QÂ ,
~QÂ Â given by the embedding procedure described in Proposition 12.

The factorizations (59) induce the following factorizations

QÂ =
^QÂ1 0

0 I( )
^QÂ2
~QÂ

( ) = QÂ1QÂ2 (60)

and

QÂ Â = ( ^QÂ Â2
~QÂ Â )

^QÂ Â1 0

0 I( ) = QÂ Â2 QÂ Â1 (61)

We shall refer to these factorizations as internal± external and external± internal fac-
torizations of QÂ and QÂ Â respectively.

The interesting phenomena emerging in the study of rectangular spectral factors
is the fact that the internal zeros, namely the zeros parametrized by the inner func-
tions QÂ1 and QÂ Â1 no longer account for all the (stable) zeros of W- or the (antistable)
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zeros of W+ . These are measured by the inner function Q+ . So some zeros have been
externalized. This is a central theme in the parametrization of the set of stable
spectral factors. The extreme situation is encountered in the set of external factors,
a class that will be introduced in De® nition 4.

The following theorem analyses the situation in the general case, and brings in a
new inner function. It will be seen later that this inner function is a measure of the
number of external zeros of the spectral factor. A geometric interpretation of this
inner function in terms of reachability subspaces will be given in a subsequent paper.

We turn our attention now to the study of arbitrary, minimal p ´ m spectral
factors. Essentially, the next theorem provides a parametrization of the set of all
p ´ m, minimal, stable spectral factors. This will be made explicit in Theorem 7.

Theorem 4: L et U be a p ´ p, rational spectral function of rank m0. L et W be a
minimal, p ´ m, stable spectral factor. L et W = W K be the DSS factorization over
H ¥

- . L et Q+ , Q- be the m0 ´ m0 inner functions for which

W- Q+ = W+

W- Q- = W+

ü
ý
þ

(62)

Let QÂ , QÂ Â , QÂ , QÂ Â be determined by Proposition 13 have the internal ± external fac-
torizations

QÂ = QÂ1QÂ2, QÂ = QÂ1QÂ2 (63)

and the external± internal factorizations

QÂ Â = QÂ Â2 QÂ Â1 , QÂ Â = QÂ Â2 QÂ Â1 (64)

Then

(1) (a) We have QÂ1 is the greatest common left inner factor of QÂ and Qe
+ and QÂ Â1

is the greatest common right inner factor of QÂ Â and Qe
+ . We have QÂ1 is the

greatest common left inner factor of QÂ and Qe
+ and QÂ Â1 is the greatest

common right inner factor of QÂ Â and Qe
+ .

(b) QÂ Â1 is the greatest common right inner factor of QÂ Â and Qe
- and QÂ Â1 is the

greatest common right inner factor of QÂ Â and Qe
+ .

(2) We have

QÂ QÂ Â =
Q+ 0

0 R( ) (65)

with R inner. We have

QÂ QÂ Â =
Q- 0

0 R( ) (66)

with R inner.
(3) There exists a unique inner function Q such that

Qe
+ = QÂ1QQÂ Â1 (67)

A similar factorization holds for Qe
+ , namely
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Qe
+ = QÂ1QQÂ Â1 (68)

(4) We have the following equalities

Ke
- QÂ = QÂ K

QÂ Â K
e
+ = KQÂ Â

ü
ý
þ

(69)

Here Ke
- , QÂ are left coprime and QÂ , Kright coprime. Similarly, K, QÂ Â are left

coprime and Ke
+ , QÂ Â right coprime.

(5) De® ne, after L indquist and Picci (1991),

W0- = W e
- QÂ1

W0+ = W e
+ (QÂ Â1 )*

ü
ý
þ

(70)

Then we have

W = W0- QÂ2

WQÂ Â2 = W0+

ü
ý
þ

(71)

(6) Let

W0- = W0- K0-

W0+ = W0+K0+

ü
ý
þ

(72)

be right coprime DSS factorizations over H ¥
- . Then

Ke
- QÂ1 = QÂ1K0-

QÂ Â1 Ke
+ = K0+QÂ Â1

ü
ý
þ

(73)

and

K0- Q = QK0+ (74)

(7) We have

QÂ KQÂ Â =
Q- K+ 0

0 RW( ) (75)

with RW inner, and moreover

R = R = RW (76)

(8) (a) The inner functions Q and QÂ2 are left coprime and Q and QÂ Â2 are right
coprime.

(b) The inner functions Q and QÂ2 are left coprime and Q and QÂ Â2 are right
coprime.

(c) The inner functions QÂ2, Re are left coprime and QÂ Â2 , Re are right coprime.
(d) The inner functions QÂ2, Re are left coprime and QÂ Â2 , Re are right coprime.

(9) The inner functions Q, Q, QÂ2, QÂ Â2 , QÂ2, QÂ Â2 , R are all equivalent.
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(10) The inner functions Ke
- , K0- , K, K0+ , Ke

+ are all equivalent.
(11) Figure 5 is commutative.

Proof:

(1) (a) Recall that in the factorization ^QÂ = ^QÂ1
^QÂ2 the factor ^QÂ2 is outer. Since

^QÂ
^QÂ Â = Q+ , ^QÂ1 is a left inner factor of Q+ . This implies that

QÂ =
^QÂ1 0

0 I( )
is a common left inner factor of QÂ , Qe

+ . Any left inner factor of Qe
+ is, up

to a constant right unitary factor, of the form

^Q 0

0 I( )
Since ^QÂ2 is outer, it is clear that QÂ1 is the greatest common left inner
factor of QÂ and Qe

+ . The second assertion is proved analogously.
(b) The second part follows by duality considerations, working over H ¥

- and
starting the analysis from W+ .

(2) Note that from

QÂ =
^QÂ
~QÂ

( ) , QÂ Â ( ^QÂ Â
~QÂ Â )

we obtain

QÂ QÂ Â =
^QÂ
~QÂ( ) ( ^QÂ Â

~QÂ Â ) =
^QÂ

^QÂ Â
^QÂ

~QÂ Â
~QÂ

^QÂ Â
~QÂ

~QÂ Â( )
=

Q+ 0

0 R( )
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Here we used the fact that W-
^QÂ

^QÂ Â = W+ and hence ^QÂ
^QÂ Â = Q+ . Since

QÂ QÂ Â is inner, it follows, necessarily, that ^QÂ
~QÂ Â = 0 and ~QÂ

^QÂ Â = 0. Finally,
this also implies that R = ~QÂ

~QÂ Â is inner.
(3) Note that ^QÂ

~QÂ Â = 0 implies ^QÂ2
~QÂ Â = 0 and ~QÂ

^QÂ Â = 0 implies ~QÂ
^QÂ Â2 = 0.

Using this, we compute

W e
+ = W e

- QÂ QÂ Â = W e
-

^QÂ1 0

0 I

æ
è

ö
ø

^QÂ2
~QÂ

æ
è

ö
ø

( ^QÂ Â2
~QÂ Â )

^QÂ Â1 0

0 I

æ
è

ö
ø

= W e
-

^QÂ1 0

0 I

æ
è

ö
ø

^QÂ2
^QÂ Â2

^QÂ2
~QÂ Â

~QÂ
^QÂ Â2

~QÂ
~QÂ Â

æ
è

ö
ø

^QÂ Â1 0

0 I

æ
è

ö
ø

= W e
-

^QÂ1 0

0 I

æ
è

ö
ø

^Q 0

0 R

æ
è

ö
ø

^QÂ Â1 0

0 I

æ
è

ö
ø

But we also have

W e
+ = W e

-
Q+ 0

0 I( )
This implies the equality Q+ = ^QÂ1

^Q ^QÂ Â1 .
(4) Since W is a minimal, stable spectral factor, we have W = W-

^QÂ =
W- K-

^QÂ . But we also have W = W K = W-
^

QÂ K. Using the left invertibility
of W- and comparing the two expressions, we have

K-
^QÂ =

^
QÂ K (77)

Since K is the minimal inner function that stabilizes W , then necessarily ^QÂ
and K are right coprime. Clearly, this implies the right coprimeness of QÂ and
K. Considering the respective Bezout equations, this shows also the right
coprimeness of QÂ and K. Similarly, K*- is the minimal conjugate inner
function that destabilizes W- , which implies the left coprimeness of K-
and

^
QÂ . Equation (77), together with the coprimeness conditions, shows

that K- and K are equivalent inner functions. In particular, they have the
same McMillan degree. Also it follows that the McMillan degrees of ^QÂ ,

^
QÂ

are equal. Now we look at

QÂ =
^QÂ
~QÂ

( ) and

^
QÂ
~
QÂ

æ
è

ö
ø

which are both minimal McMillan degree inner completions. So d (QÂ ) =
d ( ^QÂ ) = d (

^
QÂ ) = d (QÂ ) . This shows that

QÂ K =
^

QÂ K
~
QÂ K

æ
è

ö
ø =

K-
^QÂ

~
QÂ K

æ
è

ö
ø
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is a minimal inner extension of
^

QÂ K. Since a minimal inner extension is
unique up to a left constant inner factor which we absorb into

^
QÂ , we con-

clude that ~QÂ =
~
QÂ K. Thus the ® rst equality in (69) follows.

The second equality follows by duality considerations, working over H ¥
-

and starting the analysis for W+ .
(5) We compute W = W e

- QÂ = W e
- QÂ1QÂ2 = W0- QÂ2. Similarly, W e

+ = WQÂ Â =
WQÂ Â2 QÂ Â1 , and so W0+ = W e

+ (QÂ Â1 )* = WQÂ Â2 .
(6) The equalities in (73) are a special case of those in (69), replacing W by W0-

for the ® rst one and by W0+ for the second. The existence of Q follows also
from that of Q by an application of Lemma 3.

(7) Using the equalities (69), we have

Ke
- QÂ QÂ Â = QÂ KQÂ Â = QÂ QÂ Â K

e
+ .

Substituting equalities (65) and (66), we get

QÂ KQÂ Â = Ke
- QÂ QÂ Â = Ke

-
Q+ 0

0 R( ) =
K- Q+ 0

0 R( )
= QÂ QÂ Â K

e
+ =

Q- 0

0 R( ) Ke
+ =

Q- K+ 0

0 R( )
Since we have the equality K- Q+ = Q- K+ , it follows that R = R and that

QÂ KQÂ Â =
Q- K+ 0

0 R( )
(8) (a) Since QÂ1 is the greatest common left inner factor of QÂ and Qe

+ , it follows
that QÂ2, QQÂ Â1 are left coprime and so are QÂ2, Q. In a similar way, the
right coprimeness of the pair QÂ Â2 , Q is proved.

(b) In much the same way, the left coprimeness of QÂ2, Q and the right
coprimeness of QÂ Â2 , Q is also proved.

(c) A common left inner factor of

QÂ2 =
^QÂ
~QÂ

( ) and
I 0

0 R( )
is, up to a right constant unitary factor, of the form

I 0

0 P( )
If P were non-trivial, it would contradict the assumption that QÂ is
the minimal McMillan degree extension of ^QÂ . Hence the right coprime-
ness.

(d) The proof is similar.
(9) We use the equalities
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QÂ2QÂ Â2 =
^Q 0

0 R( ) =
^Q 0

0 I( ) I 0

0 R( ) =
I 0

0 R( )
^Q 0

0 I( )
QÂ2QÂ Â2 =

^
Q 0

0 R( ) =
^

Q 0

0 I( ) I 0

0 R( ) =
I 0

0 R( )
^

Q 0

0 I( )

üïïïïïï
ýïïïïïïþ

(78)

These equalities, together with the proven coprimeness conditions, imply
now the equivalences

QÂ2 .
^Q 0

0 I

æ
è

ö
ø .

I 0

0 R( ) . Q . R

QÂ2 .
^

Q 0

0 I

æ
è

ö
ø .

I 0

0 R( ) . Q . R

By transitivity of the equivalence of inner functions, the statement is proved.
(10) The equality KQÂ Â = QÂ Â K

e
+ , the right coprimeness of QÂ Â , Ke

+ and the left
coprimeness of K, QÂ Â imply the equivalence of K and Ke

+ . The rest follows
by the transitivity of equivalence.

(11) Equalities (63), (64), (69), (73), (70), (71), (74) taken together, yield the com-
mutativity of the diagram. h

De® nition 3: We denote by p 1 the projection of C
m on the subspace of all vectors

whose last m - m0 coordinates vanish, and by p 2 its complement, i.e. p 2 := I - p 1.

Corollary 4: Given the factorizations (65) and (66) with Q 6 both m0 ´ m0 inner
functions, then we have

Hr (QÂ Â ) p 1 Ì Hr (Q+ )

Hr (QÂ Â ) p 1 Ì Hr (Q- )

ü
ý
þ

(79)

Proof: The factorization (65) can be written as QÂ QÂ Â = Qe
+ Re = ReQe

+ and there-
fore we have

Hr (QÂ QÂ Â ) = Hr (QÂ )QÂ Â % Hr (QÂ Â ) = Hr (R
e) % Hr (Q

e
+ )

and hence the inclusion Hr (QÂ Â ) Ì Hr (R
e) % Hr (Q

e
+ ) . Applying the projection p 1

to this inclusion, we get Hr (QÂ Â ) p 1 Ì Hr (Q+ ) . The other inclusion is proved
similarly. h

Theorem 4 is general but two special cases need to be pointed out. This leads us
to the following de® nition.

De® nition 4: Let W be a p ´ m minimal, stable spectral factor and let QÂ , QÂ Â be
the minimal inner functions characterized in Proposition 13.

(1) We say W is an internal spectral factor if we have QÂ QÂ Â = Qe
+ .

(2) We say W is an external spectral factor if we have
(a) QÂ , Qe

+ are left coprime, and
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(b) QÂ Â , Qe
+ are right coprime.

We point out that our de® nition of external spectral factors di� ers from the
way Lindquist and Picci use this term. In their work they equate external with
non-internal.

A description of factorizations of inner functions is clearly needed. A complete
characterization of all factorizations of inner functions is available in terms of non-
negative de® nite solutions of a homogeneous Riccati equation or in terms of invar-
iant subspaces of a linear transformation. For more on this, see Willems (1971),
Finesso and Picci (1982), Picci and Pinzoni (1994) and Fuhrmann (1995).

External and internal spectral factors are obviously de® ned in an extremely
opposite way. The analysis of the general spectral factors will depend to a large
extent on a full understanding of the classes of both external and internal spectral
factors.

The next proposition is a characterization of minimal, stable, internal spectral
factors.

Proposition 14: Let W be a p ´ m minimal, stable spectral factor. L et QÂ , QÂ Â be
the inner functions determined via Proposition 13. Then W is an internal spectral
factor if and only if we have

QÂ QÂ Â = Qe
+ =

Q+ 0

0 I( ) (80)

and, up to a right unitary factor for QÂ and the inverse left factor for QÂ Â , the factor-
izations (80) are in a bijective correspondence with normalized inner factorizations of
Q+ , that is factorizations Q+ = Q1Q2 with Qi normalized inner functions.

Proof: From W = W e
- QÂ and the fact that the last m - m0 columns of both W

and W e
- are zero, it follows that

QÂ =
Q1 0

0 I( )
for some m0 ´ m0 inner function Q1. A similar argument holds for QÂ Â . Clearly, we
have Q1Q2 = Q+ . h

Corollary 5: L et W be a p ´ m0 minimal, stable spectral factor. Then W is necess-
arily internal.

Proof: As in the proof of Proposition 14, we have W = W e
- QÂ with

QÂ =
Q1 0

0 I( )
for some m0 ´ m0 inner function Q1. Necessarily Q1 is a left factor of Q+ , i.e. W is
internal. h

From the proof of Theorem 4 it becomes clear that minimal, stable, external
spectral factors of size p ´ m of a given spectral density U are related to factoriza-
tions of an inner function of the form
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Q 0
0 R( )

having special coprimeness properties. We proceed to formalize these properties in
the following de® nition.

De® nition 5: Let Q be an m0 ´ m0 inner function and let R be an
(m - m0) ´ (m - m0) inner function equivalent to Q. We say that a factorization

QÂ QÂ Â =
Q 0
0 R( ) (81)

into the product of two m ´ m inner functions is a balanced factorization if QÂ is left
coprime and QÂ Â right coprime with both

Qe =
Q 0
0 I( ) and

I 0
0 R( )

Note that for the factorization (81) to be balanced, we need four coprimeness
conditions. However, two of them are trivially satis® ed. In fact, by the construction
in Theorem 3, we have the left coprimeness of QÂ , Re as well as the right coprimeness
of QÂ Â , Re.

In the following we will need the next lemma.

Lemma 4: L et

QÂ QÂ Â =
Q 0
0 R( ) (82)

L et, given an inner function Q, the unitary map ¿~Q : Hr (Q) ® Hr (
~Q) be de® ned by

( f ¿~Q) (s) = f (- s) ~Q (s) (83)

Here ~Q (s) = Q (s)*. Then

(1) Figures 6 and 7 are commutative
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(2) We have

Hr (QÂ Â )¿~QÂ Â
~QÂ

= Hr (
~QÂ Â )

~QÂ
Hr (QÂ )QÂ Â ¿~QÂ Â

~QÂ
= Hr (

~QÂ )

ü
ý
þ

(84)

Proof:

(1) From the factorization (82) it follows that

¿~QÂ Â
~QÂ

= ¿ ~Q+ 0

0 ~R( )
= ¿~Qe

+
% ¿~Re

Moreover, since Hr (QÂ QÂ Â ) = Hr (Q
e
+ ) % Hr (R

e) , any f Î Hr (QÂ QÂ Â ) can be
written as f = ( f1 f2) with f1 Î Hr (Q

e
+ ) and f2 Î Hr (R

e) . With this we
compute

F¿~QÂ Â
~QÂ

p 1 = ( f1 f2) (¿~Qe
+

% ¿~Re ) p 1

= ( f1¿~Qe
+

f2¿~Re ) p 1

= f1¿~Qe
+

= f p 1¿~Qe
+

The commutativity of the second diagram is proved similarly.
(2) Let f Î Hr (QÂ Â ) . Then f ¿~QÂ Â

~QÂ
= ( f ¿~QÂ Â

) ~QÂ . Since Hr (QÂ Â )¿~QÂ Â
= Hr (

~QÂ Â ) , the
® rst equality is proved. The proof of the second equality is similar. h

The following proposition is a geometric characterization of balanced factoriza-
tions. It is advisable, in following the arguments, to refer to ® gure 5.

Proposition 15: L et W be a minimal, stable spectral factor. Then, with the notation
of Theorem 4, we have

(1) The factorization

QÂ2QÂ Â2 =
Q 0

0 R( ) (85)

is a balanced factorization.
(2) We have

Hr (QÂ Â2 ) p 1 = Hr (Q)

Hr (QÂ Â2 ) p 2 = Hr (R)

ü
ý
þ

(86)

(3) We have

Hr (QÂ Â2 ) p 1 = Hr (Q)

Hr (QÂ Â2 ) p 2 = Hr (R)

ü
ý
þ

(87)

(4) We have
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p 1Hc (QÂ2) = Hc (Qe)

p 2Hc (QÂ2) = Hc (Re) } (88)

(5) We have

Hr (QÂ Â ) p 1 = Hr (QQÂ Â1 )

Hr (QÂ )QÂ Â p 1 = Hr (QÂ1)QÂ Â1 Q } (89)

(6) We have

Hr (QÂ Â ) p 2 = Hr (R)

Hr (QÂ )QÂ Â p 2 = Hr (R) } (90)

(7) We have

Hr (QÂ Â ) p 2 = Hr (R)

Hr (QÂ )QÂ Â p 2 = Hr (R) } (91)

(8) We have

Hr (QQÂ Â1 ) ´ Hr (QÂ1Q)QÂ Â1 = Hr (Q)QÂ Â1 (92)

or equivalently

Hr (QÂ Â ) p 1 ´ Hr (QÂ )QÂ Â p 1 = Hr (Q)QÂ Â1
(9) The reduced maps Hr (QÂ Â )|p 1 and Hr (QÂ )QÂ Â |p 1 are injective.

(10) The reduced maps Hr (QÂ Â )|PHr (Qe
+ ) and Hr (QÂ )QÂ Â |PHr (Qe

+ ) are injective, and
moreover, we have

Hr (QÂ Â )PHr (Qe
+ ) = Hr (QQÂ Â1 )

Hr (QÂ )QÂ Â PHr (Qe
+ ) = Hr (QÂ1Q)QÂ Â1

ü
ý
þ

(93)

(11) We have

Hr (Q
e
+ )PHr (QÂ Â )

= Hr (QÂ Â ) (94)

i.e. Hr (Q
e
+ )|PHr (QÂ Â )

is surjective.

Proof:

(1) That the factorization (85) is balanced was proved in Theorem 4.
(2) From the factorization (85) it follows that

Hr (QÂ Â2 ) Ì Hr (QÂ2QÂ Â2 ) = Hr (Q
e) % Hr (R

e) (95)

and hence

Hr (QÂ Â2 ) p 1 Ì Hr (QÂ2QÂ Â2 ) = Hr (Q
e)

From the fact that the factorization is balanced, we conclude the equivalence
of the inner functions QÂ Â2 and Q, and hence it su� ces to show that
Ker Hr (QÂ Â2 )|p 1 = {0}. Indeed, assume f = ( f1 f2) Î Hr (QÂ Â2 ) and f p 1 = 0,
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i.e. f1 = 0. Thus, from (95), necessarily (0 f2) Î Hr (R
e) . So

f Î Hr (QÂ Â2 ) ´ Hr (R
e) . But this intersection is zero by the right coprimeness

of QÂ Â2 and Re.
(3) This is proved in a completely analogous way to the proof of the previous

assertion.
(4) This is proved in a completely analogous way to the proof of the previous

assertion.
(5) From QÂ Â = QÂ Â2 QÂ Â1 it follows that Hr (QÂ Â ) = Hr (QÂ Â2 )QÂ Â1 % Hr (QÂ Â1 ) . We apply

now p 1 to this equality, noting that p 1 commutes with multiplication by QÂ Â1
and that Hr (QÂ Â1 ) p 1 = Hr (QÂ Â1 ) . Hence

Hr (QÂ Â ) p 1 = Hr (QÂ Â2 )QÂ Â1 p 1 + Hr (QÂ Â1 )

= Hr (QÂ Â2 ) p 1QÂ Â1 % Hr (QÂ Â1 )

= Hr (Q)QÂ Â1 % Hr (QÂ Â1 ) = Hr (QQÂ Â1 )

Here we used the previously established equality Hr (QÂ Â2 ) p 1 = Hr (Q) .
To prove the second equality in (89), we apply the unitary map ¿~Q+ to the

® rst, using the commutativity of ® gure 6. We compute

Hr (
~QÂ Â1

~Q) ~QÂ1 = Hr (QQÂ Â1 )¿~Q+
= Hr (QÂ Â ) p 1¿~Q+

= Hr (QÂ Â )¿~QÂ Â
~QÂ

p 1 = Hr (
~QÂ Â )

~QÂ p 1

This is equivalent to the statement, using duality and starting from the
factorization

~QÂ Â
~QÂ =

~Q+ 0

0 ~R( )
(6) As before, from QÂ Â = QÂ Â2 QÂ Â1 it follows that Hr (QÂ Â ) = Hr (QÂ Â2 )QÂ Â1 % Hr (QÂ Â1 ) .

To this equality we apply now the projection p 2 and use the second equality
in (86) to get

Hr (QÂ Â ) p 2 = Hr (QÂ Â2 ) (QÂ Â1 p 2 = Hr (QÂ Â2 ) p 2 = Hr (R)

Using Lemma 4, we apply to the previous equality the unitary map ¿~R to get

Hr (
~R) = Hr (R)¿~R = Hr (QÂ Â ) p 2¿~R

= Hr (QÂ Â )¿~QÂ Â
~QÂ

p 2 = Hr (
~QÂ Â )

~QÂ p 2

This is equivalent to the second equality.
(7) This is proved analogously.
(8) Follows directly from the equalities in (89). In fact

Hr (QQÂ Â1 ) ´ Hr (QÂ1Q)QÂ Â1 = [Hr (Q)QÂ Â2 % Hr (QÂ Â2 )]́ [Hr (QÂ1)QQÂ Â2 % Hr (Q)QÂ Â2 ]
= Hr (Q)QÂ Â2

as clearly Hr (QÂ Â2 ) ^ Hr (QÂ1)QQÂ Â2 .
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(9) Using (89), it su� ces to show that dimHr (QÂ Â ) = dim Hr (QQÂ Â1 ) . Now
QÂ Â = QÂ Â2 QÂ Â1 and so Hr (QÂ Â ) = Hr (QÂ Â2 )QÂ Â1 % Hr (QÂ Â1 ) , which implies the
equality dimHr (QÂ Â ) = deg det QÂ Â2 + deg det QÂ Â1 . Now, the fact that the fac-
torization (85) is balanced implies the equality deg det QÂ Â2 = deg det Q. Since
dim Hr (QQÂ Â1 ) = degdet Q + deg det QÂ Â1 the result follows.

(10) Clearly, Hr (Q+ ) Ì H2
+ p 1 and therefore PHr (Q+ ) = p 1PHr (Q+ ) . Applying this to

the equality Hr (QÂ Â ) p 1 = Hr (QQÂ Â1 ) , and noting that Hr (QQÂ Â1 ) Ì Hr (Q+ ) , we
get

Hr (QÂ Â )PHr (Q+ ) = Hr (QÂ Â ) p 1PHr (Q+ )

= Hr (QQÂ Â1 )PHr (Q+ ) = Hr (QQÂ Â1 )

As we saw that dimHr (QÂ Â ) = dim Hr (QQÂ Â1 ) , the statement is proved.
(11) Given a Hilbert space H with subspaces U, V , let PU, PV be the respective

orthogonal projections. Then a simple computation yields

(PV | U)* = PU | V (96)

In particular, if PV | U is injective, PU | V is surjective. Thus the statement
follows from the preceding one. h

We wish to emphasize one point which may be confusing exactly to those readers
that have some intuition in the functional approach to geometric control theory.
Given two arbitrary inner functions QÂ Â and Qe

+ of the same size, then, in general,
Hr (QÂ Â )PHr (Qe

+ ) is not a coinvariant subspace of Hr (Q
e
+ ) , but, as will be shown in a

forthcoming paper, a controlled invariant, inner stabilizable subspace with respect to
a natural controllable pair associated with Qe

+ . Equation (93) shows that under our
assumptions and the construction of QÂ , QÂ Â in Proposition 13, this subspace is
actually coinvariant. This observation is crucial for the later analysis of the partial
ordering of the set of minimal, stable spectral factors. Also, we point out that the
question of existence of balanced factorizations will be addressed in §7.

Corollary 6: With the notation of Proposition 15, we have

(1)

Hr (QÂ Â ) p 1 = Hr (QÂ Â )PHr (Qe
+ ) = Hr (QQÂ Â1 )

Hr (QÂ )QÂ Â p 1 = Hr (QÂ )QÂ Â PHr (Qe
+ ) = Hr (QÂ1Q)QÂ Â1

ü
ý
þ

(97)

and

Hr (QÂ Â ) p 2 = Hr (QÂ Â )PHr (R) = Hr (R)

Hr (QÂ )QÂ Â p 2 = Hr (QÂ )QÂ Â PHr (R) = Hr (R)

ü
ý
þ

(98)

(2)

Hr (QÂ Â ) p 1 = Hr (QÂ Â )PHr (Qe- ) = Hr (QQÂ Â1 )

Hr (QÂ )QÂ Â p 1 = Hr (QÂ )QÂ Â PHr (Qe
- ) = Hr (QÂ1Q)QÂ Â1

ü
ý
þ

(99)
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and

Hr (QÂ Â ) p 2 = Hr (QÂ Â )PHr (R) = Hr (R)

Hr (QÂ2)QÂ Â p 2 = Hr (QÂ )QÂ Â PHr (R) = Hr (R)

ü
ý
þ

(100)

Proof: (97) follows from equations (89) and (93).
To prove (98) we use the equalities (90). Note that the inclusion Hr (R) Ì H2

+ p 2

implies f p 2PHr (R) = fPHr (R) for all f Î H2
+ . Therefore

Hr (QÂ )QÂ Â PHr (R) = Hr (QÂ )QÂ Â p 2PHr (R) = Hr (R)PHr (R) = Hr (R)

and similarly

Hr (QÂ Â )PHr (R) = Hr (QÂ Â ) p 2PHr (R) = Hr (R)PHr (R) = Hr (R) h

Corollary 7: With the notation of Proposition 15, we have

(1) Hr (QÂ Â ) p 1 = Hr (Q
e
+ ) if and only if QÂ , Qe

+ are left coprime.
(2) Hr (QÂ )QÂ Â p 1 = Hr (Q

e
+ ) if and only if QÂ Â , Qe

+ are right coprime.
(3) Both equalities hold if and only if W is external.

We saw that, given a minimal, stable spectral factor W , the inner functions QÂ1
and QÂ Â1 parametrize the number of internal antistable and stable zeros of W respect-
ively. Thus the previous corollary can be restated in these terms.

Corollary 8: L et W be as in Proposition 15. Then

(1) Hr (QÂ Â ) p 1 = Hr (Q
e
+ ) if and only if W has no internal antistable zeros.

(2) Hr (QÂ Â ) p 2 = Hr (R
e) if and only if W has no internal stable zeros.

(3) W is an external spectral factor if and only if the factorization (65) is balanced
which in turn is equivlent to the conditions

Hr (QÂ Â ) p 1 = Hr (Q
e
+ )

Hr (QÂ Â ) p 2 = Hr (Re)

The previous results dealt with the geometry of coinvariant and semiinvariant
subspaces related to the zeros of a spectral factor W , i.e. to the inner functions
appearing in Theorem 4. The situation gets more intricate as soon as we add to
this the pole structure. This means that we also consider the DSS factorizations of
the spectral factor W , that is we study also spaces associated with the inner function
K. Of particular interest is, using the notation of Theorem 4, the space Hr (K)QÂ Â
which we associate with the spectral factor W . The full study of these spaces will be
given in § 6. The following results, which re¯ ect some of the results of Corollary 6 will
be used in later sections.

Lemma 5: With the notation of Theorem 4, and assuming the factorizations

QÂ QÂ Â =
Q+ 0

0 R( ) and QÂ QÂ Â =
Q- 0

0 R( )
are balanced, we have
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(1) The restricted projection map Hr (QÂ )QÂ Â |PHr (K)QÂ Â
is injective. Equivalently

Hr (K)QÂ Â PHr (QÂ )QÂ Â
= Hr (QÂ )QÂ Â (101)

(2) The restricted projected map Hr (R
e)|PHr (K)QÂ Â

is injective. Equivalently

Hr (K)QÂ Â PHr (Re) = Hr (R
e) (102)

(3) We have

Hr (K)QÂ Â p 2 = Hr (R
e) (103)

(4) The restricted projection map Hr (QÂ Â )K
e
+ |PHr (K)QÂ Â

is injective. Equivalently

Hr (K)QÂ Â PHr (QÂ Â )K
e
+

= Hr (QÂ Â )K
e
+ (104)

Proof:

(1) We show (101). By Corollary 3, we know that

Hr (K
e
+ )PHr (Qe

+ ) = Hr (Q
e
+ ) (105)

Now Hr (K)PHr (QÂ )
= Hr (QÂ ) if and only if Hr (K)QÂ Â PHr (QÂ )QÂ Â

= Hr (QÂ )QÂ Â .
Since Hr (QÂ Â ) is orthogonal to both Hr (K)QÂ Â and Hr (QÂ )QÂ Â , the last equal-
ity is equivalent to Hr (KQÂ Â )PHr (QÂ QÂ Â )

= Hr (QÂ QÂ Â ) or to

Hr (KQÂ Â )PHr

Q+ 0

0 R( ) = Hr (QÂ Â K
e
+ )P

Hr

Q+ 0

0 R( ) = Hr

Q+ 0

0 R( )
Thus, it su� ces to show that

Hr (QÂ Â K
e
+ )PHr (Qe

+ ) = Hr (Q
e
+ ) (106)

and

Hr (QÂ Â K
e
+ )PHr (Re) = Hr (R

e) (107)

Using the orthogonality of Hr (K
e
+ ) and Hr (R

e) , we compute

Hr (QÂ Â K
e
+ )PHr (Re) = [Hr (QÂ Â )K

e
+ % Hr (K

e
+ )]PHr (Re) = Hr (QÂ Â )K

e
+PHr (Re)

= Hr (QÂ Â )PHr (Re ) = Hr (R
e)

Here we used (100).
Similarly, using (105),

Hr (QÂ Â K
e
+ )PHr (Qe) = [Hv (QÂ Â )K

e
+ % Hr (K

e
+ )]PHr (Qe) É Hr (K

e
+ )PHr (Qe) = Hr (Q

e)

As the opposite inclusion is trivially satis® ed, we have the equality.
(2) Since the subspaces Hr (K)QÂ Â and Hr (QÂ Â ) are orthogonal, we have

Hr (K)QÂ Â |PHr (QÂ Â )
= 0. Using this, as well as equality (101), we

compute
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Hr (K)QÂ Â PHr (QÂ QÂ Â )
= Hr (K)QÂ Â PHr (QÂ )QÂ Â % Hr (QÂ Â )

= Hr (K)QÂ Â [PHr (QÂ )QÂ Â
+ PHr (QÂ Â )]

= Hr (K)QÂ Â PHr (QÂ )QÂ Â
= Hr (QÂ )QÂ Â

This can be rewritten as

Hr (K)QÂ Â PHr
Q+ 0
0 R( )

= Hr (QÂ )QÂ Â

To the last equality we apply the projection PHr (R) , noting that, for all
f Î H2

+ , we have

fP
Hr

Q+ 0
0 R( )

PHr (R) = fPHr (R)

to obtain

Hr (K)QÂ Â PHr (R) = Hr (K)QÂ Â PHr
Q+ 0

0 R( ) PHr (R)

= Hr (QÂ )QÂ Â PHr (R) = Hr (R)

In the last line we used (98).
(3) The inclusion

Hr (K)QÂ Â Ì Hr
K- Q+ 0

0 R( )
implies the equality

Hr (K)QÂ Â = Hr (K)QÂ Â PHr
K- Q+ 0

0 R( )
So, using (102), we compute

Hr (K)QÂ Â p 2 = Hr (K)QÂ Â PHr
K- Q+ 0

0 R( ) p 2

= Hr (K)QÂ Â [PHr (Ke- Qe
+ ) + PHr (Re)]p 2

= Hr (K)QÂ Â PHr (Re) p 2 = Hr (R
e) p 2 = Hr (R

e)

(4) The proof is analogous to the proof of the ® rst statement and we omit it. h

The previous result can have many equivalent restatements. Intuitively, they all
state that there is an excess of poles over zeros.

Corollary 9: L et W be a minimal, stable spectral factor. Then with the notation of
Theorem 4,

(1) The Toeplitz operator T r
K(QÂ )

* = T r
(QÂ )

*Ke- is injective.
(2) We have

H2
+QÂ + H2

- K = L 2 (108)

(3) We have
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H2
+K ´ H2

- QÂ = {0} (109)

(4) We have
H2

+K ´ Hr (QÂ ) = {0} (110)

Proof: By Lemma 5, we have the injectivity of the projection map
Hr (QÂ )QÂ Â |PHr (K)QÂ Â

which is equivalent to the injectivity of the projection map
Hr (QÂ )|PHr (K) . We apply now Theorem 1 to infer (108), (109) and (110). h

We proceed to prove an important geometric result whose control signi® cance
will be stated at the end of the proof.

Theorem 5: Let W be a minimal, stable spectral factor. Then, with the notation of
Theorem 5.3, we have

(1)
Hr (R)PHr (K)QÂ Â

Ì Hr (QÂ )QÂ Â PHr (K)QÂ Â
´ Hr (QÂ Â )K+PHr (K)QÂ Â

(111)

(2)
Hr (Re)PHr (K)QÂ Â

= Hr (QÂ2)QÂ Â PHr (K)QÂ Â
= Hr (QÂ Â2 )QÂ Â1 Ke

+PHr (K)QÂ Â
(112)

Proof:

(1) We use the factorization

QÂ QÂ Â =
Q+ 0

0 R( )
to conclude

Hr (QÂ )QÂ Â % Hr (QÂ Â ) = Hr (QÂ QÂ Â ) = Hr
Q+ 0

0 R( )
= Hr (Q

e
+ ) % Hr (R

e) É Hr (R
e)

Therefore

Hr (QÂ )QÂ Â PHr (K)QÂ Â
= H - r(QÂ QÂ Â )PHr (K)QÂ Â

= Hr
Q+ 0

0 R( ) PHr (K)QÂ Â
É Hr (R

e)PHr (K)QÂ Â

Similarly, we have KQÂ Â = QÂ Â K
e
+ and hence

Hr (QÂ Â )K
e
+PHr (K)QÂ Â

= [Hr (QÂ )KQÂ Â % Hr (QÂ Â )K
e
+]PHr (K)QÂ Â

= [Hr (QÂ )QÂ Â % Hr (QÂ Â )]Ke
+PHr (K)QÂ Â

= Hr (QÂ QÂ Â )K
e
+PHr (K)QÂ Â

= Hr

Q- 0

0 R( ) Ke
+PHr (K)QÂ Â

= [Hr (Q
e
- )Ke

+ % Hr (R
e)]PHr (K)QÂ Â

É Hr (R
e)PHr (K)QÂ Â
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From these two inclusions we obtain the inclusion

Hr (R)PHr (K)QÂ Â
Ì Hr (QÂ )QÂ Â PHr (K)QÂ Â

´ Hr (QÂ Â )K+PHr (K)QÂ Â
(113)

(2) We have

QÂ2QÂ Â2 =
Q 0

0 R( )
Since QÂ2, Q are left coprime and QÂ Â2 , Q are right coprime, we obtain the
equivalence of the inner functions Q, R, QÂ2, QÂ Â2 . Now we consider the direct
sum decomposition Hr (QÂ2QÂ Â ) = Hr (QÂ2)QÂ Â % Hr (QÂ Â ) which, by the ortho-
gonality of Hr (K)QÂ Â and Hr (QÂ Â ) , leads to Hr (QÂ2)QÂ Â PHr (K)QÂ Â

=
Hr (QÂ2QÂ Â )PHr (K)QÂ Â

. But we also have

Hr (QÂ2QÂ Â ) = Hr (QÂ2QÂ Â2 QÂ Â1 ) = H
Q 0

0 R( ) QÂ Â1[ ]
= Hr (Q

e)QÂ Â1 % Hr (R
e) É Hr (R

e)

Hence

Hr (QÂ2)QÂ Â PHr (K)QÂ Â
= Hr (QÂ2QÂ Â )PHr (K)QÂ Â

É Hr (R
e)PHr (K)QÂ Â

Similarly, note that

Hr (QÂ2)QÂ Â2 QÂ Â1 Ke
+ = Hr (QÂ2)QÂ Â K

e
+ = Hr (QÂ2)KQÂ Â

So Hr (QÂ2)KQÂ Â Ì Ker PHr (K)QÂ Â
and hence

Hr (QÂ Â2 )QÂ Â1 Ke
+PHr (K)QÂ Â

= [Hr (QÂ2)QÂ Â2 QÂ Â1 Ke
+ % Hr (QÂ Â2 )QÂ Â1 Ke

+]PHr (K)QÂ Â

= [Hr (QÂ2)QÂ Â2 % Hr (QÂ Â2 )]QÂ Â1 Ke
+PHr (K)QÂ Â

= Hr (QÂ2QÂ Â2 )QÂ Â1 Ke
+PHr (K)QÂ Â

= Hr

Q 0

0 R( ) QÂ Â1 Ke
+[ ]PHr (K)QÂ Â

= [Hr (Q
e) (QÂ Â1 )eKe

+ % Hr (R
e)]PHr (K)QÂ Â

É Hr (R
e)PHr (K)QÂ Â

These two inclusions prove the inclusion

Hr (R
e)PHr (K)QÂ Â

Ì Hr (QÂ2)QÂ Â PHr (K)QÂ Â
´ Hr (QÂ Â2 )QÂ Â1 Ke

+PHr (K)QÂ Â
(114)

By Lemma 5, the projection PHr (K)QÂ Â
is injective on Hr (R

e) , which implies

dim[Hr (R
e)PHr (K)QÂ Â ]= dim[Hr (R

e)].
Also, by Theorem 4, the inner functions R, QÂ2, QÂ Â2 are equivalent and hence
in particular
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dim[Hr (R
e)]= dim Hr (QÂ2)QÂ Â = dim Hr (QÂ Â2 )QÂ Â1 Ke

+

Therefore the inclusion (114) forces the equality (112). h

For the case of external spectral factors, the inclusion (111) can be strengthened
to give.

Corollary 10: L et W be a minimal, stable, external spectral factor. Then

Hr (R
e)PHr (K)QÂ Â

= Hr (QÂ )QÂ Â PHr (K)QÂ Â
= Hr (QÂ Â )K

e
+PHr (K)QÂ Â

(115)

Proof: By Theorem 5, we have

Hr (R
e)PHr (K)QÂ Â

= Hr (QÂ )QÂ Â PHr (K)QÂ Â
´ Hr (QÂ Â )K

e
+PHr (K)QÂ Â

But using the injectivity of the projection PHr (K)QÂ Â
on the three subspaces and the

fact that they all have the same dimension, the equality follows. h

In a sense not made explicit in this paper, the space Hr (K)QÂ Â can be used as a
natural state space for a state space realization of the spectral factor W . This is based
on the realization theory developed in Fuhrmann (1981) and we refer to it as
the shift realization. Thus the subspaces Hr (QÂ )QÂ Â PHr (K)QÂ Â

, Hr (QÂ Â )K+PHr (K)QÂ Â
,

Hr (QÂ2)QÂ Â PHr (K)QÂ Â
, Hr (QÂ Â2 )QÂ Â1 Ke

+PHr (K)QÂ Â
and Hr (R

e)PHr (K)QÂ Â
, are all special sub-

spaces of Hr (K)QÂ Â , and it is natural to inquire as to their system theoretic signi® -
cance. Without going into the details, we just state here that, with respect to the shift
realization, the ® rst two are the maximal output nulling, inner stabilizable subspace
and the maximal output nulling, inner antistabilizable subspace respectively, whereas
the last three are di� erent representations of the maximal output nulling, reach-
ability subspace. Moreover the inclusion in (111) can be shown to be actually an
equality. A state space approach to these results will be given in Gombani and
Fuhrmann (1998), while a functional approach to these characterizations will be
presented in Fuhrmann (1998).

So far, we have bypassed the question of the existence of balanced factorizations.
The following proposition shows that plenty of balanced factorizations exist.

Proposition 16: L et Q+ be an inner function and let R be an inner function equiva-
lent to it. Then there exists a balanced factorization

Q+ 0

0 R( ) = QÂ QÂ Â (116)

Proof: By the assumption of equivalence, there exist, necessarily inner, matrix
functions T , S in H ¥

+ such that the intertwining relation

Q+ T = SR (117)

holds, with Q+ , S left coprime and T , R right coprime. Equation (117), see
Fuhrmann (1981) for the details, gives rise to an H ¥

+ -isomorphism
Z : Hr (Q+ ) ® Hr (R) , de® ned by

f Z = f TPHr (R)

The isomorphism is in the sense that, for every u Î H ¥
+ and f Î Hr (Q+ ) , we have

f u P+ TPHr (R) = f TPHr (R) u P+
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The adjoint map, Z* : Hr (R) ® Hr (Q+ ) , is given by

gZ* = gT *P+

and we have, again for every u Î H ¥
+ , that

gu *P+ T*P+ = gP+ T*P+ u *

Next, we de® ne a subspace of

Hr
Q+ 0

0 R( ) = Hr (Q
e
+ ) % Hr (R

e)

by

V = {(gZ* g)|g Î Hr (R)}
Clearly, V is a coinvariant subspace. In fact, given u Î H ¥

+ , we compute

(gZ*P+ g) u *P+ = (gT *P+ u *P+ gu *P+ )

= (gu *P+ T*P+ gu *P+ )

= (g1Z* g1) Î V

where g1 = gu *P+ Î Hr (R) . Thus, by Beurling’s theorem, there exists an inner func-
tion QÂ Â for which V = Hr (QÂ Â ) . This implies the factorization (116).

We show that necessarily, the factorization (116) is balanced. Clearly, by con-
struction, we have

Vp 1 = VPHr (Qe
+ ) = Hr (Q

e
+ )

Vp 2 = VPPr (Re
+ ) = Hr (R

e)

ü
ý
þ

(118)

If QÂ Â , Qe
+ are not right coprime, we set QÂ Â ^ R Qe

+ = QÂ Â1 . Thus there exist a
factorization QÂ Â = QÂ Â2 QÂ Â1 and hence Hr (QÂ Â ) = Hr (QÂ Â2 )QÂ Â1 % Hr (QÂ Â1 ) . Clearly this
implies that Hr (QÂ Â ) p 2 = Hr (QÂ Â2 )QÂ Â1 p 2 cannot be equal to Hr (R) , in contradiction
to (118). The other coprimeness conditions are proved similarly. h

We can give now a characterization of minimal, stable, external spectral factors.

Theorem 6: There is a bijective correspondence between

(1) Minimal, external p ´ m spectral factors.
(2) Balanced factorizations of inner functions of the form

Q+ 0

0 R( ) (119)

with R . Q+ being an (m - m0) ´ (m - m0) inner function.
(3) The set of all H ¥

+ -isomorphisms from Hr (QÂ Â ) onto Hr (R) , with R . Q+ being
an (m - m0) ´ (m - m0) inner function.

Proof: Assume W is a minimal, stable, p ´ m external spectral factor. By The-
orem 4, and using its notaton, we have the existence of a factorization of the form
(119) which, by De® nition 5, is balanced.
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Conversely, let (119) be any balanced factorization. Such factorizations exist by
Proposition 16. De® ne now W = W e

- QÂ . Clearly W is a stable spectral factor. Since
WQÂ Â = W e

+ , it has to be minimal. Clearly this correspondence is bijective.
From Proposition 16 it follows that to each such H ¥

+ -isomorphism there corre-
sponds an essentially unique balanced factorization.

Conversely, the balanced factorization (119), can be written as QÂ QÂ Â = Qe
+ R.

Using the coprimeness conditions, we can embed this equality in a doubly coprime
factorization. This implies the existence of rational matrices L , M satisfying
QÂ Â L = MRe. De® ne a map Z : Hr (QÂ Â ) ® Hr (R

e) by fZ = f LPHr (Re ) . Using the
left coprimeness of QÂ Â , M and the right coprimeness of L , Re which follow from
the construction of a doubly coprime factorization, the map Z is indeed an H ¥

+ -
isomorphism. Note that the doubly coprime factorization is not unique, but the
intertwining map Z is. Thus there exists a corresponding unique isomorphism
between the set of balanced factorizations and the set of H ¥

+ -isomorphisms from
Hr (QÂ Â ) onto Hr (R) . Now, by Theorem 4 and using the fact that W is external, we
have the equivalence of QÂ Â and Q+ . Fix any H ¥

+ -isomorphism of Hr (QÂ Â ) and
Hr (R

e) and the result follows by transitivity. h

Theorem 6 leads immediately to a full parametrization of the set W m .

Theorem 7: There is a bijective correspondence between

(1) The set W m of all p ´ m, minimal, stable spectral factors.
(2) Factorizations of the form

QÂ1QÂ2QÂ Â2 QÂ Â1 =
Q+ 0

0 R( )
where Qe

+ = QÂ1QQÂ Â1 with all factors block diagonal of the form

* 0
0 Im- m0( )

and

QÂ2QÂ Â2 =
Q 0
0 R( )

is a balanced factorization with R any (m - m0) ´ (m - m0) inner function
satisfying Q . R. All inner functions are assumed to be normalized at in® nity.

Proof: Follows from Theorems 4 and 6. h

As a result of Theorem 6, it is clear that the existence of a p ´ m external spectral
factor is dependent on m. Indeed we have the following.

Corollary 11: Let U be a rank m0 spectral function. Then there exists a p ´ m ex-
ternal spectral factor if and only if m - m0 is greater or equal to the number of non-
trivial inner invariant factors of Q+ .

Proof: The inner function R has to be chosen to be equivalent to Q+ , thus
necessarily it has the same number of non-trivial inner invariant factors as Q+

and its dimension has to be at least equal to that number. h
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We promised in §3 to give a localized version of the phase function and this we
proceed to do. To this end, we need ® rst the following.

De® nition 6: Let W1 and W2 be two internal spectral factors. We say that the
W1 £ W2 if there exists an inner function Q such that W2 = W1Q.

Lemma 6: Let W1, W2 be two, minimal stable internal spectral factors. L et
W i = W iKi be the DSS factorizations over H ¥

- . Assume W1 £ W2, i.e. W1Q = W2,
and let Q be the inner function satisfying QK2 = K1Q. De® ning the local phase func-
tion by

T0 (W1, W2) = W - L
2 W1 (120)

we have

W2W - L
2 W2 = W2 (121)

W2W - L
2 W1 = W1 (122)

W2W - L
2 W1 = W1 (123)

T0 = W - L
2 W1 = K2Q- 1 = Q- 1K1 (124)

Proof: By assumption, we have W1Q = W2 and

W2 = W2K*
2 = W1QK*

2 = W1K*
1 Q = W1Q

Since W - L
2 W2 = I, we have W2W - L

2 W2 = W2. Now

W2W - L
2 W2 = W2 W - L W2K2 = W2K2 = W2 (125)

This proves (121). (122) follows, using the fact that W1Q = W2. Substituting
W2 = W1Q in the equality W2 W - L

2 W2 = W2 and eliminating Q leads to (123).
Finally, using (123), we compute

T0 (W1,W2) = W - L
2 W1 = W - L

2 (W2 W - L
2 W1) = (W - L

2 W2) (W - L
2 W1) = K2Q- 1

and use the equality K2Q- 1 = Q- 1K1. h

Next we proceed to prove the following version of Proposition 11.

Proposition 17: L et U be a p ´ p, rank m0, weakly coercive, spectral function, and
let W1 £ W2 be two, minimal, stable, internal spectral factors. Let W i = W iKi be
the respective DSS factorizations over H ¥- . L et Q, Q be the minimal McMillan de-
gree inner functions satisfying QK2 = K1Q. Then both Toeplitz operators
T c

W - L
2 W1

= T c
K2Q* = T c

Q*K1
and T r

W - L
2 W1

are injective.

Proof: The proof follows that of Proposition 11. For the injectivity of T c
W - L

2 W1

we show an explicit left inverse, namely the map f |® W - L
1 P+ W2 f . Indeed, using

(122), we compute

W - L
1 P+ W2P+ W - L

2 W1 f = W - L
1 P+ W2W - L

2 W1 f

= W - L
1 P+ W1 f = W - L

1 W1 f = f

The injectivity of T r
W - L

2 W1
follows from Proposition 9. h
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The previous result indicates that the de® nition of the phase function can be
extended to all spectral factors. In fact, given a Lindquist± Picci pair W , W of
minimal spectral factors, then, with the notation of Theorem 4, we can de® ne the
associated phase function to be K(QÂ )

* = (QÂ )
*Ke

- . Note that we already proved, in
Corollary 9, the injectivity of the Toeplitz opeator T r

K(QÂ )
* = T r

(QÂ )
*Ke- .

6. Minimal Markovian splitting subspaces

Each minimal, stable p ´ m spectral factor W has two, coprime, DSS factoriza-
tions. With each one there is associated a coinvariant subspace that is a natural state
space for a shift based realization of W . If we choose to work with a left coprime
factorization of W over H ¥

- then, as a consequence of Proposition 2, all minimal,
stable spectral factors have the same left Douglas± Shapiro± Shields factor. This
amounts to the fact that in a realization of any such spectral factor W , the matrices
A, C can be chosen to be the same. This is the uniform choice of basis, see Caines and
Delchamps (1980). It turns out that for our purpose we have to work with right
coprime DSS factorizations; in this case, the right denominators, and hence the
associated state spaces, do not need to be the same, this fact is peculiar of the
multivariable case. This enables us to study the zeros in purely geometric terms.
We proceed to explain this association. By Proposition 13, there exists an essentially
unique inner function QÂ Â such that W e

+ = WQÂ Â . On the other hand, W has a right
coprime DSS factorization W = W K = W K- *, with W necessarily a minimal anti-
stable spectral factor. Let Hr (K) = {H2

+K}̂ be the coinvariant subspace associated
with the inner function K. We say that

XW = Hr (K)QÂ Â (126)

is the minimal Markovian splitting subspace associated with the minimal spectral factor
W. Note that all the spaces Hr (K) carry isomorphic H ¥

+ -module structures. This is
due to the fact that the pole structure of all minimal, stable spectral factors is the
same, and they di� er only in their zero structure. The particular de® nition, given in
(126) is a result of a normalization, where with W+ we associate the state space
Hr (K

e
+ ) . We denote by X m the family of all minimal Markovian splitting subspaces

associated to minimal, stable, spectral factors of size p ´ m. In an analogous way we
can associate with the antistable factor W the state space XW = Hr (K*) (QÂ )

*. We
denote by X m the set of all such spaces corresponding to factors of size p ´ m. At this
point our de® niton of splitting subspaces is rather formal and devoid of any sto-
chastic interpretation. But it turns out that this is the simplest way to transpose in the
Hardy space setting the geometric structure of the stochastic domain, however we
omit the details.

The following proposition organizes the information concerning the geometry of
the splitting subspaces associated with an arbitrary minimal, stable spectral factor.

Proposition 18: Let W be a minimal, stable spectral factor. L et W = W K be its
DSS factorization over H ¥- . L et the inner functions QÂ , QÂ Â , QÂ , QÂ Â be determined
by Proposition 13. Then we have

(1) The following are orthogonal direct sum decompositions of the coinvariant
subspace Hr (QÂ K)
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Hr (QÂ KQÂ Â ) = Hr (Q
e
- )Ke

+ % Hr (R
e) % Hr (K

e
+ )

= Hr (QÂ )QÂ Â K
e
+ % Hr (QÂ Â )K

e
+ % Hr (K

e
+ )

= Hr (QÂ )KQÂ Â % Hr (K)QÂ Â % Hr (QÂ Â )

= Hr (K
e
- )QÂ QÂ Â % Hr (QÂ )QÂ Â % Hr (QÂ Â )

= Hr (K
e
- )Qe

+ % Hr (R
e) % Hr (Q

e
+ ) (127)

(2) For L 2 we have the following direct sum decomposition.

L 2 = H2
+QÂ Â % H2

- QÂ Â
= H2

+KQÂ Â % Hr (K)QÂ Â % H2
- QÂ Â (128)

(3) De® ning the L 2 subspaces by

SW = H2
+QÂ Â

SW = H2
- KQÂ Â

ü
ý
þ

(129)

we have

XW = Hr (K)QÂ Â = SW ´ SW (130)

The pair (SW ,SW ) will be called an extended scattering pair for the spectral
factor W.

(4) We have

S ^
W = H2

- QÂ Â
S ^

W = H2
+KQÂ Â

ü
ý
þ

(131)

and

L 2 = S ^
W % XW % S ^

W (132)

(5) The projection operators

R = Hr (Ke
+ )|PHr (K)QÂ Â

: Hr (Ke
+
) ® Hr (K)QÂ Â (133)

and

O = Hr (K)QÂ Â |PHr (Ke- )QÂ QÂ Â
: Hr (K)QÂ Â ® Hr (K

e
- )QÂ QÂ Â (134)

are bijective.
(6) The projection operators

Hr (K)QÂ Â |PHr (Ke
+ ) : Hr (K)QÂ Â ® Hr (K

e
+ ) (135)

and

Hr (K)QÂ Â |PHr (Ke- )QÂ QÂ Â
: Hr (K)QÂ Â ® Hr (K

e
- )QÂ QÂ Â (136)

are bijective.
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(7) We have the following factorization

Hr (K
e
+ )|PHr (Ke- )QÂ QÂ Â

= (Hr (K
e
+ )|PHr (K)QÂ Â

) ´ (Hr (K)QÂ Â |PHr (Ke- )QÂ QÂ Â
) (137)

(8) Let W i, i = a , b be two minimal, stable spectral factors and let
XW i = Hr (Ki)QÂ Âi . Then, with R i, O i de® ned as above, there exists a unique
map Z: Hr (Kb )QÂ Âb ® Hr (Ka )QÂ Âa which makes ® gure 8 commutative.
thus

Z = R - 1
b R a = O b O - 1

a (138)

(9) We have

i fPHr (Ka )QÂ Âa
i 2 £ fPHr (Kb )QÂ Âb

i 2 " f Î Hr (K
e
+ )

if and only if

i gPHr (Ka )QÂ Âa
i 2 ³ gPHr (Kb )QÂ Âb

i 2 " g Î Hr (K
e
- )Qe

+

These inequalities characterize the contractivity of the map Z.

Proof:

(1) From the commutativity of ® gure 4, we obtain the equality

QÂ KQÂ Â = QÂ QÂ Â K
e
+ = Ke

- QÂ QÂ Â = Qe
- Ke

+ Re = Ke
- Qe

+ Re

and the result follows.
(2) We use the equalities L 2QÂ Â = L 2, H2

+ = H2
+K % Hr (K) as well as the fact that

multiplication by QÂ Â is a unitary map in L 2.
(3) We compute

SW ´ SW = H2
+QÂ Â ´ H2

- KQÂ Â
= (H2

+ ´ H2
- K)QÂ Â = Hr (K)QÂ Â = XW

(4) Since SW = H2
+QÂ Â and L 2 = H2

+QÂ Â % H2
- QÂ Â , we conclude that S ^

W = H2
- QÂ Â .

Similarly, SW = H2
- KQÂ Â implies S ^

W = H2
+KQÂ Â . Thus (132) is equivalent to

the second direct sum decomposition in (128).
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(5) Since, using Theorem 4, the equivalence of Ke
+ and K implies that the dimen-

sion of the state spaces Hr (K
e
+ ) and Hr (K)QÂ Â is equal, it su� ces to prove that

the projection PHr (K)QÂ Â |Hr (K
e
+ ) is injective. Now

Ker PHr (K)QÂ Â
= H2

+KQÂ Â % Hr (QÂ Â )

= H2
+QÂ Â K

e
+ % Hr (QÂ Â )

Since Hr (K
e
+ ) is orthogonal to H2

+QÂ Â K
e
+ , we can compute

Ker Hr (K
e
+ )|PHr (K)QÂ Â

= Hr (K
e
+ ) ´ (H2

+KQÂ Â % Hr (QÂ Â ) )

= Hr (K
e
+ ) ´ Hr (QÂ Â )

= Hr (K
e
+ ^ R QÂ Â ) = {0}

We clearly have Ke
+ ^ R QÂ Â , the greatest common right inner divisor of Ke

+

and QÂ Â equal to the identity because of the right coprimeness of these two
inner functions. In this connection, see Theorem 3.

To prove the injectivity of (134), we show ® rst that ® gure 9 commutes.
We note that, for f Î H2

+ , we have fPHr (K)QÂ Â
= fQÂ Â

*P+K*P- KQÂ Â . If
f Î Hr (K

e)QÂ QÂ Â then f = gQÂ QÂ Â with g Î Hr (K
e
- ) .

We compute

fPHr (K)QÂ Â
(QÂ Â )

*K*(QÂ )
* = gQÂ QÂ Â QÂ Â

*P+K*P- KQÂ Â (QÂ Â )
*K*(QÂ )

*

= gQÂ K
*P- (QÂ )

*

Going the other way, and noting that PHr (K*) (QÂ )
* restricted to H2

- is given by
h |® hQÂ P- KP+K*(QÂ )

*, we compute

fQÂ Â
*PHr (K*)QÂ *

= gQÂ QÂ Â QÂ Â
*QÂ

*K*- QÂ P- KP+K*(QÂ )
*

= gK*- QÂ P- KP+K*(QÂ )
*

= gQÂ K
*P- KP+K*(QÂ )

*

= gQÂ K
*P- (QÂ )

*
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for gQÂ K
*P- Î Hr (K*) and hence gQÂ K

*P- KP+K* = gQÂ K
*P- PHr (K*) =

gQÂ K
*P- .

The bijectivity of PHr (K)QÂ Â
: Hr (K

e
+ ) ® Hr (K)QÂ Â is equivalent to the bijec-

tivity of PHr (K*) (QÂ )
* : Hr (K*- ) ® Hr (K*) (QÂ )

*, and this we proceed to prove.
As in the ® rst part,

Ker PHr (K*) (QÂ )
*|Hr (K*- ) = Hr (K*- ) ´ (Hr ( (QÂ )

*) % H2
- K*(QÂ )

*)

= Hr (K*- ) ´ Hr ( (QÂ )
*) = {0}

The last equality follows from the left coprimeness of Ke
- and QÂ .

(6) Follows from the previous part by taking adjoints.
(7) This follows from the three direct sum decompositions in (127). For

F Î Hr (QÂ KQÂ Â ) , let

F = f1 + f2 + f3 = g1 + g2 + g3 = h1 + h2 + h3

be the representations with respect to these direct sum decompositions.
Clearly, we have f1 = g1 and g3 = h3. Assume now that F Î Hr (K

e
+ ) , so we

have F = f3 = g2 + g3 = g2 + h3. This implies g2 = f3PHr (K)QÂ Â
. Now

g2 = H1 + h2 and so h1 = g2PHr (Ke
- )QÂ QÂ Â

. But f3 = g2 + h3 = h1 + h2 + h3

and so we have also h1 = f3PHr (Ke- )QÂ QÂ Â
.

(8) By part (5), the maps R 1, R 2 are invertible. Computing the adjoints of the
maps O 1, O 2 we obtain O *

i = PHr (Ki)QÂ Âi |Hr (Ke
- )QÂ i QÂ Âi and these are also

invertible. Hence so are the O i. By part (7) we have R 1O 1 = R 2O 2, for
both are factorizations of PHr (Ke- )QÂ QÂ Â

: Hr (K
e
+ ) ® Hr (K

e
- )QÂ QÂ Â . This implies

the equality Z = R - 1
2 R 1 = O 2O - 1

1 . This part of the proof is adapted from
Lindquist and Picci (1991).

(9) Assume i fPHr (K1)QÂ Â1
i 2 £ i fPHr (K2)QÂ Â2

i 2 for all f Î Hr (K
e
+ ) , i.e. i f R 1 i £

i f R 2 i . Setting g = dR 2, we get i gZ i = i gR - 1
2 R 1 i £ i gi , i.e. Z is contrac-

tive. But then so is Z*, which implies i fZ*i = i f O - *
1 O *

2 i £ i f i , for all
f Î Hr (Ke

- )Qe
+ . Setting g = f O *

1, we get i f O *
2 i £ i f O *

1 i , i.e.
i fPHr (K2)QÂ Â2

i 2 £ i fPHr (K1)QÂ Â1
i 2 for all f Î Hr (K

e
- )Qe

+ . h

In (129) we have de® ned the extended scattering pairs; this is because in the
literature, see Lindquist and Picci (1991), a di� erent object is called scattering pair.
We brie¯ y introduce some basic facts about it.

First, we need a simple lemma. Let x, y Î L 2
r : we say that x and y are pointwise

orthogonal if x(ix )y*(ix ) = 0 for all x Î R . The pointwise orthogonal complement
Y of a subspace X is the set of all vectors y Î L 2

r which are pointwise orthogonal to
all vectors x Î X. Let K be an inner function. We set p ^

K to be the orthogonal
projection of L 2 onto the pointwise orthogonal complement of Hr (K) and we set
p K := I - p ^

K. We also set L 2
K := span{eix sHr (K) ; s Î R }.

Lemma 7: We have the following relations:

(1)

Im p K = L 2
K (139)

and
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(2)

Kp K = p KK (140)

Proof:

(1) We show that

Im p ^
K = span{eix sHr (K) ; s ³ 0}̂

If f Î Im p ^
K, then f is pointwise orthogonal to any g Î Hr (K) ; that is

g(ix ) f (ix )* º 0. But then also eix sg(ix ) f (ix )* º 0 for all s Î R , which
implies that f is orthogonal to L 2

K. Conversely, if f Î (L 2
K) ^ , it means that

for each g Î l2K, it is ò I g(ix ) f (ix )*d(x ) = 0. In particular, since L 2
K is in-

variant, we also have ò I eix sg(ix ) f (ix )*d(x ) = 0 which implies that
g(ix ) f (ix )* º 0.

(2) Let Vr = {vr
1, . . . ,vr

k}be a row basis for Hr (K) . It is well known that there
exist column vectors cr

i in C
m such that K = I + å r

i=1 cr
i v

r
i . Similarly if

Vc = {vc
1, . . . ,vc

k} is a basis for Hc (K) then K = I + å r
i=1 vc

i c
c
i for suitable

row vectors cc
i . We now exploit the fact that for f Î Hr (K) , we have

f p K = f and similarly, for g Î Hc (K) , we hve p Kg = g. Then

K(s) p K = p K + å
r

i=1
cr

i v
r
i p K + å

r

i=1
cr

i v
r
i

= p K + å
r

i=1
vc

i c
c
i = p K + p K å

r

i=1
vc

i c
c
i = p KK(s) h

Proposition 19: L et W be a minimal, stable spectral factor. L et W = W K be its
DSS factorization over H ¥

- . L et the inner functions QÂ , QÂ Â , QÂ , QÂ Â be determined
by Proposition 13. Then we have

(1) De® ning the L 2
K subspaces by

^SW = H2
+ p KQÂ Â

^
S W = H2

- p KKQÂ Â

ü
ý
þ

(141)

we have

XW = Hr (K)QÂ Â = ^SW ´
^

S W (142)

The pair ( ^SW , ^
SW ) will be called a scattering pair for the spectral factor W.

(2) We denote by ^S ^
W the orthogonal complement of ^SW in L 2

K. Similarly, we de® ne
^

S ^
W to be the orthogonal complement in L 2

K of
^

S W . Then we have

^S ^
W = H2

- p KQÂ Â
^
S ^

W = H2
+Kp KQÂ Â

ü
ý
þ

(143)

and
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L 2
K =

^
S ^

W % XW %
^S ^
W (144)

Proof:

(1) We compute, in view of Lemma 7

^SW ´
^
SW = H2

+ p kQÂ Â ´ H2
- p kKQÂ Â = (H2

+ p k ´ H2
- Kp k)QÂ Â

= [(Hr (K) % H2Kp k) ´ (H2
- p k % Hr (K)]QÂ Â = Hr (K)QÂ Â = XW

(2) Since ^SW = H2
+ p kQÂ Â and L 2

K = H2
+ p kQÂ Â % H2

- p kQÂ Â , again in view of
Lemma 7 we conclude that ^S ^

W = H2
- p kQÂ Â . Similarly,

^
SW = H2

- p kKQÂ Â
implies

^
S W = H2

+ p kKQÂ Â . Thus

L 2
KQÂ Â = ^SW %

^S ^
W = H2

+ p kQÂ Â %
^S ^
W = H2

+ p kKQÂ Â % Hr (K) p kQÂ Â %
^S ^
W

= H2
+ p kKQÂ Â % Hr (K)QÂ Â %

^S ^
W =

^
S ^

W % Hr (K)QÂ Â %
^S ^
W h

The above proposition illustrates quite clearly the di� erence of our approach
with respect to the one of Lindquist and Picci. We simply take l̀arger’ spaces to
represent our scattering pair: since the main use of scattering pairs is in the state
space they generate by their intersection, the results we are obtaining are exactly the
same. But, as can be seen comparing the equivalent results in Propositions 18 and 19
the proofs are simpler. So, in the following, a scattering pair will implicitly assume to
be extended. For the scattering theory origins of scattering pairs, see Lax and Phillips
(1967).

We proceed with a study of the zero structure of the set W m of minimal, stable
spectral factors. This is done mainly through a geometric study of the associated set
X m of minimal Markovian splitting subspaces. Since in our approach the splitting
subspaces have a uni® ed representation, given by (126), the study reduces to a great
extent to the arithmetic of inner functions.

We are interested mainly in the parametrization of the set W m , for
m0 £ m £ n + p. Moreover, the set W m or the corresponding set X m carry with
them a natural partial order. In the internal case, i.e. m = m0, this partial order is
closely related to the factorization of certain inner functions and hence also, see
Fuhrmann (1995), to the set of solutions of a certain homogeneous algebraic Riccati
equation.

We feel it is instructive to begin our study of the set W m in the special case where
the spectral function is of full rank and coercive and the factors are internal, i.e.
m = m0 = p. We denote this set by W p. This case shows the general scheme, and also
clari® es the new concepts that have to be introduced for the analysis of the general
case.

Without loss of generality, we can assume the normalization U ( ¥ ) = I. Thus all
regular spectral factors can be assumed to satisfy W ( ¥ ) = I as well. This set has
been fully studied, e.g. Fuhrmann (1995). The inner functions Q- , Q+ , K- , K+ are
de® ned as before. Heuristically, we shall say, given spectral factors W1 and W2, that
W1 £ W2 if W2 is closer to being maximum phase. This can be expressed precisely by
saying W2 = W1Q for some inner function Q, see De® nition 6. So, if W1QÂ Âi = W+ ,
this can be expressed also by saying that QÂ Â2 is a right factor of QÂ Â1 . Equivalently, QÂ1
is a left factor of QÂ2. This leads to other, geometric, characterizations that turn out to
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be useful in the generalization to the non-regular case. Moreover, given an inner
function Q+ , the set of left inner factors of Q+ is clearly partially ordered with
Q1 £ Q2 if Q1 is a left factor of Q2. In this set Q+ is clearly the maximal element
and I is the minimal. This order has been expressed in Fuhrmann (1995) via the set
of non-negative de® nite solutions of a homogeneous Riccati equation. It is not
surprising that all these orders are equivalent. We express this equivalence in the
following.

The set W p can be parametrized in seveal di� erent ways. In fact, by the results of
§3, given a normalized, minimal, stable spectral factor, there exists a normalized
factorization (i.e. both factors normalized and inner) Q+ = QÂ QÂ Â such that

W- QÂ = W

WQÂ Â = W+

ü
ý
þ

(145)

So normalized factorizations of Q+ are in a bijective correspondence with the ele-
ments of the set W p, i.e. they parametrize X p. Clearly, if QÂ i QÂ Âi are the factorizations
of Q+ associated with W i , then W1 £ W2 if and only if QÂ1 is a left factor of QÂ2. On
the other hand, see Fuhrmann (1995) for the details, if

Q+ =
A B

- B*X+ I
æ
è

ö
ø

with the realization minimal and X+ the unique positive de® nite solution of the
homogeneous Riccati equation

A*X + XA + XBB*X = 0 (146)

then an arbitrary normalized right inner factor of Q+ is given by

Q =
A B

- B*X I
æ
è

ö
ø

where X is a non-negative de® nite solution of the Riccati equation (146). We denote
by P the set of non-negative de® nite solutions of this Riccati equation. P has a
natural partial order induced by the standard order on Hermitian matrices.

We want to remark that, for a minimal spectral factor W that satis® es (145), the
factorization Q+ = QÂ QÂ Â represents a parametrization of the set of stable and anti-
stable zeros of W . In fact QÂ Â determines the set of stable zeros of W that can still be
moved to the right half plane, via multiplication by QÂ Â , whereas QÂ determines the
set of antistable zeros of W , that is zeros of W- that have been moved already to the
right half plane, via multiplication by QÂ . This issue will be addressed formally in a
subsequent paper. For a full parametrization of the set of all minimal spectral
factors, see Fuhrmann (1955).

There is a third order that can be considered and it is a geometric one. It is a
variation on an order introduced by Lindquist and Picci (1991). For each W Î W p

there is a unique right coprime DSS factorization W = W K with K normalized inner
and W Î H ¥

- . If WQÂ Â = W+ we associate with the spectral factor W the state space
XW = Hr (K)QÂ Â . We denote by X p the set of these spaces. We say XW1 £ XW2 if

i fPXW1
i £ i fPXW2

i , " f Î XW+ (147)
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Of course we have XW+ = Hr (K+ ) .
In the next theorem we show that all these partial orders are equivalent.

Theorem 8: Let U be a full rank, normalized, coercive spectral density. Let W p be
the set of all minimal, stable internal spectral factors of U , let X p be the set of all
state spaces corresponding to these factors. L et the inner function Q+ be de® ned as
before and assume it has a minimal realization

Q+ =
A B

- B*X+ I
æ
è

ö
ø

with X+ the positive de® nite solution of the Riccati equation

A*X + XA + XBB*X = 0

L et P be the set of all non-negative de® nite solutions of this Riccati equation. Let W a ,
W b Î W p.

Then the following conditions are equivlent.

(1)

W1 (s) W1 (s)* £ W2 (s) W2 (s)*, Re s > 0 (148)

(2) For some inner function Q, we have W2 = W1Q.
(3) For some inner function Q, we have QQÂ Â2 = QÂ Â1 .
(4)

QÂ Â1 (s)*QÂ Â1 (s) £ QÂ Â2 (s)*QÂ Â2 (s), Re s > 0 (149)

(5) With Hr (K1)QÂ Â1 , Hr (K2)QÂ Â2 the state spaces associated with W1, W2 respect-
ively, we have

i fPHr (K1)QÂ Â1
i £ i fPHr (K2)QÂ Â2

i , " f Î Hr (K+ ) (150)

(6) We have

i gPHr (QÂ Â1 ) i ³ i gPHr (QÂ Â2 ) i , " g Î Hr (Q+ ) (151)

(7) QÂ Â1 , QÂ Â2 have unique representations of the form

Qi =
A B

- B*Xi I
æ
è

ö
ø

with Xi non-negative de® nite solutions of the Riccati equation satisfying
X1 ³ X2.

Proof: We prove the following implications:

(1) Û (2)
Assume statement (1) holds. This implies i x W1 (s) i ³ i x W2 (s) i , in Re s > 0, and
hence Q (s) = W1 (s) - 1 W2 (s) has at most a ® nite number of removable singularities
in the right half plane. Thus Q (s) is analytic and contractive in the right half plane.
Moreover, as the W i are spectral factors, we have W1 (s) W1 (s)* = W2 (s) W2 (s)* on
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the boundary, i.e. Q (s) is unitary on the imaginary axis, which means it is inner. So
(2) holds.
Conversely, W2 = W1Q implies that, for every s in the open right half plane,

W2 (s)W2 (s)* = W1 (s)Q (s)Q (s)*W1 (s)* £ W1 (s) W1 (s)*

as Q (s) , being inner, is contractive in the open right half plane.

(3) Û (5)
Assume QQÂ Â2 = QÂ Â1 holds. We clearly have Hr (QÂ Â1 ) = Hr (QQÂ Â2 ) =
Hr (Q)QÂ Â2 % Hr (QÂ Â2 ) and this implies that for every f Î H (K+ )

i fPHr (QÂ Â1 ) i ³ i fPHr (QÂ Â2 ) i (152)

Note that we have KiQÂ Âi = QÂ Âi K+ and hence

Hr (Ki)QÂ Âi Ì Hr (Ki)QÂ Âi % Hr (QÂ Âi ) = Hr (KiQÂ Âi ) = Hr (QÂ Âi K+ ) = Hr (QÂ Âi )K+ % Hr (K+ )

This implies the equality

i f i 2 = i fPHr (Ki)QÂ Âi
i 2 + i fPHr (QÂ Âi ) i 2

for all f Î Hr (K+ ) . As a consequence of (152), we conclude that statement (2)
implies i fPHr (K1)QÂ Â1

i £ i fPHr (K2)QÂ Â2
i .

(2) Û (3)
We have W1QÂ Â1 = W+ = W2QÂ Â2 . Since W2 = W1Q1, it follows that W1QÂ Â1 =
W1QQÂ Â2 , and, by the invertibility of W1, that QÂ Â1 = QQÂ Â2 .

Conversely, assume QQÂ Â2 = QÂ Â1 . We compute

W2QÂ Â2 = W+ = W1QÂ Â1 = W1QQÂ Â2
which clearly implies the equality W2 = W1Q.

(3) Û (4)
Inequality (149) follows from QQÂ Â2 = QÂ Â1 by the contractivity of Q in the open
right half plane.

Conversely, inequality (149) shows that, with the exception of a ® nite number
of points, the function Q = QÂ Â1 (QÂ Â2 )- 1 is analytic and contractive in the open right
half plane. Thus the singularities are removable. As Q has unitary boundary
values, it is necessarily inner.

(2) Û (6)
The factorizations Q+ = QÂ1QÂ Â1 = QÂ2QÂ Â2 = QÂ1QQÂ Â2 show that QÂ Â1 = QQÂ Â2 . We
have therefore the inclusions Hr (QÂ Â2 ) Ì Hr (QÂ Â1 ) Ì Hr (Q+ ) . This implies

i gPHr (QÂ Â1 ) i ³ i gPHr (QÂ Â2 ) i , " g Î Hr (Q+ ) (153)

To prove the converse, note that Hr (QÂ Âi ) Ì {H2
+Q+ }̂ . Here it follows that the

inequality i gPHr (QÂ Â1 ) i ³ i gPHr (QÂ Â2 ) i holds for all g Î H2
+ . We conclude that

Hr (QÂ Â2 ) Ì Hr (QÂ Â1 ) and therefore QÂ Â1 = QQÂ Â2 for some inner function Q.

(3) Û (7)
This has been proved in Fuhrmann (1995).

(5) Û (6)
Assume i fPHr (K1)QÂ Â1

i £ i fPHr (K2)QÂ Â2
i for all f Î Hr (K+ ) . By a previous computa-
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tion, this is equivalent to i fPHr (QÂ Â1 ) i ³ i fPHr (QÂ Â2 ) i for f Î Hr (K+ ) . Now, if M Ì N
are subspaces of a Hilbert space and PM, PN the respective orthogonal projec-
tions, then we have PM = PMPN . We apply this in the following way. We clearly
have QÂ i QÂ Âi = Q+ and therefore Hr (QÂ Âi ) Ì Hr (Q+ ) . So PHr (QÂ Âi ) = PHr (QÂ Âi )PHr (Q+ ) .
Now, we claim that

Hr (K+ )PHr (Q+ ) = Hr (Q+ ) (154)

To see this we consider the inverse of the phase function T- 1
0 = W - 1

- W+ = Q+K*
+ .

The ® rst factorization is a left Wiener± Hopf factorization with trivial factorization
indices. Hence the Toeplitz operator T r

W - 1- W+
= T r

Q+ K*
+

is invertible. Applying
Theorem 1, we conclude that (154) holds. Now (152) implies

i fPHr (Q+ )PHr (QÂ Â1 ) i ³ i fPHr (Q+ )PHr (QÂ Â2 ) i
and hence that

i gPHr (QÂ Â1 ) i ³ i gPHr (QÂ Â2 ) i

for all g Î Hr (Q+ ) .

(6) Û (3)
From (6), using the factorizations Q+ = QÂ i QÂ Âi , we conclude that

Hr (QÂ1)QÂ Â1 = Hr (Q+ ) ´ H2
+QÂ Â1 = Ker Hr (Q+ )|PHr (QÂ Â1 )

Ì Ker PHr (QÂ Â1 ) |Hr (Q+ ) = Hr (Q+ ) ´ H2
+QÂ Â1

= Hr (QÂ2)QÂ Â2
This implies that QÂ Â1 = QQÂ Â2 for some inner function Q, and hence also QÂ2 = QÂ1Q.
So W2 = W- QÂ2 = W- QÂ1Q = W1Q, i.e. W1 £ W2. h

We pass now to the study of the set W m of minimal, stable, p ´ m spectral factors
in the general case (m0 £ m £ m0 + p) , which is the central theme of this paper. We
denote by W m0 the set of all minimal, stable p ´ m0 internal spectral factors of U . We
also denote by W m the set of all minimal, antistable p ´ m spectral of U . Again W m

can be partially ordered. Unhappily, de® ning W1 £ W2 if W2 = W1Q for some inner
function Q is too coarse an order, and it can be re® ned. Thus we proceed di� erently,
de® ning a partial order in the sets W m , W m , X m and X m .

De® nition 7: Let W1, W2 be minimal, stable, p ´ m spectral factors and let
Xi = Hr (Ki)QÂ Âi Î X m , i = 1, 2 be the respective minimal Markovian splitting sub-
spaces. Let W i = W iKi be the right coprime DSS factorizations over H ¥

- . Let Qi

be de® ned via ® gure 4.

(1) We say that W a £ W b if

W a (s) W a (s)* ³ W b (s) W b (s)*, Re s > 0 (155)

(2) If W a , W b Î W m , we say that W a £ W b if

W a (s) W a (s)* ³ W b (s) W b (s)*, Re s > 0 (156)

(3) We say that X1 £ X2 if
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i fPX1 i £ i fPX2 i , " f Î Hr (K
e
+ ) (157)

Here PX denotes the orthogonal projection of H2
+ onto X.

(4) Given two minimal Markovian splitting subspaces

Xi = Hr (K*
i ) (K*

i ) (QÂ i )
* Î X m,

we say that X1 £ X2 if

i hPX1 i ³ i hPX2 i , " h Î Hr[(Ke
- )*] (158)

Here PX denotes the orthogonal projection of H2
- onto X.

The de® nition of the partial order in the set W is customary, see Anderson
(1973). We point out the inversion of the direction of the inequality, compared
with (157). Also, we note that, since multiplication by inner functions is a unitary
map in L 2 and therefore preserves orthogonality, (158) is equivalent to

i fPHr (K1)QÂ Â1
i ³ i fPHr (K2)QÂ Â2

i , " f Î Hr (K
e
- )QÂ QÂ Â (159)

We recall that, assuming W- is p ´ m0 and of full column rank, the inner func-
tions Q- , Q+ , K- , K+ are all m0 ´ m0, whereas the spectral factors we study are all of
size p ´ m. We also recall that we have de® ned p 1, see De® nition 3, to be the
projection on the ® rst m0 components. For following the statement and proof of
the next theorem, it is advisable to refer to ® gure 4.

Theorem 9: L et U be a rank m0, spectral function, having no zeros on the extended
imaginary axis. L et W m be the set of all minimal, stable spectral factors of U , let
X m be the set of all minimal Markovian splitting subspaces corresponding to these
factors. Let W a , W b Î W m . Then the following statements are equivalent.

(1)
W a £ W b (160)

(2)

W a £ W b (161)

(3)

p 1QÂ Âa (s)- 1QÂ Âa (s)- *p 1 ³ p 1QÂ Âb (s)- 1QÂ Âb (s)- *p 1, Re s > 0 (162)

(4)

p 1QÂ Âa (s)*QÂ Âa (s) p 1 £ p 1QÂ Âb (s)*QÂ Âb (s) p 1, Re s > 0 (163)

(5) We have

i PHc ( (QÂ Âa )*)gi ³ i PHc ( (QÂ Âb )*)gi , " g Î Hc[(Qe
+ )*] (164)

(6) We have

i gPHr (QÂ Âa ) i ³ i gPHr (QÂ Âb ) i , " g Î Hr (Q
e
+ ) (165)

(7) With the maps Ti de® ned by

Ti = Hr (Q
e
+ )|PHr (QÂ Âi ) , i = a , b (166)

there exists a unique, contractive map Y for which T a Y = T b .
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(8) We have

i fPHr (Ka )QÂ Âa
i £ i fPHr (Kb )QÂ Âb

i , " f Î Hr (K
e
+ ) (167)

(9) Let the maps R1: Hr (K
e
+ ) ® Hr (Ki)QÂ Âi be de® ned by (133) for i = a , b . The

map

Z: Hr (Kb )QÂ Âb ® Hr (Ka )QÂ Âa
de® ned by Z = R- 1

b Ra is contractive.

Proof:

(1) Û (2)
Since W i = W iKi , we have

W i W *
i = W iKiK*

i W *
i = W i W *

i

which clearly implies the equivalence.

(1) Û (3)
We note that, on the imaginary axis, we have W a = W e

+ (QÂ Âa )*, which clearly has a
meromorphic extension to the right half plane, given by W a (s) = W e

+ (s)QÂ Âa (s)- 1.
Assume W a £ W b , i.e. inequality (155) holds. Let W - L

+ (s) be a left inverse of
W+ (s) . We clearly have the following implications.

W a (s) W a (s)* ³ W b (s) W b (s)*

Þ

W - L
+ (s) W a (s) W a (s)*W - L

+ (s)* ³ W - L
+ (s) W b (s)W b (s)*W - L

+ (s)*

Û

W - L
+ (s) (W+ (s) 0)QÂ Âa (s)- 1QÂ Âa (s)- *

W+ (s)*

0( ) W - L
+ (s)*

³ W - L
+ (s) (W+ (s) 0)QÂ Âb (s)- 1QÂ Âb (s)- *

W+ (s)*

0( ) W - L
+ (s)*

Û

(I 0)QÂ Âa (s)- 1QÂ Âa (s)- *
I

0( ) ³ (I 0)QÂ Âb (s)- 1QÂ Âb (s)- *
I

0( )
Û

p 1QÂ Âa (s)- 1QÂ Âa (s)- *p 1 ³ p 1QÂ Âb (s)- 1QÂ Âb (s)- *p 1

Our only remaining task is to invert the ® rst implication. To this end we
show that W+ (s) W+ (s)- L W a (s) = W a (s) . Indeed, by Lemma 6, we have
W+ (s) W+ (s)- L W- (s) = W- (s) . Therefore
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W+ (s) W+ (s)- L W a (s) = W+ (s) W+ (s)- L W e
- (s)QÂ a (s)

= W e
- (s)QÂ a (s) = W a (s)

Extending (I 0) in a natural way to a projection proves the reverse implication.

(6) Û (4)
By our assumption, we have

i gPHr (QÂ Âa ) i ³ i gPHr (QÂ Âb ) i , " g Î Hr (Q+ ) (168)

We show now this inequality holds for all g Î H2
+ p 1. Clearly, for all f Î H2

+ , we
have f = f p 1 + f p 2. In particular, since by equation (89) Hr (QÂ Â ) p 1 Ì Hr (Q

e
+ ) , we

have

Hr (QÂ Â ) = Hr (QÂ Â ) p 1 + Hr (QÂ Â ) p 2 Ì Hr (Q
e
+ ) + H2

+ p 2

So gPHr (QÂ Â )
= gPHr (QÂ Â ) (PHr (Qe

+ ) + PH2
+ p 2

) . Assume g Î H2
+ p 1, i.e. g = f p 1, then it

follows that, for all f Î H2
+ ,

f p 1PHr (QÂ Â )
= f p 1 (PHr (Qe

+ ) + PH2
+ p 2

)PHr (QÂ Â )

= f p 1PHr (Qe
+ )PHr (QÂ Â )

This implies

i f p 1PHr (QÂ Âa ) i = i f p 1PHr (Qe
+ )PHr (QÂ Âa ) i ³ i f p 1PHr (Qe

+ ) PHr (QÂ Âb ) i = i f p 1PHr (QÂ Âb ) i
Thus we have obtained

i f p 1PHr (QÂ Âa ) i ³ i f p 1PHr (QÂ Âb ) i " f Î H2
+ (169)

We take now special choices for f , namely

f = x
s + x

, x Î Im p 1, Re x > 0

Note that for any H2
+ function h, we have k h, x /(s + x ) l H2

+
= h(x ) x *. It is easy to

check that

x
s + x

= x - x Q (x )*Q (s)
s + x

+ x Q (x )*Q (s)
s + x

is an orthogonal decomposition relative to H2
+ = Hr (Q) % H2

+Q. In fact,

K (s, x ) :=
I - Q (x )*Q (s)

s + x

is the reproducing kernel for Hr (Q) . Inequality (169) translates therefore into

i x i 2 - x QÂ Âa (x )*QÂ Âa (x ) x *

x + x
³ i x i 2 - x QÂ Âb (x )*QÂ Âb (x ) x *

x + x
,

or, since x + x > 0

x QÂ Âb (x )*QÂ Âb (x ) x * ³ x QÂ Âa (x )*QÂ Âa (x ) x *

This is equivalent to

p 1QÂ Âb (x )*QÂ Âb (x ) p 1 ³ p 1QÂ Âa (x )*QÂ Âa (x ) p 1
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Conversely, assume (163) holds. Computing backwards, it is easy to see that
this entails

p 1K a (x , x ) p 1 ³ p 1K b (x , x ) p 1 (170)

where

K i (s, x ) :=
I - QÂ Âi (x )*QÂ Âi (s)

s + x
, f or i = a , b

We assume ® rst that

Hr (QÂ Âa ) p 1 = Hr (QÂ Âb ) p 1 (171)

and denote the common dimension of these spaces by r. Then we can chose in
these spaces basis matrices Fa and Fb , which we consider as a column of r rows of
H2

+ , such that Fa p 1 = Fb p 1 = F+ . This can be achieved by taking any basis Fa in
Hr (QÂ Âa ) and constructing Fb as (Fa p 1) (Hr (QÂ Âb )|p 1)-

1, noting that, by Proposition
15, the map Hr (QÂ Âb )|p 1 is injective. Then it is well known, see Dym (1989), that

K i (s, x ) = Fi (x )*P- 1
i Fi (s), i = a , b

where Pi is the Gram matrix of the basis Fi de® ned, for i = a , as
(Pa ) j ḱ = k Fj,a ,Fk,a l where j, k = 1, . . . ,r and Fj,a is the j th row of the matrix
Fa . Therefore the relation (170) can be written as

p 1Fa (x )*P- 1
a Fa (x ) p 1 ³ p 1Fb (x )*P- 1

b Fb (x ) p 1

which, in view of our choice of the basis, becomes

F+ (x )*P- 1
a F+ (x ) ³ F+ (x )*P- 1

b F+ (x ) (172)

We claim that (172) entails

P- 1
a ³ P- 1

b (173)

To see this, we need to show that

F(x )*PF(x ) ³ 0 x Î I (174)

implies P ³ 0. Assume û(x ) is a row vector in H2
+ of suitable dimension. Then

denoting by F the Fourier transform, it is well known that

F - 1[F(x ) û(x )](t) = ò
t

- ¥
eA(t- s)Bu(s) ds = x(t)

where u is the inverse transform of û and (A,B) denotes a controllable pair such
that F(x ) = (x I - A)- 1B. Similarly,

F - 1[û(x )*F(x )*PG+ (x ) û(x )](t) = ò
t

- ¥
x(s - t)*Px(s) ds

which evaluated at zero yields, taking into consideration inequality (174),

0 £ ò
0

- ¥
x(s)*Px(s) ds (175)

Suppose now x *Px < 0 for some x Î C
m . Then, since x *eA*sPeAs x is continuous

in s, there exists a ¿ < 0 such that the integral ò 0
¿ x *eA*sPeAs x ds is strictly negative.

On the other hand, in view of controllability, we can ® nd a control u0 s.t.
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x(¿) = ò ¿

- ¥ eA(¿- s)Bu(s) ds = e- A¿ x . Moreover, we can choose this control so
that ò ¿

- ¥ x*(s)Px(s) ds is arbitrarily small, in particular smaller than

- ò 0
¿ x *eA*sP eAs x ds. Furthermore, we set u0 (s) = 0 for ¿ £ s £ 0. Therefore we

have constructed a control such that ò 0
- ¥ x*(s)Px(s) ds < 0. As this contradicts

(175), we can conclude that P ³ 0.
If we go now back to (172), we immediately see that the above argument yields

(173). To conclude, let now g Î H2
+ p 1. Then, by a well-known property of

reproducing kernels, see Dym (1989),

gPHr (QÂ Âi ) = k g(x ),K ( ,́ x ) l = k g,Fi l P- 1
i Fi

and
i gPHr (QÂ Âi ) i 2 = k g,Fi l P- 1

I k Fi,g l
Since k g,Fa l = k g,Fb l , we see that P- 1

a ³ P- 1
b implies i gPHr (QÂ Âa ) i 2 ³ i gPHr (QÂ Âb ) i 2.

This shows the implication under the restrictive assumption (171).
If the assumption (171) is not satis® ed, then, necessarily, we must have

Hr (QÂ Âa ) p 1 É Hr (QÂ Âb ) p 1. Indeed, inequality (162) implies that

QÂ Âb (- sj) p 1 x *
j = 0 Þ QÂ Âa (- sj) p 1 x *

j = 0 (176)

and, more generally, if the superscript indicates the k th derivative,

Q
(k)
b (- sj) p 1 x *

j = 0 Þ Q (k)
a (- sj) p 1 x *

j = 0 (177)

Therefore, we conclude that if

x
(s - sj )

k+1 p 1 Î Hr (QÂ Âb ) p 1

then
x

(s - sj )
k+1 p 1 Î Hr (QÂ Âa ) p 1

which is our claim. Thus we can decompose Hr (QÂ Âa ) p 1 as

Hr (QÂ Âa ) p 1 = Hr (QÂ Âb ) p 1 % [Hr (QÂ Âa ) p 1 * Hr (QÂ Âb ) p 1]
This means that if ^Fb is a basis in Hr (QÂ Âb ) p 1, we can ® nd a basis ^Fa of Hr (QÂ Âa ) p 1 of
the form

^Fa =
^Fb

x( )
Let now Fi be the inverse image in Hr (QÂ Âi ) under p 1 of ^Fi , for i = a , b . Construct
the reproducing kernels K i (s, x ) - Fi (x )*P- 1

i Fi (s) . Then

p 1K a p 1 = ^Fa (x )*P- 1
a

^Fa (s)

and

p 1K b p 1 = ^Fb (x )*P- 1
b

^Fb (s) = ^Fa (x )*
P- 1

b 0

0 0( ) ^Fa (s)

so that, again in view of the ordering on the matrices following from (172) we
obtain
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P- 1
a ³

P- 1
b 0

0 0( )
The conclusion of the backward implication then follows as above and the equiva-
lence is thus proved.

(3) Û (5)
Assume ® rst that

p 1Hc ( (QÂ Âa )*) = p 1Hc[(QÂ Âb )*] (178)

This is a coinvariant subspace of Hc (Q*
+ ) , hence of the form Hc (Q*) for some left

factor Q* of Q*
+ . The common dimension of these subspaces will be denoted by r.

Let F be a basis matrix of Hc (Q*) . Since, by Proposition 15, the projections
p 1| ^Hc[(QÂ Âi )*]are injective, we can ® nd basis matrices Fa and Fb in Hc[(QÂ Âa )*]
and Hc[(QÂ Âb )*]respectively such that F = p 1Fa = p 1Fb . Let Pa , Pb be the Gram
matrices of these bases. Thus the projection of g Î Hc (Q*

+ ) on Hc[(QÂ Âi )*], for
i = a , b , can be written as

PHc (Q- 1
i ) g = FiP- 1

i k Fi,g l i = a , b
and hence

i PHc (Q- 1
i )gi 2 = k g,Fi l P- 1

i k F,g l i = a , b (179)

In view of our choice of Fi , it is, for all g Î p 1H
2
- and thus a fortiori for all

g Î Hc (Q- 1
+ )

k g,Fa l = k g,Fb l = k g,F+ l
Therefore, we can write:

i PHc (Q- 1
i ) i 2 = k g,F+ l P- 1

i k F+,g l i = a , b
Since F is a basis matrix, we have {k g,Fi l g Î Hc (Q*)}= C

r. Therefore, we can
conclude that

i PHc ( (QÂ Âa )*)gi ³ i PHc ( (QÂ Âb )*)gi " g Î Hc (Q*
+ )

if and only if

P- 1
a ³ P- 1

b (180)

We have shown that (164) is equivalent to (180). We show now that (180) is
equivalent to (162). First, we show that if Q is inner in the right half plane and
F is a basis matrix for Hc (Q*) with Gram matrix P, then we have, for Re s > 0,

Q- 1 (s)Q- 1 (s)* - I
s + s

= F(s)P- 1F(s)* (181)

In fact, by a standard result [see Dym (1989)], the reproducing kernel of a coin-
variant subspace Hc (Q) can be written as:

I - Q (s)Q (x )*

s + x
= F(s)P- 1F(x )* (182)

where F is any basis matrix of Hc (Q) and P its Gram matrix.

Analysis of spectral factors 337



Let now F = Q- 1F be a left coprime Douglas± Shapiro± Shields factorization of
F. Then F is a basis matrix of Hc (Q*) if and only if F is a basis matrix of Hc (Q) .
Therefore multiplying (182) on the left by Q- 1 (s) , on the right by Q- 1 (x )* and
taking x = s we get (181). We can now write the following chain of equivalences in
Re s > 0.

p 1Q- 1
a (s)Q- 1

a (s)*p 1 ³ p 1Q- 1
b (s)Q- 1

b (s)*p 1

Û

p 1
Q- 1

a (s)Q- 1
a (s)* - I

s + S
p 1 ³ p 1

Q- 1
b (s)Q- 1

b (s)* - I
s + s

p 1

Û
p 1Fa (s)P- 1

a Fa (s)*p 1 ³ p 1Fb (s)P- 1
b Fb (s)*p 1

Û
F+ (s)P- 1

a F+ (s)* ³ F+ (s)P- 1
b F+ (s)*

The last line is clearly implied by P- 1
a ³ P- 1

b . The opposite implication is seen as
above. If the assumption (178) is not satis® ed, we proceed as in the proof of the
previous equivalence.

(6) Û (5)
Follows from the fact that the map J : H2

+ ® H2
- de® ned by

(gJ ) (s) := g(- s)*

where H2
+ and H2

- are row and column spaces respectively, is a unitary map and
hence preserves ortogonality. In particular, given any inner function Q, we have
H2

+ = Hr (Q) % H2
+Q which, since (gQ)J = Q*(gJ ) , implies the direct sum

decompositionH2
- = Hc (Q*) % Q*H2

- . Moreover, we have for g Î H2
+ ,

(gPHr (Q) )J = PHc (Q*) (gJ )

Finally, we note that Hr (Q+ )J = Hc (Q*
+ ) , and this completes the proof of the

claimed equivalence.

(8) Û (6)
We assume (167) holds. Since

Hr (Ki)QÂ Âi % Hr (QÂ Âi ) = Hr (KiQÂ Âi ) = Hr (QÂ Âi Ke
+ ) = Hr (QÂ Âi )Ke

i % Hr (Ke
+ )

we have

i f i 2 = i fPHr (Ki)QÂ Âi
i 2 + i fPHr (QÂ Âi ) i 2 " f Î Hr (K

e
+ )

Thus (167) holds if and only if

i fPHr (QÂ Âa ) i ³ fPHr (QÂ Âb ) i " f Î Hr (K
e
+ ) (183)

We claim that the last inequality implies

i gPHr (QÂ Âa ) i ³ i gPHr (QÂ Âb ) i " g Î Hr (Q
e
+ ) (184)

To see this, note that the factorization
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QÂ i QÂ Âi =
Q+ 0

0 R( )
implies the inclusion

Hr (QÂ Âi ) Ì Hr (Q
e
+ ) % Hr (R

e) (185)

We also note that Hr (Q
e
+ ) ^ Hr (R

e) . Therefore, using the inclusion (185), we have
for f Î Hr (K

e
+ )

fPHr (QÂ Âi ) = fP
Hr

Q+ 0

0 R( ) PHr (QÂ Âi )

= f [PHr (Qe
+ ) % PHr (Re)]PHr (QÂ Âi )

= fPHr (Qe
+ ) PHr (QÂ Âi )

Now, by Corollary 3, we have Hr (K
e
+ )PHr (Qe

+ ) = Hr (Q
e
+ ) and hence (183) implies

(184). Conversely, assume (165) holds. By (185), we have for every f Î Hr (K
e
+ )

fPHr (QÂ Âi ) = fPHr (Qe
+ ) % Hr (Re) PHr (QÂ Âi )

= f [PHr (Qe
+ ) + PHr (Re)]PHr (QÂ Âi )

= fPHr (Qe
+ ) PHr (QÂ Âi )

as, clearly, Hr (K
e
+ )|PHr (Re ) = 0. Now, inequality (165) implies, once again using

Corollary 3, that for every f Î Hr (K
e
+ )

i fPHr (K1)QÂ Â1
i = i fPHr (Qe

+ ) PHr (K1)QÂ Â1
i ³ i fPHr (Qe

+ )PHr (K2)QÂ Â2
i = i fPHr (K2)QÂ Â2

i
(6) Û (7)

Assume inequality (165) holds. This implies Ker (Hr (Q
e
+ )|PHr (QÂ Âa ) ) Ì

Ker (Hr (Q
e
+ )|PHr (QÂ Âb ) ) . Therefore there exists a map Y : Hr (QÂ Âa ) ® Hr (QÂ Âb ) for

which

Hr (Q
e
+ )|PHr (QÂ Âa ) Y = Hr (Q

e
+ )|PHr (QÂ Âb )

i.e. ® gure 10 commutes.
Such a map Y is unique if and only Hr (Q

e
+ )|PHr (QÂ Âa ) is surjective. This, by Proposi-

tion 15, is indeed the case. Inequality (165) shows that Y = T - 1
a T b is contractive.
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Conversely, assume there exists a unique contraction Y : Hr (QÂ Âa ) ® Hr (QÂ Âb )
satisfying T a Y = T b . For any f Î Hr (QÂ Âa ) we have i f T - 1

a T b i £ i f i . Since
Hr (Q

e
+ )|PHr (QÂ Âa ) is surjective, we can write f = gPHr (QÂ Âa ) = gT a , with g Î Hr (Q+ ) .

This implies (165).

(8) Û (9)
The proof is similar to the equivalence (6) Û (7) . Thus, assume (167) holds. This
implies Ker Hr (K

e
+ )|PHr (Kb )QÂ Âb

Ì Ker Hr (K
e
+ )|PHr (Ka )QÂ Âa

. Hence there exists a map
Z : Hr (Kb )QÂ Âb ® Hr (Ka )QÂ Âa for which Rb Z = Ra . Z is uniquely determined if and
only if Rb is surjective, which, by Proposition 18, is the case. Now from the
inequality i fRa i £ i fRb i , setting f = gR- 1

b , it follows that i gR- 1
b Ra i £ i f i ,

i.e. Z is contractive.
Conversely, assume there exists a unique contraction Z : Hr (Kb )QÂ Âb ®

Hr (Ka )QÂ Âa satisfying Rb Z = Ra . Thus, for all f Î Hr (Ka )QÂ Âa , we have
i fR- 1

b Ra i £ i f i . Setting f = gRb we obtain i gRa i £ i gRb i . h

Remark: The equivalence between (1) and (8) is well known. For the uniform
choice of basis in the state space formulation, see Caines and Delchamps (1980),
and also Lindquist and Picci (1985) for the geometric approach from which these
formulas are derived. The inequality (163) is very similar to the de® nition (155).
Nevertheless, it is a more general statement about the partial ordering of inner
functions, which coincides with the usual one when p 1 = I. There is no need to
introduce spectral factors to formulate this result. It seems to us that this is the
actual key to the understanding of the order structure. We also point out that in-
equality (165) implies that the angle between the subspaces Hr (Qe

+ ) and Hr (QÂ Âa ) is
smaller than the angle between Hr (Qe

+ ) and Hr (QÂ Âb ) . Similarly inequality (167) im-
plies that the angle between the subspaces Hr (Ke

+ ) and Hr (Kb )QÂ Âb is smaller than
the angle between Hr (Ke

+ ) and Hr (Ka )QÂ Âa . These implications are one sided, but
we refrain from a further discussion of this. Finally, one might expect that the
equivalence of conditions (6) and (8) might be proved directly from the direct sum
decompositions (127), however we failed to do so.

Corollary 12: With the previously de® ned partial order in W m , W e
- and W e

+ are
the minimal and maximal elements respectively.

Proof: Clearly, in formula (165), the maximal element is Q+ and the
minimal one is I, which are the inner functions corresponding to W+ and W- ,
respectively. h

This previous corollary explains the terminology of extremal factors for W e
6 , W e

6 .
We turn now to the geometric structure of the set of minimal Markovian splitting

subspaces. The reader familiar with stochastic realization theory will recognize the
connection to the geometric constructs used in the stochastic domain. In particular,
some of the spaces pertain to the zero dynamics associated with a given spectral
factor, i.e. to the maximal output nulling inner (anti)-stabilizable subspaces and the
input containing outer (anti)-detectable subspaces associated to any given minimal
realization. This study was initialized in Lindquist et al. (1995). A further analysis
will be given in Gombani and Fuhrmann (1998) and Fuhrmann (1998).

To facilitate the reading we give here a table of the basic constructs used. At the
risk of repeating ourselves, we point out again that the various spaces in table 1 are a
result of a normalization, where with W+ we associate the state space Hr (K

e
+ ) .
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Theorem 10: L et W be a minimal, stable spectral factor. Let W = W K be its
DSS factorization over H ¥- . L et the inner functions QÂ , QÂ Â , QÂ , QÂ Â be determined
by Proposition 13, and let Qe

+ , Qe
- , Ke

+ , Ke
- be the inner functions for which diagram

2 commutes.
De® nite the spaces X, S and S as in Proposition 18, i.e.

X = Hr (K)QÂ Â
S = H2

+QÂ Â
S = H2

- KQÂ Â

üïïïï
ýïïïïþ

(186)

and the subspaces H- and H+ by

H- = H2
+ p 1Q+

H+ = H2
- p 1K+

ü
ý
þ

(187)

Then:

(1) We have

X ´ H- = [Hr (K) ´ Hr (K- )QÂ ]QÂ Â
X ´ H+ = Hr (K)QÂ Â ´ Hr (K

e
+ )

ü
ý
þ

(188)
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Space W - W W +

X H r (K - )Q + H r (K )Q Â Â H r (K + )

H - H
2
+ p 1Q + H

2
+ p 1Q + H

2
+ p 1Q +

H + H 2
- p 1K + H 2

- p 1K + H 2
- p 1k K +

S H
2
+ Q + H

2
+ Q Â Â H

2
+

S H 2
- K - Q + H 2

- K Q Â Â H 2
- K +

X ´ H - H r (K - )Q + [H r (K ) ´ H r (K - )Q Â ]Q Â Â H r (K + ) ´ H r (K - )Q +

dim (X ´ H - ) d (K - ) d (K ) - d (Q Â ) d (K + ) - d (Q + )

X ´ H + H r (K + ) ´ H r (K - )Q + H r (K )Q Â Â ´ H r (K + ) H r (K + )

dim (X ´ H
+ ) d (K - ) - d (Q - ) d (K ) - d (Q Â Â ) d (K + )

(H - ) ^ P X {0} [H r (Q Â )P H r (K )]Q Â Â H (Q + )P H r (K + )

dim[(H - ) ^ P X ] 0 d (Q Â ) d (Q + )

(H
+ ) ^ P X H (Q - )K + P H r (K - )Q + [H r (Q Â Â )K +]P H r (K )Q Â Â {0}

dim[(H + ) ^ ]P X d (Q - ) d (Q Â Â ) 0

Table 1.



(2) If X, Y Ì H2
+ and Y Ì X denote by YX̂ the orthogonal complement of Y in X.

We have

(X ´ H- ) ^X = (H- ) ^X = (H- ) ^ PX = [Hr (QÂ )PHr (K)]QÂ Â
(X ´ H+ ) ^X = (H+ ) ^ PX = (Hr (QÂ Â )K

e
+ )PHr (K)QÂ Â

ü
ý
þ

(189)

(3) We have

dim (H+ ) ^ PX = d (QÂ Â )

dim (H- ) ^ PX = d (QÂ )

ü
ý
þ

(190)

(4) We have

dim (X ´ H- ) = d (K) - d (QÂ )

dim (X ´ H+ ) = d (K) - d (QÂ Â )

ü
ý
þ

(191)

Proof:

(1) In view of equation (75) and the fact, see Lemma 7, that Q+ p 1 = p 1Q+ , we
have the equality Ke

- Qe
+ p 1 = QÂ KQÂ Â p 1. Thus we compute

X ´ H- = Hr (K)QÂ Â ´ H2
+ p 1Q+ = Hr (K)QÂ Â ´ H2

+Qe
+ p 1

= Hr (K*)KQÂ Â ´ H2
+ (Ke

- )*Ke
- Qe

+ p 1

= Hr (K*)KQÂ Â ´ [H2
+ + Hr ( (K

e
- )*)]Ke

- Qe
+ p 1

= [Hr (K*) (QÂ )
* ´ H2

+ (Ke
- )*]Ke

- Qe
+ p 1

= [Hr (K*) (QÂ )
* ´ (H2

+ % Hr ( (K
e
- )*) )]Ke

- Qe
+ p 1

= [Hr (K*) (QÂ )
* ´ Hr ( (K

e
- )*)]Ke

- Qe
+ p 1

= Hr (K)QÂ Â ´ Hr (K
e
- ) p 1Q

3
+

= [Hr (K) ´ Hr (K
e
- )QÂ ]QÂ Â

where in the last equality we have used the fact that Hr (K
e
- ) p 1 = Hr (K

e
- ) and

therefore the projection can be eliminated. Similarly

X ´ H+ = Hr (K)QÂ Â ´ H2
- p 1K+ = Hr (K)QÂ Â ´ H2

- Ke
+

= Hr (K)QÂ Â ´ [H2
- % Hr (K+ )]p 1

= Hr (K)QÂ Â ´ Hr (K
e
+ )

(2) We compute ® rst the orthogonal complement of X ´ H- in L 2. We use the
decomposition (Hr (K)QÂ Â )

^ = H2
+KQÂ Â % Hr (QÂ Â ) % H2

- and (H2
+Qe

+ ) ^ =
H2

- Qe
+ , as well as the equality H2

- Qe
+ = H2

- % Hr (Q
e
+ ) to get
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(X ´ H- ) ^ = (Hr (K)QÂ Â ´ Hr (K
e
- )Qe

+ ) ^

= (Hr (K)QÂ Â )
^ + (Hr (K

e
- )Qe

+ ) ^

= [H2
+KQÂ Â % H2

- QÂ Â ]+ [H2
+Ke

- Qe
+ % H2

- Qe
+]

= [H2
+KQÂ Â % H2

- QÂ Â ]+ [H2
+QÂ KQÂ Â % Hr (R

e) % H2
- Qe

+]
= [H2

+KQÂ Â % H2
- QÂ Â ]+ [H2

+QÂ KQ2 % H2
- % Hr (QÂ )QÂ Â % Hr (QÂ Â )]

Projecting orthogonally on Hr (K)QÂ Â we obtain the equality

(X ´ H- ) ^X = Hr (QÂ )QÂ Â PHr (K)QÂ Â
= [Hr (QÂ )PHr (K)]QÂ Â

Similarly, we compute the L 2 orthogonal complement of X ´ H+ .

(X ´ H+ ) ^ = H2
+KQÂ Â + Hr (QÂ Â ) + H2

- + H2
+ K+ + H2

= H2
+KQÂ Â + Hr (QÂ Â ) + H2

- + (H2
+QÂ Â + Hr (QÂ Â ) )K+

= H2
+KQÂ Â + Hr (QÂ Â ) + H2

- + H2
+QÂ Â K+ + Hr (QÂ Â )K+

= H2
+KQÂ Â + Hr (QÂ Â ) + H2

- + Hr (QÂ Â )K+

Projecting orthogonally on X = Hr (K)QÂ Â we get

(X ´ H+ ) ^X = (Hr (QÂ Â )K
e
+ )PHr (K)QÂ Â

as all other components are orthogonal to X.
(3) We need to show that dim (Hr (QÂ Â )K+ )PHr (K)QÂ Â

= d (QÂ Â ) . For this it su� ces
to show that the map Hr (QÂ Â )K+ |PHr (K)QÂ Â

is injective. But this follows from
Lemma 5. Similarly for Hr (QÂ )QÂ Â |PHr (K)QÂ Â

.
(4) It follows from (3), since dim (X ´ H- ) = dim X - dim (X ´ H- ) ^X =

d (K) - d (QÂ Â ) . Similarly for dim (X ´ H- ) . h

Remark: It should be noted that in the Lindquist± Picci framework the multi-
plicity of K+ could be strictly less than the rank of U . This implies that H- is not
necessarily contained in the past of the state process of the realization. Since we
do assume that the multiplicity of K+ is m0, this can never happen. As we said,
this is a rather special situation and we will not dwell on it here.

The set W m0 inherits the partial order from W m and, as W e
- , W e

+ Î W m0 , they are
the minimal and maximal elements respectively of W m0 with respect to this partial
order. The set W m and its relation to W m0 will be studied via the arithmetic proper-
ties of inner functions.

Given a minimal, stable p ´ m spectral factor W , we say, again following
Lindquist and Picci (1991), that a pair of internal spectral factors W0- ,
W0+ Î W m0 is a tightest internal bound for W if

(1) We have

W0- £ W £ W0+
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(2) Given W1, W2 Î W m0 for which W1 £ W £ W2 we have

W1 £ W0-

W0+ £ W2

We can state now:

Proposition 20: L et W be an arbitrary minimal, stable p ´ m spectral factor W .
Then

(1) A tightest internal bound for W exists.
(2) The tightest internal bound can be characterized as follows. Let QÂ , QÂ Â be the

inner functions determined by Proposition 13. L et

QÂ = QÂ1QÂ2

QÂ Â = QÂ Â2 QÂ Â1
be the internal ± external and external internal factorizations of QÂ and QÂ Â
respectively. Then

W0- = W e
- QÂ1

W0+ = W e
+ (QÂ Â1 )*

Proof: Follows from Theorem 4. h

Proposition 20 gave an arithmetic characterization of the tightest internal bound
for a given minimal, stable spectral factor. We proceed next to derive a geometric
characterization for it.

Proposition 21: Given a minimal, stable spectral factor W, let W0- , W0+ be the
tightest internal bound. L et S0- , S0- and S0+ , S0+ be de® ned, as in Proposition 18,
for W0- and W0+ respectively. Let H0 = L 2 p 1, i.e. it is the subspace of L 2 of all
those functions whose last m - m0 coordinates vanish. Then, with the notation of
Theorem 4,

(1) We have S0- = S ´ H0, i.e.

H2
+QQÂ Â1 = H2

+QÂ Â ´ L 2 p 1 (192)

(2) We have S0+ = SPH0 , i.e.

H2
+ p 1QÂ Â1 = H2

+QÂ Â p 1 (193)

(3) We have S0- = SPH0 , i.e.

H2
- K0- QQÂ Â1 = H2

- KQÂ Â p 1 (194)

(4) We gave S0+ = S ´ H0, i.e.

H2
- K0+QÂ Â1 = H2

- KQÂ Â ´ L 2 p 1 (195)

(5) We have
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S0- ´ S0- = Hr (K0- )QQÂ Â1 (196)

and

S0+ ´ S0+ = Hr (K0+QÂ Â1 (197)

(6) We have

X ´ H0 = (Hr (K0+ ) ´ H2
+Q)QÂ Â1 (198)

and

dim Z ´ H0 = d (K) - d (QÂ Â2 ) (199)

Proof:

(1) We proved in Proposition 15 that Hr (QÂ Â ) p 1 = Hr (QQÂ Â1 ) . This means that

Hr (QÂ Â ) p 1 + H2
+ p 2 = Hr (QQÂ Â1 ) + H2

+ p 2

Taking orthogonal complements in H2
+ , we obtain

H2
+QÂ Â ´ L 2 p 1 = H2

+QÂ Â ´ H2 p 1 = Hr (QQÂ Â1 )

(2) We have

H2
+QÂ Â p 1 = H2

+QÂ Â2 QÂ Â1 p 1

= H2
+QÂ Â2 p 1QÂ Â1 Ì H2

+ p 1QÂ Â1
We will show that H2

+QÂ Â2 p 1 = H2
+ p 1, which will prove the assertion. In fact,

H2
+QÂ Â2 p 1 is an H ¥

+ -invariant subspace of H2
+ p 1, hence of the form H2

+ p 1T for
some inner function T . Clearly, T has a representation of the form

T0 0

0 I( )
and is a right factor of QÂ Â2 , and so also of QÂ QÂ Â2 . Thus TQÂ Â1 is a right factor of
Q+ , however this contradicts the fact that the greatest common right divisor
of QÂ Â and Qe

+ is QÂ Â1 . Thus T is necessarily constant unitary.
(3) Referring to ® gure 5, we have the equality K0- QÂ2 = QÂ2K. We compute

H2
- KQÂ Â p 1 = H2

- (QÂ2)
*K0- QÂ2QÂ Â p 1

= H2
- (QÂ2)

*K0- QÂ2QÂ Â2 QÂ Â1 p 1

= H2
- (QÂ2)

*K0-
Q 0

0 R( ) QÂ Â1 p 1

= H2
- (QÂ2)

*p 1K0- QQÂ Â1

= H2
- p 1K0- QQÂ Â1
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We have used the fact that H2
- (QÂ2)

*p 1 is an H ¥
- -invariant subspace of H2

- ,
hence of the form H2

- p 1T* for some inner function T . Such a function would
be a common left factor of QÂ2QÂ Â which is necessarily trivial.

(4) Referring to ® gure 5, we have KQÂ Â2 = QÂ Â2 K0+ . We compute

H2
- KQÂ Â ´ L 2 p 1 = H2

- KQÂ Â2 QÂ Â1 ´ L 2 p 1

= H2
- QÂ Â2 K0+QÂ Â1 ´ L 2 p 1

= (H2
- QÂ Â2 ´ L 2 p 1)K0+QÂ Â1

= H2
- K0+QÂ Â1

Using arguments as above, we used the fact that H2
- QÂ Â2 ´ L 2 p 1 = H2

- ´ L 2 p 1.
(5) By trivial computations.
(6) Since X = S ´ S, we have

X ´ H0 = (S ´ S) ´ H0 = (S ´ H0) ´ (S ´ H0)

= S0- ´ S0+ = H2
+QQÂ Â1 ´ H2

- K0+QÂ Â1

= (Hr (K0+ ) ´ H2
+Q)QÂ Â1

By Proposition 17, the Toeplitz operator T r
K0+ Q* is injective, hence, by

Theorem 1, we have H2
+K0+

´ Hr (Q) = 0. We compute

dim X ´ H0 = dim Hr (K0+ ) ´ H2
+Q = dim Ker T r

QK*
0+

= codim (H2
+K0+ + Hr (Q) )

= d (K0+ ) - d (Q)

= d (K) - d (QÂ Â2 )

This means that the dimension of X ´ H0 is smaller than the dimension of X
exactly by the number of external zeros of W . h

Remarks: We would like to stress that the above results are much harder to
prove if instead of the extended scattering pairs we try to use those de® ned in Pro-
position 19. A glance at the formulas appearing in Theorem 10 will convince the
initiated reader that there are very close links here to geometric control theory.
The study of these links is beyond the scope of this paper and will be relegated to
subsequent publications.

We focus now on the analysis of the lattice structure of the sets W m and X m .
Unhappily, we cannot prove that W m is a complete lattice. In fact, in view of the fact
that the set of all non-negative matrices is not a complete lattice, see Ex. 9 on p. 142
of Halmos (1958), it is doubtful whether W m is a complete lattice. However, some
results are obtainable, in special cases. The analysis uses the arithmetic of inner
functions. Of course, this arithmetic is re¯ ected in the geometry of splitting sub-
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spaces. We begin by proving the following proposition. In following the proof, it
may be convenient to refer to ® gure 5.

Proposition 22: Denote by W m
R the set of all minimal, stable spectral factors of size

p ´ m for which, with the notation of Theorem 4, we have

QÂ QÂ Â =
Q+ 0

0 R( )
L et W a , W b Î W m

R. L et SW a , SW b be de® ned by (129). Then we have

(1)

SW a ´ SW b = H2
+ (QÂ Âa ~ L QÂ Âb ) (200)

where QÂ Âa ~ L QÂ ÂB is the least common left inner multiple of QÂ Âa and QÂ Âb .
(2)

SW a + SW b = H2
+ (QÂ Âa ^ R QÂ Âb ) (201)

where QÂ Âa ^ R QÂ Âb is the greatest common right inner divisor of QÂ Âa and QÂ Âb .
(3)

SW a ´ SW b = H2
- (QÂ Âa ^ R QÂ Âb )Ke

+ (202)

(4)

SW a + SW b = H2
- (QÂ Âa ~ L QÂ Âb )Ke

+ (203)

(5) (a) There exists a unique inner function K~ satisfying

K~ (QÂ Âa ~ L QÂ Âb ) = (QÂ Âa ~ L QÂ Âb )Ke
+ (204)

(b) There exists a unique inner function K̂ satisfying

K̂ (QÂ Âa ^ R QÂ Âb ) = (QÂ Âa ^ R QÂ Âb )Ke
+ (205)
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(6) There exist inner functions Z, Z for which

K~ Z = ZK̂ (206)

(7) De® ne rational functions W ~ , W ^ by

W ^ = W e
+ (QÂ Âa ~ R QÂ Âb )*

W ~ = W e
+ (QÂ Âa ~ L QÂ Âb )*

ü
ý
þ

(207)

Then W ~ , W ^ are minimal, stable spectral factors.
(8) W ~ , W ^ de® ned by

W ~ = W ~ K*
~

W ^ = W ^ K*
^

ü
ý
þ

(208)

are antistable spectral factors.
(9) For Z, Z, we have

W ~ Z = W ^

W ~ Z = W ^

ü
ý
þ

(209)

(10) We have

(SW a ´ SW b
) ´ (SW a + SW b

) = Hr (K~ ) (QÂ Âa ~ L QÂ Âb ) (210)

and

(SW a + SW b
) ´ (SW a ´ SW b

) = Hr (K̂ ) (QÂ Âa ^ R QÂ Âb ) (211)

So (SW a ´ SW b , SW a + SW b
) is a scattering pair for W ~ .

Similarly, (SW a + SW b ,SW a ´ SW b
) is a scattering pair for W ^ .

Proof:

(1) We compute

SW a ´ SW b = H2
+QÂ Âa ´ H2

+QÂ Âb = H2
+ (QÂ Âa ~ L QÂ Âb )

(2) Similarly,

SW a + SW b = H2
+QÂ Âa + H2

+QÂ Âb = H2
+ (QÂ Âa ^ R QÂ Âb )

(3) The algebra becomes a bit more complicated in the complementary compu-
tations of SW a ´ SW b and SW a + SW b . We have

Ka QÂ Âa = QÂ Âa Ke
+

Kb QÂ Âb = QÂ Âb Ke
+

Therefore
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SW a ´ SW b = H2
- Ka QÂ Âa ´ H2

- Kb QÂ Âb = H2
- QÂ Âa Ke

+ ´ H2
- QÂ Âb Ke

+

= [H2
- QÂ Âa ´ H2

- QÂ Âb ]Ke
+ = [(H2

- % H (QÂ Âa ) ) ´ (H2
- % H (QÂ Âb ) )]Ke

+

= [H2
- % (H(QÂ Âa ) ´ H (QÂ Âb ) )]Ke

+ = [H2
- % H (QÂ Âa ^ R QÂ Âb )]Ke

+

= H2
- (QÂ Âa ^ R QÂ Âb )Ke

+

(4) Similarly,

SW a + SW b = H2
- Ka QÂ Â+ + H2

- Kb QÂ Âb = H2
- QÂ Âa Ke

+ + H2
- QÂ Âb Ke

+

= [H2
- QÂ Âa + H2

- QÂ Âb ]Ke
+ = [H2

- (QÂ Âa ~ L QÂ Âb )]Ke
+

= H2
- K~ (QÂ Âa ~ L QÂ Âb )

(5) (a) By (69), we have

Ka QÂ Âa = QÂ Âa Ke
+

Kb QÂ Âb = QÂ Âb Ke
+

ü
ý
þ

(212)

Then we have

T = Ka QÂ Âa ~ L Kb QÂ Âb = QÂ Âa Ke
+ ~ L QÂ Âb Ke

+ = (QÂ Âa ~ L QÂ Âb )Ke
+

Thus there exist inner functions Y a , Y b for which

T = Y a QÂ Âa = Y b QÂ Âb
Since QÂ Âa ~ L QÂ Âb divides T on the right, it follows that there exists an
inner function K~ for which (204) holds.

(b) Similarly,

S = Ka QÂ Âa ^ R Kb QÂ Âb = QÂ Âa Ke
+ ^ R QÂ Âb Ke

+ = (QÂ Âa ^ R QÂ Âb )Ke
+

Clearly, QÂ Âa ^ R QÂ Âb divides S on the right, hence it follows that there
exists an inner function K̂ for which (205) holds.

(6) Clearly QÂ Âa ^ R QÂ Âb divides QÂ Âa ~ L QÂ Âb on the right. Thus there exists an inner
function Z satisfying

QÂ Âa ~ L QÂ Âb = Z(QÂ Âa ~ R QÂ Âb ) (213)

Analogously, there exists an inner function Z satisfying

QÂ Âa ~ L QÂ Âb = Z(QÂ Âa ^ R QÂ Âb ) (214)

Next, we compute

K~ Z(QÂ Âa ^ R QÂ Âb ) = K~ (QÂ Âa ~ L QÂ Âb ) = (QÂ Âa ~ L QÂ Âb )Ke
+

= (QÂ Âa ~ L QÂ Âb ) (QÂ Âa ^ R QÂ Âb )*(QÂ Âa ^ R QÂ Âb )Ke
+

= Z(QÂ Âa ^ R QÂ Âb )Ke
+

= ZK̂ (QÂ Âa ^ R QÂ Âb )
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Hence equality (206) follows.
(7) As (QÂ Âa ^ R QÂ Âb )* is unitary on the imaginary axis, it follows that W ^ is a

spectral factor. The same holds for W ~ . We have W e
+ = W a QÂ Âa = W b QÂ Âb .

This clearly implies that W ^ = W e
+ (QÂ Âa ^ R QÂ Âb )* Î H ¥

+ . The minimality of
W ^ follows from Theorem 2.

Similarly, by our assumption that W a , W b Î W m
R, we have that both QÂ Âa

and QÂ Âb are right factors of the inner function

Q+ 0

0 R( )
Hence QÂ Âa ~ L QÂ Âb is also a right factor. This implies W e

+ (QÂ Âa ~ L QÂ Âb )* Î H ¥
+ .

Invoking Theorem 2 once again, we conclude that W ~ is a minimal, stable
spectral factor.

(8) We compute

W ^ = W ^ K*
^ = W e

+ (QÂ Âa ^ R QÂ Âb )*K*
^

= W e
+ (Ke

+ )*(QÂ Âa ^ R QÂ Âb )*

= W e
+ (QÂ Âa ^ R QÂ Âb )* Î H ¥

-

(9) Using equality (213), we compute

W ~ Z = W e
+ (QÂ Âa ~ L QÂ Âb )*(QÂ Âa ~ L QÂ Âb ) (QÂ Âa ^ R QÂ Âb )*

= W e
+ (QÂ Âa ^ R QÂ Âb )* = W ^

Similarly, using equality (214), we compute

W ~ Z = W ~ K*
~ Z = W ~ ZK*

^

= W e
+ (QÂ Âa ~ L QÂ Âb )*(QÂ Âa ~ L QÂ Âb ) (QÂ Âa ^ R QÂ Âb )*K*

^

= W ^ K*
^ = W ^

(10) We compute

(SW a ´ SW b
) ´ (SW a + SW b

) = H2
+ (QÂ Âa ~ L QÂ Âb ) ´ H2

- K~ (QÂ Âa ~ L QÂ Âb )

= (H2
+ ´ H2

- K~ ) (QÂ Âa ~ L QÂ Âb )

= Hr (K~ ) (QÂ Âa ~ L QÂ Âb )

Similarly, we compute

(SW a + SW b
) ´ (SW a ´ Swb

) = H2
+ (QÂ Âa ~ R QÂ Âb ) ´ H2

- (QÂ Âa ^ R QÂ Âb )Ke
+

= H2
+ (QÂ Âa ^ R QÂ Âb ) ´ H2

- K̂ (QÂ Âa ^ R QÂ Âb )

= (H2
+ ´ H2

- K̂ ) (QÂ Âa ^ R QÂ Âb )

= Hr (K̂ ) (QÂ Âa ^ R QÂ Âb ) h
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Corollary 13: The set W 0 of all minimal, stable, internal spectral factors is a com-
plete lattice.

Proof: We apply the previous theorem for the case R = I. h

The following is our version of Theorem 6.8 in Lindquist and Picci (1991).

Theorem 11:

(1) Let Xi Î X m0 , i = 1, 2. Then the following statements are equivalent:
(a) X1 £ X2

(b) S1 Ì S2

(c) S2 Ì S1

(2) Let X1 Î X m0 , X2 Î X m . Then the following statements are equivalent:
(a) X1 £ X2

(b) S1 Ì S2

(c) S2 p 1 Ì S1

(3) Let X2 Î X m0 , X1 Î X m . Then the following statements are equivalent:
(a) X1 £ X2

(b) S1 p 1 Ì S2

(c) S2 Ì S1

Proof:

(1) Assume X1 £ X2. By Theorem 8, this is equivalent to W1Q = W2 or to
QÂ Â1 = QQÂ Â2 . We compute

SW1 = H2
+QÂ Â1 = H2

+QQÂ Â2 Ì H2
+QÂ Â2 = SW2

Conversely, assume SW1 Ì SW2 , i.e. H2
+QÂ Â1 Ì H2

+QÂ Â2 . This inclusion implies
the existence of an inner function Q such that QÂ Â1 = QQÂ Â2 . Therefore

W2 = W e
+ (QÂ Â2 )* = W e

+ (QÂ Â1 )*Q = W1Q

that is W1 £ W2 and hence X1 £ X2.
Assume W1 < W2. Since both factors are internal, this means that there

exists an inner function Q for which W2 = W1Q. In turn we have, using the
standard notation, that K1Q = QK2. We proceed to compute

S2 = H2
- K2QÂ Â2 = H2

- Q*K1QQÂ Â2

= H2
- Q*K1QÂ Â1 Ì H2

- K1QÂ Â1 = S1

Conversely, assume S2 Ì S1, i.e. H2
- K2QÂ Â2 Ì H2

- K1QÂ Â1 . This means the exist-
ence of an inner function Q for which QK2QÂ Â2 = K1QÂ Â1 . Since KiQÂ Âi = QÂ Âi Ke

+ ,
we have QQÂ Â2 = QÂ Â1 . This means that W1 £ W2 and hence that W1 £ W2.
This is equivalent to X1 £ X2.

(2) Assume X1 £ X2 and X1 internal. Let X2- be the greatest internal lower
bound for X2. By Proposition 21 we have S2- = S2 ´ H0. Thus, by part 1,

S1 Ì S2- = S2 ´ H0 Ì S2
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Conversely, assume S1 Ì S2. This implies

S1 = S1 ´ H0 Ì S2 ´ H0 = S2-

or X1 £ X2- £ X2.
Assuming X1 £ X2 we obtain as before X1 £ X2- . Since X1, X2- are both

internal, we can apply part 1, to get S2- Ì S1. Since, by Proposition 21, we
have S2- = S2 p 1, it follows that S2 p 1 Ì S1.

Conversely, assuming the last inclusion, we get X1 £ X2- £ X2.
(3) This follows from the previous part by symmetry, or can be proved directly in

an analogous way. h

To get some feeling about external factors, we work out a very simple example.

Example: Let us take the minimum phase spectral factor

W- =
z + 1
z + 3

and the corresponding maximum phase spectral factor

W+ =
1 - z
z + 3

Given a pair of complex numbers a , b , satisfying |a |2 + |b |2 = 1, then

W =
1

z + 3[a (1 + z) b (1 - z)] (215)

is a 1 ´ 2 spectral factor. We set

W e
- =

z + 1
z + 3

0( )
It is easily computed that

QÂ =
a b

1 - z
1 + z

- b a 1 - z
1 + z

æ
çççè

ö÷÷÷ø
, QÂ Â =

a 1 - z
1 + z - b

1 - z
1 + z

b a

æ
çè

ö÷ø

QÂ QÂ Â =

1 - z
1 + z

0

0
1 - z
1 + z

æ
çççè

ö÷÷÷ø
=

Q+ 0

0 R( )
For the DSS factorization we have

W =
1

z - 3[a (1 + z) b (1 - z)]
and

K =
z - 3
z + 3
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For f Î Hr (K
e
+ ) , which up to a constant factor, is given by

f = 1
z + 3

0( )
we compute now,

fPH (QÂ Â )
= 1

z + 3
0( ) (QÂ Â )

*P- QÂ Â

= 1
z + 3

0( )
a 1 + z

1 - z
b

- b
1 + z
1 - z

a

æ
ççè

ö÷÷ø
P- QÂ Â

=
1 + z

(z + 3) (1 - z) b
1

z + 3( ) P- QÂ Â

=
1
2

1
1 - z - 1

2
1

z + 3
b

1
z + 3( ) P- QÂ Â

=
1
2

1
1 - z

0( ) a 1 - z
1 + z - b

1 - z
1 + z

b a

æ
çè

ö÷ø
= |a |2

2
1

1 + z
- a b

2
1

1 + z( )
This implies

i fPH (QÂ Â )
i 2 = i f i 2 |a |4

4
+ |a |2|b |2

4{ } = i f i 2 |a |2
4

(|a |2 + |b |2) = i f i 2 |a |2
4

Equivalently i fPH (QÂ Â )
i = i f i (|a | /2) . The maximal value is obtained for |a | = 1.

Using this we compute

i fPH (Ke- )Qe
+ i 2 = i f i 2 = i f i 2

4
=

3i f i 2

4
or i fPH (Ke- )Qe

+ i = ê ê ê3Ï i f i /2. Thus the angle between H (Ke
- )Qe

+ and Hr (K
e
+ ) is, in

this case, p /3.
Note that

lim
|a ||® 0

i Hr (K
e
+ )|PHr (K)QÂ Â

i = 1

but

lim
|a ||® 0

QÂ Â /= I

Next, we show that, except when a = 0, we have H (Ke
+ ) ´ H2

+QÂ Â = {0}. Indeed,
f Î H (Ke

+ ) ´ H2
+QÂ Â if and only if f Î H(Ke

+ ) and f (QÂ Â )
* Î H2

+ . Now

1
z + 3

0( ) Î H2
+QÂ Â
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if and only if

1
z + 3

0( )
a 1 + z

1 - z
b

- b
1 + z
1 - z

a

æ
ççè

ö÷÷ø
= a 1 + z

(1 - z) (z + 3)
b

z + 3( ) Î H2
+

which is the case if and only if a = 0. Therefore, for all factors W of the form (215),
we have H (Ke

+ ) ´ H2
+QÂ Â = {0}.

7. The frame space

We turn now to the analysis of a space that contains all the zero and pole
information of all spectral factors of given size. We de® ne the frame space H h

m of
the spectral functon U as the span of the set X m of all minimal Markovian splitting
subspaces associated with the set W m of all minimal, stable p ´ m spectral factors.

We start by considering a special case.

Proposition 23: Assume U to be rank m0. L et Q- , Q+ , K- , K+ be the inner func-
tions as in ® gure 1. Then the frame space H h

m0 is given by

H h
m0 = Hr (K- Q+ ) = Hr (Q- K+ ) (216)

Proof: First, we compute

Hr (K)QÂ Â Ì Hr (KQÂ Â ) = Hr (QÂ Â K+ ) Ì Hr (QÂ QÂ Â K+ ) = Hr (Q- K+ )

and hence we get the inclusion

nHr (K)QÂ Â Ì Hr (Q- K+ ) (217)

To prove the converse, we show that Hr (Q- K+ ) is spanned by the two Markov-
ian splitting subspaces associated with W- and W+ , namely Hr (K- )Q+ and Hr (K+ )
respectively. From Corollary 3 it follows that the projection map Hr (Q+ )|PHr (K+ ) is
injective, which means that H2

+K+ ´ Hr (Q+ ) = {0}. Applying Theorem 1, we have
H2

+Q+ + Hr (K+ ) = H2
+ . Now, we have the following direct sum decomposition

H2
+Q+ = [H2

+K- % Hr (K- )]Q+ + H2
+K- Q+ % Hr (K- )Q+

and

H2
+ = H2

+K- Q+ % Hr (K- Q+ )

Taken together, this implies Hr (K- )Q+ + Hr (K+ ) = Hr (K- Q+ ) , and so we get the
inclusion

nHr (K)QÂ Â É Hr (Q- K+ )

The two inclusions imply the equality (216). h

For the general case we will need the following lemma.
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Lemma 8: Let R be the set of all k ´ k inner functions R having the same set of
invariant inner factors r1, . . . ,rk . We assume they are ordered so that ri|ri- 1, and we
set r1 = r. Then

n
RÎ R

Hr (R) = Hr (rIk) (218)

Proof: For each R Î R , the inner function r is its minimal inner function. This
of course implies the inclusion Hr (R) Ì Hr (rI) and hence

n
RÎ R

Hr (R) Ì Hr (rIk)

To see that this inclusion is actually an equality, it su� ces to consider the set of all
diagonal inner functions of the form Rs = diag (rs 1, . . . ,rs k

) with s Î Sk , i.e. a
permutation. Clearly we have Rs Î R and

n
s Î Sk

Hr (Rs ) = Hr (rIk)

and hence (218) follows. h

We pass on now to the general case.

Theorem 12: Let U be a p ´ p, rank m0 spectral function. Let r be the scalar mini-
mal inner function of Q+ , or equivalently of Q- . Then the frame space H h

m of U is
given by

H h
m = Hr (K- Q+ ) % Hr (rIm- m0

) (219)

Proof: First, we compute

Hr (K)Q Ì Hr (KQÂ Â ) = Hr (QÂ Â K
e
+ )

Ì Hr (QÂ QÂ Â K
e
+ ) = Hr

Q- K+ 0

0 R( )
= Hr (Q- K+ ) % Hr (R) Ì Hr (Q- K+ ) % Hr (rI)

Thus n Hr (K)QÂ Â Ì Hr (Q- K+ ) % Hr (rI) , i.e.

H h
m Ì Hr (Q- K+ ) % Hr (rI) = H h

m0 % Hr (rIm- m0
)

Obviously, we have H h
m0 % {0} Ì H h

m , so it su� ces to show that
n Hr (K)QÂ Â p 2 = Hr (rIm- m0

) . Choose any R satisfying R . Q+ . Let

QÂ QÂ Â =
Q+ 0

0 R( )
be a balanced factorization which, by Proposition 16, exists. De® ne W = W e

- QÂ and
let W = W K be a DSS factorization. Now, by (103), we have Hr (K)QÂ Â p 2 = Hr (R) ,
and an application of Lemma 8 completes the proof. h
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