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Abstract 

A bijective correspondence between similarity classes of observable systems (C, A) and n-codimensional conditioned 
invariant subspaces of a pair (cg, ~4) is constructed that leads to a homeomorphism of the spaces. This is applied to the 
parametrization of inner functions of fixed McMillan degree. Proofs using state space methods as well as using polynomial 
models are given. @ 1997 Elsevier Science B.V. 
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I.  Introduction 

Controlled and conditioned invariant subspaces are 
crucial objects of  geometric control theory, as devel- 
oped by Wonham [12] and Basile and Marro [1]. Al- 
though the structure theory of such subspaces have 
been developed more, than a decade ago by Fuhrmann 
and Willems [6], Ful:crnann [4], Emre and Hautus [2], 
Hinrichsen et al. [9], and others, surprisingly, many 
questions still remain open. 

New interest in parametrization problems in geo- 
metric control theor./ arose through recent develop- 
ments in spectral l~a(:torization theory, see Lindquist 
et al. [10]. Such work has led to the need of obtain- 
ing a deeper insight into the relation between various 
objects, such as inwtriant subspaces of an operator, 
conditioned invarianl subspaces and observable pairs. 
The purpose of this paper is to add further understand- 
ing of parametrizing conditioned invariant subspaces 
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by establishing a connection with the parametrization 
theory of observable pairs. In fact, we prove, using 
state space methods, that there is a homeomorphism 
between the set of similarity classes of k-dimensional 
observable pairs and of the set of  k-codimensional 
conditioned invariant subspaces of an observable pair 
in Brunovsky canonical form. For reasons of simplic- 
ity, we focus on a rather special situation with generic 
Brunovsky indices. A complete theory for arbitrary 
Brunovsky indices is currently under development and 
is beyond the scope of this paper. With an eye to- 
wards generalizations to problems in a Hardy space 
context, it is also important to have a functional ap- 
proach available as well. Thus, an independent proof 
of the existence of a bijection between tight, con- 
ditioned invariant subspaces and observable pairs is 
given using methods from the theory of polynomial 
models. 

We believe that the results of  this paper show only 
the very beginnings of  a deeper theory that clarifies the 
links, so far only poorly understood, between various 
objects such as invariant subspaces of  linear opera- 
tors, conditioned invariant subspaces, inner functions, 
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spectral factorizations, Riccati equations and observ- 
able pairs• 

We would like to thank the reviewers for help- 
ful comments that led to an improvement of the 
paper. In particular, the present, more general, form 
of Theorem 2.1 together with the concept of a tight 
subspace has been suggested by one of the reviewers. 

2. Observable pairs and conditioned invariant 
subspaces 

For any integers p, n ~> 1 consider the observable 
pair (cg, s J ) E  ~p×p(n+l) X ~p(n+l)xp(n+l) defined by 

I . . . .  

~ ¢ =  , c d = ( 0  . . 0 I ) ,  (1) 

where I denotes the p x p identity matrix. Thus (oK, d )  
is an observable canonical form with generic observ- 
ability indices vi = n + 1, i = 1 . . . . .  p. 

We consider now conditioned invariant subspaces 
C ~ p ( n + l ) ,  with respect to (cg, ~,) .  Using the dual 

concept of  the notion of a coasting subspace, see 
Willems [11], we refer to ~ as a tight subspace if 

~U+ Ker cd = ~ p ( n + l )  

holds (i.e. if  Y/ is transversal to Ker cd). The following 
lemma describes a class of codimension k-conditioned 
invariant subspaces with respect to (cg, d ) .  

Lemma 2.1. Let  (cg,~¢) be defined as above. For in- 
tegers k,n let (C, A)  E Npxk X N kxk be an observable 
pair with partial observability matr ix  

Let  Im (~n( C, A )± denote the orthogonal complement 
o f  lmCn in Np(n+l) and let vl >~ . . .  >1 vp denote the 
observability indices o f (C ,  A ). 
(a) Im C~ is a conditioned invariant subspaee with 

respect to (oK, ~¢). It  has codimension k i f  and 
only i f  vl <~n + 1. 

(b) Im C~ x is a tight subspace i f  and only i f  vl <~n. 
(c) I f k  <~ n then, Im (9~ is tight. 

Proof. 

X =  

(a) We have 

+*x = _1_ Im(9 n 
X 1 

¢* X j-1 A_span C A  n-1 • 

Thus, 

~ X  ~- (°1(I xo 
L span . 

Xn !- 1 C An (cA) 
¢,  ± span ' . 

xn 1 CAn 

Since 

(ci) span C span 

C n 

C 
CA 

CAn-1 

we obtain x C (Im Cn) ± N Ker cg ~ d x  E (lm Cn) ±. 
Thus, the space is conditioned invariant. The condition 
on the observability indices implies (and is implied 
by) that it has codimension k. 

(b) By duality, a subspace ImCn x is tight if and 
only if 

Im (gn(C, A) A I m ~  T = {0}. 

By the special form of ~ this is equivalent to 

n--1 
A Ker CA i C Ker CA n. 
i=0 

Equivalently, this means that the rows of CA n are 
spanned by the rows of C, C A , . . . , C A  n- l ,  i.e. that 
V 1 ~ H .  
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(c) I f  k ~< n, then V 1 ~ n holds and therefore 
Im C~ is tight. [] 

We now show that every conditioned invariant 
subspace can be described via a partial observability 
matrix. 

Lemma 2.2. For every (~f, s~)-invarhmt subspace 
3UC~ p(n+l) of codimension k there ex&ts an 
observable pair ( C , A ) c ~  pxk × ~kxk with Y/= 
Im (gn(A, C) ±. 

Proof. Let 

L = C [~p(n+l )xk 

n 

with Li C ~pxk, i = 0 . . . . .  n, 

be a rank k matrix such that u z  = ImL. Then 
is conditioned invariant with respect to (c¢, s~) if and 
only if the conditions Cgz = 0 and LTz = 0 imply 
LT~Cz = 0. Equivalently, there exist A T E ~kxk and 
Y C Nkxp such that 

LT~4 = ATL T + Y~.  

Written out in components this gives 

LT+~ -- ATL T - -  i ,  i = O , . . . , n - -  1 

y =  Y T - A  Ln. 

Thus L = C,(C,A),  with C:=L0, and hence ~/~ = Im 
(9~(C, A) ±. The observability of (C, A) follows from 
rkC , (C ,A)=cod imY/~=k .  [] 

We prove now the main result of  this section, which 
extends a previous result of  Helmke [8]. 

Theorem 2.1. There exists a bijective correspon- 
dence between tight conditioned &variant subspaces 
with respect to (cg, ~ )  of  codimension k and sim- 
ilarity classes o f  k-dimensional observable pairs 
(C, A) E Npxk E Nkxk with largest observability in- 
dex vl <~ n. 

Proof. Given any observable pair (C ,A )E  NnxkE 
Npxk with v 1 ~ n then Lemma 2.1 implies that 
Im (gn (C, A )z is a tight conditioned invariant subspace 
for (~,  ~ )  of  codirnension k. Moreover, by Lemma 
2.2, any tight conditioned invariant subspace has 
such a representation. It remains to show that the pair 

(C, A) is (up to similarity) uniquely determined by the 
tight subspace Im @n(C, A) ±. Let (C1, A1), (C2, A2) 
be observable with observability indices ~< n and 
Im(gn(C1,A1) x = Im(9,(C2, A2) x. W.l.o.g. we can 
assume that (gn(C1,A1)= Cn(Cz, A2) and hence 
C1 = C2. It follows that the observability indices 
of (CbA1)  and (C2,A2) coincide and A~ has 
the same minimal polynomial as A2. Thus, from 
(~n(Cl, AI ) = (9n(C2, A2) we obtain A1 =A2 and hence 
the result. [] 

The above proof actually shows that there is a home- 
omorphism between observable pairs and conditioned 
invariant subspaces. More precisely, without elaborat- 
ing on the details, we have the following result. 

Corollary 2.1. Let k ~ n. Let Sk, p(R) denote the 
orbit space of  k-dimensional observable pairs and 
let Yf k(~, ~ )  denote the set of  conditioned invariant 
subspaces of  codimension k. Then the map 

R : Sk, p(N ) --+ ~k(c~,~4), 

[C,A]¢ H ImCn(C,A) ± 

is a homeomorphism. 

One can extend the preceding construction to the 
case of conditioned invariant subspaces of arbitrary 
dimension. Also, one can use the previous results to 
determine topological properties of  the space of condi- 
tioned invariant subspaces of fixed codimension. This 
will be done elsewhere. For example, it follows from 
the above theorem that the space of conditioned in- 
variant subspaces of a fixed codimension is connected. 

3. The polynomial model approach 

We present now a polynomial approach to the proof 
of  the previous results. One of its advantages is that 
the method of proof works for an arbitrary field. As 
in the state space approach, duality plays an impor- 
tant underlying role. In polynomial terms, we have 
two ways of dealing with duality. One is to use trans- 
position of polynomial matrices and dual operators, 
requiring the simultaneous use of both reachable and 
observable pairs. The other way, which we adopt, is to 
use both row and column polynomial models. In case 
we deal with row vectors, the operators will always 
be written on the right. 
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Specifically, given an observable pair (C, A), with 
C, A being p × n and n × n matrices respectively, we 
consider the coprime factorizations 

C(z] -- A )  1 = T(z) - lH(z) .  (2) 

With this factorization, we associate the polynomial 
model X~, the superscript denotes that we are deal- 
ing with spaces of column vector polynomials, as the 
state space. Define the pair (CT,Ar), with f EX~, 
by 

A r f  = S r f  = ritz.f, 

C r f  = (T l f )_~.  
(3) 

We refer to Fuhrmann [3,4] for the relevant details 
of  the shift realization. The pair (CT, AT) is neces- 
sarily observable and is similar to the pair (C, A), the 
similarity given by the map q5 : N" ~ X~ defined 
by 

4)(x) = H ( z ) x .  

Completely analogously, given a coobservable pair 
(A, C), i.e. an observable pair when using row vector 
spaces, we take the coprime factorizations 

(zI - A ) - I C  = H(z )T(z )  -1. (4) 

With this factorization, we associate the polynomial 
model X~ as the state space. Define the pair (Cr ,Ar) ,  
with f E X~, by 

fAT  = f S T  = fZnT, 

f C r  = ( f T  -1 )- l .  
(5) 

Using the representation (5) of an observable pair 
in terms of a polynomial model, a complete charac- 
terization of conditioned invariant subspaces has been 
obtained in Fuhrmann [4, Theorem 3.6]. In fact, using 
X~) as the state space and the pair (CD, AD) defined as 
in (5), a subspace V C X  D is conditioned invariant, if 
and only if ~ = X~ A M with M C ~rP[Z] a submod- 
ule. Now any such submodule has a representation of 
the form M = ~P[z] T for some p × p polynomial 
matrix T. The representation of conditioned invariant 
subspaces in the form ~ = XA D ~Pr[z] T does not 
specify the polynomial matrix T uniquely. In fact, a 
necessary and sufficient condition for the uniqueness 
of the representations is that the observability indices 
of any reduction of (C, A) to ~ are all positive. This 
will be proved in Proposition 3.2. To give a polyno- 
mial proof of  Theorem 2.1, in the case where k ~< n, 

we proceed by establishing some preliminary results 
which are of independent interest. The straightforward 
proof of  the first result is omitted. 

Proposition 3.1. Let (C, A) be an observable pair 
with the observability indices Vl >~ • • • >1 Vp, and let ~l- 
be a conditioned invariant subspace. Let J be an out- 
put injection map such that (A + J C ) ~  C ~U. Then 
the restricted pair (A1, Cl ) acting in the state space 

and defined by 

A1 = (A + JC)]~ ~', 

c~ = Cl,~ ~, 

is observable and its observability indices 21 >~ ""  
>~ 2p sati~sfy 2i <~ vi. 

Proposition 3.2. Let D be a p x p nonsingular poly- 
nomial matrix and let the pair (CD, AD) be the pair 
acting in X~) defined by (5). Let ~ = X[) D ~P[z] T 
be a conditioned invariant subspace of  X D having the 
observability indices of  the restricted system given by 
),L >~ "'" >~ Zp. I f  ),i > O for all i then the polynomial 
matrix T is invertible and uniquely defined up to a 
left unimodular factor. 

Proof. Assume 21 ~> • .. >~ 2p > 0. Y/ has another 
representation of the form ~ = X~, T1 = Xz~ D [~P [z] 7"1, 
with S1TID -1 biproper. Without loss of generality, 
we can assume that $l is column proper with column 
indices 21 ~> .-- /> ~,p. Now, by assumption, 

f f /=X~,Tl  =XSN~P[z]T1 = X S f ~ P [ z ] T .  (6) 

Since all J-i a re  positive, X~, contains all constant 
polynomials. The previous equality implies therefore 
that T1 (z) = E(z) T(z) for some polynomial matrix E. 
Thus, necessarily, both T and E are nonsingular. 
Defining Dl = S1T1, we have DI = S1 T1 = SIET. 
Therefore, we have 

~/ = X D n flOP[z] T = X~,T1 = X~ ET 

c X~,ET =Xf, n ~'[~] V. 

Thus, we must have equality throughout and hence E 
is necessarily unimodular. [] 

We consider the special case of the realization 
(5) for the case of the p × p polynomial matrix (of 
scalar type) A(z) = zn+llp. We will denote in the rest 
of  this section by (CA,AA) the observable pair in X~ 
associated with the polynomial matrix A via the real- 
ization (5). Let el . . . . .  ep be the basis of the standard 
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unit row vectors in I[~ p. Clearly, the matrix pair de- 
fined in (1) is just a matrix representation of  (C~,A~) 
with respect to the standard basis of  XA given by 

= {el . . . . .  ep, zel . . . . .  Zep . . . . .  z~el . . . . .  Znep}. We 
define the Toeplitz operator JT~-"~-r with symbol 
TA -1, acting in ~P[z], by 

1 oT-r I (7) 

L e m m a  3.1. Let  A(z)  = z"+llp and T a p x p non- 
singular polynomial' matrix. Let  ~ TA-'°2"r be the 
Toeplitz operator defined in (7). Then we have 

dim Ker J } a  , = dim XA A ~P[z] T. (8) 

Specifically, the map ~ : Ker d-~d_, ---+ XA ~ ~P[z] T 
defined by 

~ ( p )  = p T  

is a bijective linear map between these spaces. 

Proof.  Let p EKer  ff-~A-~' i.e. PJ~A-,  = p T A - l n +  
= 0 .  Setting f = pT ,  we get f EX~ as well as 
f c O ~ P [ z ] T ,  that is f C X ~  f3 ~P[z]T.  I f  T is non- 
singular, this argument is reversible. This shows that 
the two spaces are isomorphic. [] 

Lemma  3.2. Given A(z ) = zn+l lp and the observable 
pair (C, A)  c Xp, k(N)  with the observability indices 
vl >~ • •. >~ Vp. Then, with the nonsingular polynomial  
matr ix  T defined by (2), we have 

codim XA A RP[z] T --= deg det T (9) 

i f  and only i f  vl ~ n -~- 1. 

Proof.  Assume first that v 1 ~ n + 1. We note that the 
observability indices of (C,  A), i.e. •1 ~ ' ' "  ~ 12p with 
~"~fl=l vi = k, are equal to the row indices of  T. Fur- 
thermore k = deg det T. Clearly vl ~< k. Let T(z)  = 
U ( z ) A r ( z ) F ( z )  be a right Wiene r -Hopf  factoriza- 
tion at infinity, see Fuhrmann and Willems [5], o f  T 
with A v(z)  = diag (z" ' , . . . ,  z ~p). This implies the right 
Wiene r -Hopf  factorization 

TA - 1 = U (z ) diag (z v ' -n -  1 . . . . .  zVp - ~ -  1 ) F( z ). 

By our assumptions, we have for all indices i, the 
inequality vi - n - 1 ~< 0. Since the dimension of  
the kernel of  a Toeplitz operator is equal to minus the 
sum of  all negative, and equivalently nonpositive, 

factorization indices, this shows that 

dim Ker J-~_~ 

P P 

= - - Z ( v i - - n - -  l )  = p(n-~-  1 ) - -  ~ v  i. 
i=1 i=1 

Therefore, we also have d i m X z  A ~P[z]T  
= p(n + 1) - ~Pi=l vi. Since dim XA = p(n + 1 ), we 
obtain codim Xz M ~P[z] T = ~P_~ vi = k = deg det T. 

Assume now the codimension formula (9) holds. 
Assume also that 

Vl >~ .." >~ vj > n + l  >/ Vj+l >1.. .  >- Vp. 

As before, we have 

dim Ker g~z-~ 

P 

= - -  Z ( V i - - n - -  I )  
i-j+ 1 

This implies that 

P P 

codim X~ A ~P[z] T = (n q- 1 ) j +  Z vi < Z Vi' 
i=j+l i=1 

which contradicts the codimension formula. E3 

P 

= ( n +  l ) ( p - j ) -  Z vi. 
i~j+ 1 

The next proposition treats the uniqueness issue of  
Proposition 3.2 in state space terms and it turns out 
that it relates to the tightness of  the corresponding 
conditioned invariant subspace. 

Proposition 3.3. Let  A(z)  = zn+l lp and let 

=xd ~ ~qz] r (lo) 

be a conditioned &variant subspace. Let  vl >~ .. • >1 vp 
be the observability indces associated with T(z)  and 
let 21 > / - - . / >  2p be the observability indces  o f  the 
system (CA,AA) reduced to ~tC Then the followin9 
conditions are equivalent: 
( 1 ) Y/~ is a tight subspace OfXA. 
(2) We have vl <~ n. 
(3) We have 2p > O. 
(4) The representation (10) o f  ~//~ is unique up to a 

left unimodular fae tor  f o r  T. 

Proof.  Assume the representation of  ~ is unique 
in the above sense. Then, by Proposition 3.2, we 
have )~i > 0, for i = 1 . . . . .  p. By results in Fuhrmann 
[4], there exists a nonsingular polynomial matrix S 
such that S T = D  and A - 1 D = F  is biproper. Let 
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T = Ur diag (z~' , . . .  ,z ~?') F r  be a right Wiene r -Hopf  
factorization with Ur unimodular and 7r biproper. 
Similarly, there exists a left W i e n e r - H o p f  factoriza- 
tion for S of  the form S = Fs diag (z;% . . . .  z x' )Us.  
Since T is only determined up to a left uni- 
modular factor, we may assume, without loss of  
generality, that Us Ur =-I .  Thus, it follows that 
diag(z v~+;~-n-1 . . . . . .  . . . . . . . . . .  ) = F s l  F F r  1. This 
equality implies F --- FsFT and vi + 2p_i+1 = n + 1, for 
i = 1 . . . .  , p.  This shows that 2p-i+1 > 0 is equivalent 
to vi <~ n. 

Next, assume vi <~ n. We show that f ' =  XA N 
NP[z] T is tight. Clearly, for A(z)  = zn+llp, we have 
K e r ~  = {x(z) E NP[z] [ deg x < n}. Now, without 
loss of  generality, we can assume T(z)  to be row 
proper with row indices equal to vl >~ . . .  >~ Vp and 
the highest coefficient matrix of  T to be a permuta- 
tion matrix. Thus, the ith row of  T(z),  denoted by 
ti(z) has degree vi. We consider now the polyno- 
mial vectors Vi(Z ) = z;tP-~+t-lti(z). Clearly, the vi are 
in f ;  have degree n and their highest coefficients 
are the row unit vectors. This implies that ;~" is 
tight. 

Conversely, assume ~" is tight. Thus, there exist in 
~f 'p vectors of  degree n whose highest coefficients are 
linearly independent. This shows that necessarily the 
vi, i.e. the degrees of  t~, are all ~< n. 

We can give now a polynomial proof  of  Theo- 
rem 2.1. We point out that the theorem is valid over 
arbitrary fields. 

Proof.  For k ~< n, we construct a map from the orbit 
space 2;p,k(N) of  observable pairs, with C andA being 
p x k and k x k matrices, respectively, into the set o f  
conditioned invariant subspaces of  the observable pair 
associated with A. This map is constructed by taking 
the coprime factorization (2) and mapping (C, A) to 
the conditioned invariant subspace ~/" =X~ N ~P[z] T. 
Although T is defined only up to a left unimodular 
factor, the subspace ~ is uniquely determined by the 
similarity class of  (C,A) .  By Lemma 3.2, we have 
codim ~ = deg det T = k. 

Conversely, assume ~ is a conditioned invariant 
subspace of  X~ satisfying codim ~U = k ~< n. We shall 
construct an observable pair (C1, A1 ) that maps to ~U 
under the previously defined map. Clearly, we have 
r~ =XA N [RP[z] T for some polynomial matrix T. By 
Lemma 3.2, T is nonsingular with row indices sat- 
isfying n + 1 > k >~ Vl >~ . . .  >>- Vp. This implies, by 
Lemma 3.3, that 2i > 0 for all i and hence that the 

above representation determines T uniquely up to a 
left unimodular factor. 

Now we apply the shift realization, as in (3), to 
associate with T an observable pair (C, A) with ob- 
servability indices vl >>- . . .  >1 Vp. To be precise, let 
us consider the polynomial model space X~., which 
has dimension k. Let the p x k matrix H ( z )  be a basis 
matrix for X:~, that is its columns form a basis. This 
assumption on H implies in particular that T and H 
are left coprime. Since T IH  is strictly proper, it has 
a minimal realization of  the form C ( z I - A )  lB. Since 
H is a basis matrix, the map from Nk into X~ given 
by x ~ H ( z ) x  is bijective. By the state space isomor- 
phism theorem, B is a nonsingular matrix. Thus, 

C ( z I -  A ) - I B  = C B B - I ( ~  - A ) - I B  

= (CB)(zI  - B - l A B )  1 

= C l ( z [ - A 1 )  1 

Clearly, as Cl(zI  - A 1 ) - 1  = T IH, the observable 
pair (C1, A1) maps to the conditioned invariant sub- 
space ~" =XA N NP[z] T. [] 

Theorem 2.1 can be easily extended to other con- 
texts. Recall that, given a co-observable pair (A, C), 
a subspace ~U of  the state space is outer detectable if  
there exists an output injection map H such that ~U 
is A + CH invariant and (A + CH)Ix/e- is stable. We 
will state without proof  one such extension. Its proof  
is based on the following characterization of  outer 
detectable subspaces. 

Proposition 3.4. Let  D be a p × p nonsingular poly- 
nomial matrix. Then, with respect to the pair 
(AD, CD) defined in (5), a subspace ~ o f  the state 
space X~, is outer antidetectable i f  and only i f  

~/" -~- X;r I") ~m[slE_ (11) 

Jor some stable polynomial  matr ix  E_. 

Theorem 3.1. Let  A(z) = zn+llp. There is a bijec- 
tire correspondence between outer detectable sub- 
spaces with respect to the pair fig, ~ ' ) ,  defined as 
in (5) which have codimension k <<. n and similar- 
ity classes o f  k-dimensional observable, stable pairs 
( C , A ) E  ~px~ x ~kxk. 

Now an observable, stable pair ( C , A ) E  Npxk x 
Nkxk determines an inner function U of  McMillan 
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degree  k which  is unique  up to a constant  right uni-  

tary factors. In fact, choos ing  the normal iza t ion  U ( o c )  

= I ,  it is g iven  by 

[ , ' 

where  Z is the unique  posi t ive-defini te  solut ion o f  the 

homogeneous  Riccat i  equat ion ZA* + AZ + ZC*CZ 
= O. Thus, we can state: 

Corollary 3.1. There is a bijective correspondence 
between outer detectable subspaces with respect to 
(c~, d )  o f  codimension k <~ n and equivalence classes 
o f  p x p inner functions in the right half  plane o f  
McMillan degree k modulo right multiplication by 
constant unitary matrices. 
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