
Systems & Control Letters 41 (2000) 57–66
www.elsevier.com/locate/sysconle

Controllability of matrix eigenvalue algorithms: the inverse
powermethod(

U. Helmkea ; ∗, P.A. Fuhrmannb; 1

aUniversit�at W�urzburg, Institut f�ur Mathematik, W�urzburg, Germany
bDepartment of Mathematics, Ben-Gurion University of the Negev, Beer Sheva, Israel

Received 27 August 1999; received in revised form 1 February 2000; accepted 28 April 2000

Abstract

In this paper we initiate a program to study the controllability properties of matrix eigenvalue algorithms arising in
numerical linear algebra. Our focus is on a well-known eigenvalue method, the inverse power iteration de�ned on projective
space. A complete characterization of the reachable sets and their closures is given via cyclic invariant subspaces. Moreover,
a necessary and su�cient condition for almost controllability of the inverse power method is derived. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We consider arbitrary complex matrices A∈Cn×n

with spectrum �(A)⊂C. The inverse power method
for A then is the discrete dynamical system

xk+1 =
(A− ukI)−1xk

‖(A− ukI)−1xk‖ ; k ∈N; (1)

de�ned on the unit sphere

S2n−1 = {x∈Cn| ‖x‖= 1}:
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Here the values of the so-called origin shifts uk can be
arbitrary complex numbers such that A−ukI is invert-
ible. Thus, we assume uk ∈C−�(A) for all k ∈N. For
constant shifts this is just the celebrated inverse-power
method to compute a dominant eigenvector of A. In
this case, the method, despite its overall simplicity
and beauty, is however too slowly convergent to be
of practical use.
In numerical linear algebra, one is therefore inter-

ested in choosing the origin shifts in such a way as to
improve convergence speed of the algorithm. Thus, the
origin shifts are treated as control variables to modify
the system dynamics. A popular choice is the simple
feedback strategy

uk = x∗k Axk ; k ∈N;

via the Rayleigh quotient. The resulting closed-loop
nonlinear dynamical system

xk+1 =
(A− x∗k AxkI)

−1xk
‖(A− x∗k AxkI)−1xk‖

; k ∈N (2)
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is called the inverse Rayleigh iteration on S2n−1,
and is frequently considered as a fast numerical al-
gorithm to compute the dominant eigenvector of
a matrix. It is well known that for normal matri-
ces the system (2) converges cubically fast to the
dominant eigenvectors; see, e.g., [6,4]. In general,
however, the dynamics of the inverse Rayleigh iter-
ation can be quite complicated. In fact, Batterson and
Smilie [1] have shown that there exists an open set
of (non-normal) matrices A and an open subset of
initial conditions on S2n−1 such that (2) does not
converge to an eigenvector. Altogether, a complete
analysis of the dynamics of (2) seems far from being
available.
The question arises whether such complicated dy-

namics can be avoided using di�erent control strate-
gies. In order to develop a systematic approach to
such questions it becomes important to know the
controllability properties of numerical eigenvalue
algorithms such as (1). In fact, no feedback control
strategy for (1) can produce solutions that lie out-
side of the reachable set of (1). Thus, the reachable
sets provide fundamental limitations on the possible
convergence behaviour of (1).
It is for such reasons that we became interested

in analyzing the reachability properties of numerical
eigenvalue methods. In fact, known e�cient eigen-
value algorithms such as the QR, LR, or more gener-
ally, FG-algorithms, all implement feedback control
strategies via suitable origin shifts and controlla-
bility of these methods thus becomes an important
(unsolved) issue for a theoretical analysis of these
algorithms. Although our results have so far not led
us to the design of superior numerical algorithms, we
believe that it is a fundamental issue to understand
the potential limitations of such algorithms in terms
of the reachable sets.
We proceed as follows. In Section 2 the inverse-

power method is reformulated as a control system
de�ned on projective space. The reachable sets are
characterized as the orbits of a subgroup of the cen-
tralizer group of A. In Section 3 we focus on the
case of cyclic operators. Using tools from the the-
ory of polynomial models (see Ref. [3]), a complete
description of the orbits and their orbit closures is
obtained. Section 4 treats the general noncyclic case
and summarizes the main results of the paper. It is
shown that (1) has a dense reachable set if and only
if A is cyclic. In contrast, a simple dimension ar-
gument shows that the QR-algorithm is not control-
lable.

2. Power iteration on projective space

For technical reasons it turns out to be more con-
venient to consider the inverse-power iteration as a
dynamical system de�ned on projective space rather
than on a sphere. In this way, we can avoid poten-
tial ambiguities due to the phase factors of complex
numbers of absolute value one as well as extend the
scope by working over an arbitrary �eld of coe�-
cients. As a reference for algebraic geometry notions
such as projective spaces, etc., we refer to Hartshorne
[7].
Thus, let F denote an arbitrary �eld. Given a �nite

dimensional F-vector space V , the projective space
P(V ) is de�ned as the set of all one-dimensional
F-linear subspaces of V . More precisely, given any
nonzero vector x∈V , let

X := [x] = {�x | �∈F − {0}}

denote the line generated by x in V − {0}. The pro-
jective space of V over F is then de�ned as

P(V ) := {[x] | x∈V − {0}}:

In the sequel we will denote points in a vector space
by lower-case letters x; y, while the corresponding el-
ements in projective space P(V ) will be denoted by
capital letters such as X; Y . If V is �nite-dimensional
then P(V ) is a projective algebraic variety (or actu-
ally the F-rational points of such a variety), endowed
with the Zariski topology. If F = R;C then the pro-
jective spaces RPn−1 :=P(Rn), CPn−1 :=P(Cn) are
also referred to as (n−1)-dimensional real or complex
projective space. CPn−1 is a compact complex man-
ifold and CP1 ' S2 is di�eomorphic to the familiar
Riemann sphere.
Let A∈Fn×n and u∈F not an eigenvalue of A.

Then A−uI :Fn → Fn is an invertible linear map and
thus de�nes an algebraic map

A− uI :P(Fn)→ P(Fn);

X 7→ (A− uI)X

and similarly for (A− uI)−1. Thus, the inverse power
method

Xk+1 = (A− ukI)−1Xk; k ∈N; (3)

with shifts uk ∈F − �(A), Xk ∈P(Fn), de�nes a
nonlinear control system on projective space P(Fn).
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Let

RA(X0)

:=

{
k∏

i=0

(A− uiI)−1X0 | ui ∈F − �(A); k ∈N0
}

(4)

denote the reachable set of (3), starting from X0. Thus
RA(X0) is the set of all states obtained from X0 after
a �nite number of iterations in (3). We say that (3) is
almost controllable if the system has a reachable set
that is dense in P(Fn).
Our �rst result identi�es RA(X0) with the orbit of

an algebraic group action on P(Fn). In the sequel we
will completely analyze the structure of these orbits.
Given an arbitrary polynomial p∈F[z], the matrix
p(A)∈Fn×n is invertible if and only ifp(z) is coprime
with the characteristic polynomial q(z) = det(zI − A)
of A. Given two polynomials p; q∈F[z], let p ∧ q
and p∨q denote the greatest common divisor and the
least common multiple of the polynomials p and q,
respectively. Thus, p and q are coprime if and only if
p ∧ q= 1. With this notation, consider

�A :=F[A]× :=F[A] ∩ GL(n; F)

={p(A) |p∈F[z] and p ∧ q= 1}: (5)

Lemma 2.1. For A∈Fn×n let mA ∈F[z] denote
the minimal polynomial of A and �A := {p(A) |
p∈F[z]; p coprime with det(zI − A)}. Then �A is a
closed algebraic subgroup of GL(n; F) of dimension
dimF �A = degmA.

Proof. Obviously, �A is multiplicatively closed.
Let p∈F[z] be coprime with q. By the Euclidean
algorithm, there exist polynomial a; b∈F[z] with
deg a¡n which solve the Bezout equation

a(z)p(z) + b(z)q(z) = 1:

By the Cayley–Hamilton theorem we have a(A)p(A)
= I and therefore p(A)−1 = a(A)∈�A. Thus, �A is
a group. Again, using the Cayley–Hamilton theorem,
we see that every element of �A has a unique rep-
resentation as p(A) with a p coprime with q and
degp¡ degmA. From the resultant test for coprime-
ness we see that


q = {p∈F[z] |p ∧ q= 1; degp¡ degmA}
de�nes a Zariski open subset of Fd, d= degmA, and
indeed a complement of a hypersurface. Therefore,


q and hence �A de�ne an a�ne algebraic variety of
dimension d= degmA.

Remark. If A is cyclic then �A coincides with the
centralizer subgroup CA := {S ∈GL(n; F) | SA= AS},
but in general �A is a proper subgroup of CA.
Over C an equivalent description of �A is

�A =

{
exp

(
n−1∑
i=0

�iAi

)∣∣∣∣∣ �i ∈C
}

:

Consider now the algebraic group action

� : �A × P(Fn)→ P(Fn)

(p(A); X ) 7→ p(A)X:
(6)

Let ' denote the associated equivalence relation on
projective space, i.e. for lines X; Y ∈P(Fn) we have
X ' Y if and only if Y =p(A)X for some p(A)∈�A.
The equivalence classes of ' are then the orbits

�A · X = {p(A)X |p(A)∈�A}⊂P(Fn): (7)

The next result shows that the reachable sets for (1)
coincide with the orbits of �A. Recall that a subset of
P(Fn) is called quasi-projective if it is an open subset
of a projective variety.

Theorem 2.1. Let F be an algebraically closed �eld.
Then the reachable set RA(X0) of each X0 ∈P(Fn)
is a nonsingular quasiprojective subvariety of P(Fn)
and

RA(X0) = �A · X0; for all X0 ∈P(Fn): (8)

Proof. By the fundamental theorem of algebra, every
monic polynomial p∈F[z] splits into linear factors as

p(z) =
m∏
i=1

(z − ui); ui ∈F;

where p is a coprime with a polynomial q if and only
if q(ui) 6= 0 for all i. If X ∈RA(X0), then

X =
m∏
i=1

(A− uiI)−1X0

and ui ∈F − �(A). Thus, X = p(A)−1X0 with
p(A)=

∏m
i=1(A−uiI)∈�A and therefore X ∈�A ·X0.

Conversely, any X ∈�A · X0 is of the form X =
p(A)−1X0 with p(A)∈�A. Thus, X =

∏m
i=1(A −

uiI)−1X0 ∈RA(X0), with p(z) =
∏m

i=1(z − ui).

Remark. If A has all its eigenvalues in F then we still
have

RA(X0) = �A · X0; for all X0 ∈P(Fn):
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If F is a real closed �eld, e.g. F = R the �eld of real
numbers, then all irreducible polynomials have either
degree 1 or 2. Thus, in this case, by allowing quadratic
shift transformations

Xk+1 = pk(A)−1Xk

with pk monic and irreducible over F , then RA(X0)=
�A · X0, for all X0 ∈P(Fn). However, by using only
linear shifts of the form (A− ukI)−1 the reachable set
is in general only a strict subset of �A · X0.

Remark. For F =C, let RA(x0) denote the reachable
set of x0 ∈ S2n−1 for the power iteration on the sphere
S2n−1 and let

�A · x0 =
{

p(A)x0
‖p(A)x0‖

∣∣∣∣ p(A)∈�A

}

denote the �A-orbit on S2n−1. Then the sets di�er by
phase factors, i.e. RA(x0)⊂�A · x0 and
�A · x0 = {�x | x∈RA(x0); �∈C; |�|= 1} :

3. The cyclic case

In this section, we study the controllability proper-
ties of the inverse power method for the case the ma-
trix A is cyclic. In this case, all the information about
A, up to similarity, is contained in the characteristic
polynomial of A. This allows us to apply polynomial
methods to the problem. In particular, we will use the
theory of polynomial models developed by the second
author (see [2,3]).
We begin by introducing polynomial models for the

case of scalar polynomials. We assume an arbitrary
�eld F and consider a monic polynomial q∈F[z].
We denote by �q the operator of taking the remainder
modulo q. By Xq = Im�q we denote the linear space
of remainders modulo q, i.e.

Xq = {p∈F[z] | degp¡ deg q}:
We de�ne an F[z]-module structure on Xq by

p · f = �qpf; f∈Xq:

We de�ne the shift map Sq acting in Xq by Sqf=�qzf.
Clearly we have the isomorphism Xq ' F[z]=qF[z].
This is an isomorphism both as linear spaces as well
as modules over the ring of polynomials F[z].
The shift operators are important as each cyclic op-

erator is isomorphic to a uniquely determined shift.

Theorem 3.1. Let A : Fn → Fn be a cyclic transfor-
mation with b a cyclic vector for A. Let q be the char-
acteristic polynomial of A and let the map � : Xq →
Fn be de�ned by �(p)=p(A)b. Then � is an isomor-
phism and the following diagram is commutative:

Xq
�−−→ Fn

Sq

y y A

Xq
�−−→ Fn

The Sq-invariant subspaces of Xq, which are just the
submodules of Xq, are closely related to factorizations
of q. In fact, we have the following.

Proposition 3.1. Given a monic polynomial q∈F[z].
1. A subspace V of Xq is a submodule if and only if
it has a representation V =q1Xq2 for some factor-
ization q= q1q2.

2. Let q= q1q2 = p1p2 be two factorizations. Then
we have the inclusion

q1Xq2 ⊂p1Xp2 (9)

if and only if p1 | q1; or equivalently q2 |p2.
3. Given factorizations q = piqi; i = 1; : : : ; s; then⋂s

i=1 piXqi = pXq with p the l.c.m of the pi and
q the g.c.d. of the qi.

4. Given factorizations q = piqi; i = 1; : : : ; s then∑s
i=1 piXqi =pXq with q the l.c.m of the qi and p

the g.c.d. of the pi.

In the study of polynomial models, coprimeness of
polynomials is of central importance. It relates to the
characterization of cyclic vectors of the shift, to direct
sum of submodules decomposition of a polynomial
model and �nally to invertibility of polynomials in the
shift.
Thus, we can state

Theorem 3.2. Let q be monic.
1. Let f∈Xq. Then f is a cyclic vector for Sq if and
only if f ∧ q= 1.

2. Let p∈F[z]. Then p(Sq) is invertible if and only
if p ∧ q= 1.

3. Let q= q1q2. Then Xq= q2Xq1 ⊕ q1Xq2 if and only
if q1 ∧ q2 = 1.

So far we have used only the module structure of
the polynomial model Xq. We �nd it appropriate to
quote, adapting the notation, a remark by Kalman
et al. [5]: “It is embarassing to have to observe that the
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state space Xq has even more structure than claimed.
It is even a ring with multiplication

p1 · p2 = �q(p1p2); (10)

where p1p2 is the ordinary product in F[z]. No
system-theoretic interpretation of (10) is known at
present, etc.”. Actually, the natural structure to con-
sider for our purposes is the F-algebra structure of Xq.
Let

�q := {p∈Xq |p is invertible in Xq}
denote the group of units of Xq. We will study some of
the properties of this F-algebra and focus especially
on the group of units �q in Xq. We have an easy
characterization of the units in Xq.

Lemma 3.1. Let p∈Xq. Then p∈�q if and only if
p and q are coprime; i.e.

�q = {p∈Xq |p ∧ q= 1}: (11)

Proof. Assume p and q are coprime, then there exist
a solution to the Bezout equation ap + bq = 1, or
a·p=1. Clearly a=p−1. Conversely, assume a·p=1.
Then there exists a polynomial b for which ap+bq=1
which implies the coprimeness of p and q.

The following result characterizes the orbits of the
�q-action via factors of q.

Theorem 3.3. Let x∈Xq.
1. Every orbit �q · x is of the form

�q · x = �q · t; (12)

where t = x ∧ q is the greatest common factor.
In particular; there are only �nitely many distinct
orbits. They are given as �q · t; where t ∈Xq is an
arbitrary monic factor of q.

2. We have; for x1; x2 ∈Xq, �q · x1 = �q · x2 if and
only if x1 ∧ q= x2 ∧ q.

3. There is a bijective correspondence between orbits
of �q and monic factors of q.

Proof.
1. Let x=ut with t= x∧q. Thus, u is a coprime with

q, i.e. u∈�q, and therefore

�q · x = (�q · u) · t = �q · t:
2. Clearly, from (1),

�q · x1 = �q · x2 ⇔ �q · (x1 ∧ q) = �q · (x2 ∧ q);

which shows that

x1 ∧ q= x2 ∧ q ⇒ �q · x1 = �q · x2:
Conversely, let t1; t2 be two arbitrary factors of q
with �q ·t1=�q ·t2. Then t1=p·t2 for some p∈�q.
We have p · t2 =pt2 + �q, for some �∈F[z], and
therefore t1 =pt2 + qr1. Since t1 divides q it must
divide pt2. Since p ∧ q = 1 we have t1 ∧ p = 1.
Thus, t1 divides t2. By symmetry, t2 divides t1. As
both are monic, we have the equality t1 = t2.

3. This is a re
ection of the unique factorization the-
orem. Clearly, every factor t of q determines an
orbit �q · t and, by (1) and (2) every orbit has such
a unique representation.

In the sequel we shall denote, for M ⊂Xq, by �M
the Zariski closure ofM in Xq. We need the following
elementary lemma.

Lemma 3.2. Let A : Fn → Fm be a surjective linear
map. Then the image A(
) of any Zariski open subset

⊂Fn is Zariski open in Fm.

Proof. Let B : Fm → Fn be a linear right inverse of A;
i.e. AB= I . Then A(
)=B−1(
). Since the pre-image
of a Zariski open subset under a polynomial map is
Zariski open, we are done.

Theorem 3.4. Let x∈Xq. Then

�q · x = {p · x |p∈Xq}= Xq · x: (13)

Proof. The set of coe�cient vectors of polynomials
p coprime with q de�nes a Zariski open subset of Fn,
characterized by the nonvanishing of the resultant of
p and q.
Consider the linear map

 : Fn → Xq;

p 7→ p · x;
whose image is the linear space

 (Fn) = {p · x |p∈Xq}:
We have to show that the image  (
) = �q · x of the
Zariski open subset 
 := {p∈Fn |p∧q=1} is again
a Zariski open subset of  (Fn). The result then fol-
lows as any nonempty Zariski open subset of an a�ne
(or irreducible) space is dense. But this immediately
follows from the previous lemma.
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Theorem 3.5. Let t1; t2 be factors of q. Then
1. We have

�q · t1 ∩ �q · t2 6= ∅ ⇔ �q · t1⊂�q · t2
⇔ �q · t1⊂�q · t2
⇔ t2 | t1: (14)

2. We have

�q · t =
⋃
t|s|q

�q · s: (15)

Proof.
1. For the �rst equivalence the reverse direction is
trivial. Assume p · t1 ∈�q · t2 for p∈�q. By con-
tinuity of multiplication in Xq with respect to the
Zariski topology this implies �q · t1⊂�q · t2. The
second equivalence is trivial. For the third note that

�q · t1⊂�q · t2 ⇔ t1 ∈{p · t2 |p∈Xq}:
Thus, suppose t1 = p · t2 for some p∈Xq. Then
t1 = p · t2 = pt2 + rq for some r ∈F[z]. Thus,
pt2 = t1− rq and therefore t2 divides t1− rq. Since
t2 divides q this implies that t2 divides t1.
Conversely, let t1 =at2 for some a∈F[z]. Write

a= �q+ p for p∈F[z]; degp¡ deg q. Then

t1 = at2 = �t2q+ t2p= p · t2;
with p∈Xq.

2. We observe

x∈�q · t ⇔�q · x⊂�q · t
⇔�q · (x ∧ t)⊂�q · t ⇔ t | (x ∧ q) | q
⇔ x∈

⋃
t|s|q

�q · s:

In Theorem 3.4 the polynomials p∈Xq that occur
in a representation of an element a∈Xq · x as a=p · x
are by no means uniquely determined. The next result
describes a unique representation of elements in Xq ·x.

Theorem 3.6. Let t = x ∧ q be the greatest common
divisor of the polynomials x and q; q= st. Then
1. Any element in �q · x=Xq · t has a unique descrip-
tion as p · t with degp¡ deg s. In particular; we
have

�q · x = Xs · t = {p · t | degp¡ deg s}:
2. We have

�q · x = �q · t = �s · t = t�s · 1:

More explicitly;

�q · t = {p · t | degp¡ deg s; p ∧ s= 1}:

Proof.
1. From Theorem 3.4 we have

�q · x = �q · t = {p · t |p∈Xq}:
Writing

p= as+ r; deg r ¡ deg s= deg q− deg t;
we obtain

p · t = as · t + r · t = a · q+ r · t = r · t;
and thus Xq · t = Xs · t.
For the uniqueness assume p1 · t=p2 · t for poly-

nomials p1; p2 with degpi ¡ deg s, i = 1; 2. Then
(p1−p2) · t=0 in Xq, i.e. there exists r ∈F[z] such
that 0=(p1−p2)t+rq. Thus, q= ts divides (p1−
p2)t, which is impossible as deg(p1−p2)¡ deg s.

2. Obviously,�·x=�·t. Write anyp∈�q asp=as+r
with deg r ¡ deg s. Then p · t = p · r. Since p
is coprime with q it is in particular coprime with
s. Thus, r = p − as must be coprime with s and
therefore we obtain the inclusion

{p · t |p∈�q}⊂{r · t | r ∈�s}:
To show the reverse inclusion, let r ∈�s be given,
deg r ¡ deg s. Let s′ be such that u= s∧ t, s= s′u.
s′ clearly exists. Then s′ ∧ t = 1. Multiplying the
Bezout equation by 1 − r we obtain polynomials
a; b with as′+ bt+ r=1. Consider the polynomial
f = as′ + r. Since r ∧ s = 1 and s′ | s, we have
f∧ s′=1. Moreover, f+bt=1 and so f must be
coprime with t. Thus, f is a coprime with s′ and t
and therefore it is coprime with q= st.
Choose polynomials �; p with f = �q + p,

degp¡ deg q. Then p is coprime with q and we
have

r · t = (f − as) · t = f · t − a · q
= f · t = �q · t + p · t
= p · t:

Hence,

{r · t | r ∈�s}⊂{p · t |p∈�q}:

We are now able to give a detailed analysis of the
structure of the orbits.



U. Helmke, P.A. Fuhrmann / Systems & Control Letters 41 (2000) 57–66 63

Corollary 3.1. Let q = q�1
1 · · · q�r

r be a primary
decomposition; �i¿1. Then
1. The dimension of each orbit is given by

dim�q · x = dim�q · x = deg q− deg(x ∧ q):

2. �q · 1 is the unique Zariski open and dense orbit
in Xq.

3. There are exactly r closed orbits in Xq and they
are given by

�q · (q�1−1
1 · · · q�r

r ); : : : ; �q · (q�1
1 · · · q�r−1

r ):

4. We have

dim�q · x = dim Xq ⇔ x ∧ q= 1; (16)

and

dim�q · x = 1 ⇔ deg(x ∧ q) = 1: (17)

The latter is achievable if and only if q has a root
in F .

Proof.
1. Let t = x ∧ q, q= st. Then

dim�q · x = dim�q · x
= dim {p · (x ∧ q) | degp

¡ deg q− deg(x ∧ q)}
= dim Xs = deg q− deg(x ∧ q):

2. By 1, �q · x=Xq implies that deg (x ∧ q)=0, i.e.
x ∧ q= 1. Conversely, if x ∧ q= 1 then �q · x =
�q · 1 = �q is dense in Xq.

3. For a factor t of q

�q · t =
⋃
t|s|q

�q · s= �q · t

if and only if there is no nontrivial factor s of q
divisible by t, s 6= t. From this the claim follows.

4. This is an immediate consequence of the dimension
formula for orbits.

Corollary 3.2. There is a bijective correspondence
between
1. Orbits �q · x; x∈Xq,
2. closure of orbits �q · x; x∈Xq;
3. Sq-invariant subspaces of Xq;
4. monic polynomial factors of q.

Proof. The equivalence (1)⇔ (2)⇔ (4) is obvious.
Now, given any factor t of q= st, the subspace V =

tXs is shift invariant and conversely, any shift invariant

subspace has such a representation. This proves (4)⇔
(3).

In particular, we note that the closures �q · x of
�q-orbits coincide with the shift invariant subspaces
via

�q · x = tXs;

for any factorization q= ts.
The identi�cation of closures of orbits with shift in-

variant subspaces allows us to transport the arithmetic
of shift invariant subspaces to the closures of orbits.

Corollary 3.3. Let s∧ t and s∨ t denote the greatest
common divisor and the least-common multiple of the
polynomials s and t; respectively. For factors s; t of
q we have

�q · s ∩ �q · t = �q · (s ∨ t); (18)

and

�q · s+ �q · t = �q · (s ∧ t): (19)

Recall that given a factorization q = q1 · · · qr with
pairwise coprime polynomials qi, there is a direct sum
decomposition of Xq into F[z]-submodules as

Xq = �1Xq1 ⊕ · · · ⊕ �rXqr ;

with �i =
∏

j 6=i qj. Although Xq and Xqi have algebra
structures, the above decomposition is not compatible
with these structures. To see that this decomposition
can nevertheless be interpreted in terms of algebras,
we need to introduce a rather special algebra structure
on products of polynomial model algebras.

De�nition 3.1. Let q1; : : : ; qr be pairwise coprime
polynomials and �i =

∏
j 6=i qj. The twisted algebra

structure on Xq1 × · · · × Xqr is de�ned by

(p1; : : : ; pr) ◦ (p′
1; : : : ; p

′
r) := (�1p1p′

1; : : : ; �rprp′
r):

(20)

Note that �i is invertible in Xqi for all i. It is easily
seen that this de�nes a commutative algebra structure
on Xq1 × · · ·×Xqr . The unit element is (�−11 ; : : : ; �−1r )
and an element (p1; : : : ; pr)∈Xq1 × · · · × Xqr is in-
vertible with respect to the twisted algebra structure if
and only if for all i = 1; : : : ; r; pi is invertible in Xqi .
Moreover, we have

(p1; : : : ; pr)−1 = (�−21 p−1
1 ; : : : ; �−2r p−1

r ):

Thus, the group of units of the twisted algebra Xq1 ×
· · ·×Xqr coincides with the twisted products of groups
of units �q1 × · · · × �qr .
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Theorem 3.7. Let q = q1 · · · qr be a factoriza-
tion with pairwise coprime polynomials qi and let
�i =

∏
j 6=i qj; i = 1; : : : ; r. Then; with respect to the

twisted algebra structure on Xq1 × · · · × Xqr ; the
linear map

� : Xq1 × · · · × Xqr → Xq

�(p1; : : : ; pr) =
r∑

i=1

�ipi;
(21)

is an algebra isomorphism. It induces an isomorphism
of groups of units

� : �q1 × · · · × �qr → �q: (22)

Proof. It is well known that � : Xq1 ×· · ·×Xqr → Xq

is an F[z]-module isomorphism (see Fuhrmann [3]).
Thus, it remains to show that � is an algebra homo-
morphism. We have

�(p1; : : : ; pr)�(p′
1; : : : ; p

′
r)

=

(
r∑

i=1

�ipi

) r∑
j=1

�jp′
j




=
r∑

i; j=1

�i�jpip′
j:

Since q divides �i�j for i 6= j, we have �i�j =0 in Xq

for i 6= j. Thus, we obtain

�(p1; : : : ; pr)�(p′
1; : : : ; p

′
r) =

r∑
i=1

�2i p2i :

But

�((p1; : : : ; pr) ◦ (p′
1; : : : ; p

′
r))

=�(�1p1p′
1; : : : ; �rprp′

r)

=
r∑

i=1

�i(�ipip′
i) =

r∑
i=1

�2i pip′
i

=�(p1; : : : ; pr)�(p′
1; : : : ; p

′
r):

This proves the claim. Any algebraic isomorphism in-
duces an isomorphism between the groups of units, so
the result follows.

Corollary 3.4. Let q = q�1
1 · · · q�r

r be a primary de-
composition. Then; with �i =

∏
j 6=i qj; we have an

isomorphism of groups of units

� : �q
�1
1
× · · · × �q�r

r
→ �q;

�(p1; : : : ; pr) =
r∑

i=1

�ipi:

Remark. If q is a prime in F[z], then Xq is a �nite-�eld
extension of F and �q = Xq − {0}. More generally,
Xq� is an algebra extension of F of dimension � deg q.
In fact

Xq� = Xq ⊗F Xz� :

Moreover, every element of Xq� can be written as

p= p0 + p1q+ · · ·+ p�−1q�−1; pi ∈Xq;

and

p∈�q� ⇔ p0 ∈�q ⇔ p0 6= 0:
There is also a canonical matrix representation of el-
ements of Xq� via Toeplitz matrices. For any p =∑�−1

i=0 piqi set

T (p) :=




p0
p1 ·
· ·
· ·

p�−1 p1 p0




:

A simple computation shows that

T (pp′) = T (p)T (p′)

with multiplication of elements pi; p′
j understood to

take place in Xq. The above Toeplitz matrices form an
algebra over Xq and this matrix algebra is isomorphic
to Xq� .
As another consequence of the previous theorem we

deduce.

Corollary 3.5. Let q = q1 · · · qr be a factorization
with pairwise coprime polynomials qi; and let t1; : : : ; tr
be factors of q1; : : : ; qr ; respectively. Then the isomor-
phism of algebras

� : Xq1 × · · · × Xqr → Xq

�(p1; : : : ; pr) =
r∑

i=1

�ipi;

restricts to an algebraic isomorphism of orbits

� : �q1 (t1)× · · · × �qr (tr)→ �q(t1 · · · tr):
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Proof. Let A and B be algebras with A′; B′ the groups
of units. For the A′; B′ actions on A and B; respectively
we have

�(g · x) = �(g)�(x);

for any g∈A′; x∈A. Thus, � maps A′-orbits bijec-
tively onto B′-orbits. The result follows.

In particular, we see for the Zariski closures of
�qi(ti) the isomorphism

�q(t1 · · · tr) ' �q1 (t1)× · · · × �qr (tr):

If F = C, it is easily seen that the Zariski closure of
an orbit coincides with the usual topological closure.
For later reference we state now the result over C.

Corollary 3.6. Let F = C and let q = ts. Then with
respect to the usual euclidean topology we have
1. Each orbit �q ·t is a complex submanifold of Xq '
Cn of complex dimension dim�q · t=deg q−deg t.

2. The closure of each orbit �q · t is �q · t= tXs which
is a shift-invariant subspace of Xq.

3. For any factorization q=q1 · · · qr by pairwise co-
prime polynomials and factors ti of qi; i=1; : : : ; r;
we have the homeomorphisms

�q(t1 · · · tr) ' �q1 (t1)× · · · × �qr (tr);

�q(t1 · · · tr) ' �q1 (t1)× · · · × �qr (tr):

4. The general case

We return now to our investigation of the reach-
able sets for the inverse power iterations. So far, we
have focussed on cyclic matrices. Before proving our
main results we therefore extend �rst the analysis to
arbitrary matrices.
Let A∈Fn×n denote an arbitrary matrix and x0 ∈Fn.

Then

〈A | x0〉 := spanF{Aix0 | i∈N}
is the smallest A-invariant subspace of Fn containing
x0. Certainly, x0 is a cyclic vector for the restriction
�A :=A|〈A|x0〉 of A to 〈A|x0〉. Thus,
�A : 〈A | x0〉 → 〈A | x0〉
is cyclic with cyclic vector x0. The proof of the next
lemma is trivial and therefore omitted.

Lemma 4.1. Let A∈Fn×n; x0 ∈Fn and X0 := [x0]∈
P(Fn). Then RA(X0)=R �A(X0) and �A ·X0 =� �A ·X0.

In particular; for an algebraically closed �eld F; we
have

RA(X0) = � �A · X0;
for all X0 ∈P(Fn).

Thus, for F algebraically closed, the reachable sets
RA(X0) are orbits of the cyclic operator �A and we can
apply the results of the previous section.

Theorem 4.1. Let F be an algebraically closed
�eld; A∈Fn×n; x0 ∈Fn and X0 = [x0]∈P(Fn).
1. Every reachable set RA(X0) is a quasiprojective
subvariety of P(Fn) of dimension

dimRA(X0) = dim〈A | x0〉 − 1:
2. For the Zariski closure RA(X0) we have

RA(X0) = P(〈A|x0〉):
3. For X0; X1 ∈P(Fn) we have

RA(X0) ∩RA(X1) 6= ∅ ⇔ RA(X0)⊂RA(X1)

⇔ 〈A | x0〉⊂〈A|x1〉:

Proof. By the above lemma we have RA(X0) =
R �A(X0) and therefore it su�ces to prove the result for
cyclic linear operators A, and hence for the shift op-
erator Sq on Xq. Passing from a vector space V to the
projective space P(V ) reduces the dimension by 1.
The result follows immediately from the correspond-
ing result in Section 3, i.e. from Theorem 3.5.

Corollary 4.1. The inverse power method (3) on
P(Fn) is almost controllable if and only if A is cyclic.

The next result is an immediate consequence of
Corollary 3.2.

Theorem 4.2. Let F be an algebraically closed
�eld; A∈Fn×n; x0 ∈Fn and X0=[x0]∈P(Fn). There
is a bijective correspondence between
1. closures RA(X0) of reachable sets,
2. cyclic A-invariant subspaces of Fn.

In the cyclic case we can be a bit more speci�c.

Theorem 4.3. Let F be an algebraically closed
�eld; A∈Fn×n; x0 ∈Fn and X0=[x0]∈P(Fn). There
is a bijective correspondence between
1. closures RA(X0) of reachable sets,
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2. A-invariant subspaces of Fn,
3. factors of the characteristic polynomial of A.

Proof. Immediate consequence of Corollary 3.2.

Corollary 4.2. Let A∈Fn×n be cyclic; F an alge-
braically closed �eld; and let q=q�1

1 · · · q�r
r be the pri-

mary decomposition of the characteristic polynomial
of A. Then;
1. There are only a �nite number of reachable sets
of (3).

2. There is a unique reachable set that is open and
dense in P(Fn).

3. There are exactly r Zariski closed reachable sets;
and these are the points in P(Fn) de�ned by the
one-dimensional invariant subspaces Vj such that
A |Vj has characteristic polynomial q=qj.

There is an elegant way to characterize the lattice of
A-invariant subspaces and hence the closure relations
of reachable sets of (3) by the combinatorics of faces
of the standard simplex. To this end let F =C and as-
sume that A∈Cn×n has n distinct eigenvalues. With-
out loss of generality we assume A=diag(�1; : : : ; �n),
with �i 6= �j. Let

�n :=

{
(t1; : : : ; tn)∈Rn|ti¿0;

n∑
i=1

ti = 1

}

denote the standard (n − 1)-dimensional simplex in
Rn. Consider the map

� : P(Cn)→ �n

expressed in homogeneous coordinates by

�([x1 : · · · : xn]) := (t1; : : : ; tn);

tj :=
|xj|2

|x1|2 + · · ·+ |xn|2 ; j = 1; : : : ; n:

Then � is a surjective map that maps each invariant
subspace of A onto a subsimplex of �n. Thus, the
k-dimensional invariant subspaces of A correspond bi-
jectively via � to the k-dimensional subsimplices of
�n, k = 0; : : : ; n. In particular, the unique open and
dense reachable set of (3) is mapped onto the inte-
rior of �n, while the one-dimensional eigenspaces of
A correspond to the n vertices of �n. We have

RA(X0)⊂RA(X1) ⇔ �(RA(X0))⊂ �(RA(X1))

so that the correspondence preserves the inclu-
sion order on reachable sets and subsimplices,
respectively.

Example. For n=3; 4 there are exactly 7; 15 invariant
subspaces of A that correspond bijectively to the 7; 15
subsimplices of �3; �4, respectively.
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