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ABSTRACT 

The paper continues the investigation into the links between algebraic system 
theory, more specifically the partial realization problem, and the problem of Hankel 
matrix inversion. The representation of the inverse of a Hankel matrix as a Bezoutiant 
and the Bezout equation play a principal role. 

1. INTRODUCTION 

In [6] the connection between the partial realization problem of system 
theory (see [ll], [8]) and the inversion of Hankel matrices has been explored. 
The central idea was to reprove a theorem of Lander [12] showing that the 
inverse of a Hankel matrix is a Bezoutiant. More precisely, suppose we are 
given a nonsingular Hankel matrix 

then any minimal rational extension, or equivalently, any minimal partial 
realization, is determined by the choice of E = g,,. Let the extension be 
denoted by g<(z), and let 

,,(z,=~ (1.2) 

with pE and 9E coprime and 9& manic, and, by minimality, of degree n. We 
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will reserve the use of p and 9 for the polynomials arising out of the choice 
5 = 0. 

Since pg and 9[ are coprime, 
require additionally 

theorem referred stated. 

1.1. Let H be the Hankel matrix 

which is to be nonsingular. minimal exten- 
sion of the seguence coprime, and 95 
manic. Let a be the unique polynomial 
equation (1.3). Then we have 

H-l= 0.5) 

i.e., the is given by the Bezoutiant 

passing on, a few are in order. First, as has been shown in 
[6], if we set 

9g(z)=z”+9”_~(~)z”-‘+ 

solution of the system of linear 
equations 

1;: :,.,i(::_,) = - ’ yrl.‘. (1.7) 

\ I 

Thus it is clear that 9* depends linearly on 5. Also note that while all results 
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are stated in terms of Hankel matrices, they have an easy translation to the 
Toeplitz case. 

We can state now the following. 

THEOREM 1.2. Given the Hankel matrix of (1.4), which is assumed to be 
nonsingular. Let gE = p6/q5 be any minimal rational extension of the se- 

quence g,,..., g2n_1 with (=gzn, pg and qg coprime, and q5 manic. Let 
g = p/q be th e one corresponding to [ = 0. Also let a be the unique 
polynomial of degree < n satisfying the Bezout equation (1.3). Then: 

(i) a and b are independent of 5. 

(4 4&z) = q(z) - 5aCz). 
(iii) p((z) = p(z)+ (b(z). 
(iv) Setting a(z) = a, + a-- + a,_lzn-l, the ai are solutions of the 

system of linear equations 

(1.8) 

Defining the control basis polyrwmiuls corresponding to qC by 

ei(5,z)=m+z-‘q*=qi(~)+qi+l(5)2+ ... +Znpi, W) 

i=l , . . . , n, and the polynomials ai by 

ai=77+z-‘a, (1.10) 

then: 

(v) The polynomial pI has the representation 

Pg = Cgiei(t)* 

(vi) The polynomial b of (1.3) has the representation 

(1.11) 

(1.12) 

i.e., b also is independent of .$. 
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Proof. Let pI, 9( be the polynomials in the coprime representation 
g, = pt/sC corresponding to the choice g,, = [. Let a and b be the unique 
polynomials, assuming deg a < deg 9(, such that the Bezout equation 

apt + bqE = 1 (1.13) 

is satisfied. We rewrite this as 

1 
!?!!+b=-_. 
9r 9E 

The right hand side has an expansion of the form 

1 * %+1 “+_ 
qso=z” Zn+l+ . . . * 

Equating nonnegative indexed coefficients in (1.14) we obtain 

a .-1g1 

a,_lg2 + a,_&1 

= - b,_,, 

= -L.Y 

a .-l&f,-1+ . . . + a,g,= -b,, 

or in matrix form 

Polynomially this means that 

(1.14) 

(1.15) 

b(z)= Cgia’(z). (1.16) 
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Equating coefficients of negative powers of z, we have 

a,g,+ *-* +a,_,g, =o, 

a,g,+ *.* + a,-ig,+i = 9, 

93 

uog,_1+ **. +un_&2n_2= 0, 

uogn + * *. + an_lg2n-l = 1, 

or 

Thus we use (1.17) to solve for the a, and then (1.15) to calculate the b,. In 
particular this proves that u(z) = Cu i z i and b(z) = Cbi z i are independent 
of the choice of .$ = g2*, and we have proved statements (i), (iv), and (vi). 

Now g = p/q implies p = gg. In terms of coefficients we have 

P,-1= g1, 
?.%I-,= g2 + 4n-1g1, 

PO =g,+q,-,g,-,+ --* +q,g,, 

or 

I ‘q1 * - . / 
PO 

4,-l 1 ’ 

= . 

P,-I 
4n-1 . 

I \l 0, 

This is equivalent to 

p&z) = g,ei(5,~) + . . . + g,e,(t. 21, 

which proves (v). 

g1 

. (1.18) 

g* 
I 

(1.19) 
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. . . g” 1 
z 

gzn-1 z n-1 . . . 

. . . 5 zn 

so Q&Z) = 9(z) - Er(z), with 

g, *.. g,-1 1 
z 

r(z)= : 

g, ... g2n-2 
z”-l 

We will show that T = a. From the Bezout equations 

up + b9 = 1 and apt + bqz = 1 

it follows by subtraction that 

4~~ - P) + b(sr - 9) = 0. 

Since 9C = 9 - tr we must have 

4pt - P) = &. 

The coprimeness of a and b implies a is a divisor of r. Setting r = ad, it 
follows that 

p,=P+Gd (1.22) 

(1.20) 

(1.21) 

and 

9c=9-5&. (1.23) 
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Now 

p+Ebd P t(w+bdd Cd 
gt-g= 4-&uj 9 -----= 9(9-(ad) =9(9-&d) 

Now g, and g have expansions in powers of z-l agreeing for the first 2n - 1 
terms, and the next term has to be 5~~“. This implies d = 1, and so (ii) and 
(iii) are proved. This completes the proof. W 

Incidentally, parts (ii) and (iii) of the theorem provide a nice parametriza- 
tion of all solutions to the minimal partial realization problem arising out of a 
nonsingular Hankel matrix. 

COROLLARY 1.3. Given the nun&g&r Hunkel matrix (1.1). If g = p/9 
is the minimal rational extension corresponding to the choice g,, = 0, then 
the minimal rational extension corresponding to g,, = E is given by 

p+tb 
gg= - 

9-<a’ 
(1.24) 

where a, b are the polynomials arising in the Bezout equation (1.3). 

This theorem explains why the particular minimal partial realization 
chosen does not influence the computation of the inverse, as of course it 
should not. Indeed, we see that 

and so 

H-’ = B(a,q<) = B(a,9). (1.25) 

Thus we are led to the main point of this paper. To invert the Hankel 
matrix H it suffices to know a and 9[, and hence it suffices to solve two 
equations of the form 

(1.26) 

rather than n, as would be the case for the inversion of an arbitrary matrix. Of 
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course there is nothing new in this observation, and it goes back at least to the 
work of Heinig and Rost [9]. In this connection we refer also to Fiedler [2]. 
However, the basic idea that to invert Hankel, or Toeplitz, matrices one needs 
usually to solve two equations of the form (1.26) goes back to the work of 
Gohberg and Semen& [7]. 

It is our purpose in the next section to give some easy derivations for other 
results of this type. We do this in a polynomial context, stressing the 
connections with the partial realization problem. 

Most of the contents of this paper and of [6] have multivariable generali- 
zations. An exposition of this will be forthcoming. 

2. HANKEL MATRIX INVERSION: A POLYNOMIAL APPROACH 

As we saw in the preceding section, to invert the Hankel matrix of (1.1) it 
suffices to know the polynomials a and 4. Both have been shown to be 
derived as solutions to the system (1.26). We proceed now to give this solution 
a polynomial interpretation. 

We use the theory of polynomial models freely. The little necessary 
background and notation for what follows can be found in [4-61. 

Let X, be the polynomial model defined by 9, Z; X, + X, the module 
homomorphism defined by 

Zf= fl&= p(S,)f forfin X,. (24 

As a consequence of the Bezout equation (1.3) it follows that Z- ’ is given by 

z-‘f= v,pf= a(S,)f forf in X,. (2.2) 

Also, the Bezoutiant of a and 9 is given as the matrix representation of Z-’ 
relative to the control basis and the standard basis of X,, that is, 

B(a,q) = [z-%k 

Thus, if we consider the system (1.26) and let 

(2.3) 

x( 2) = &,z’ and r(z) = cr,ei( z), 
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then 

x = H-‘Cr,e, = Z-‘Erie, 

= rqa C r,e, = C ri7rqaei. 

Let us consider some special cases first. Let 

ri = 
i 

0, i=l,..., n-l, 
1, i=n. 

Then, since e, = 1, the solution is given by 

x = 7rqa = a 

as stated in Theorem 1.2(v). 
Next let 

r,= 0, i=2 ,..., 12, 
t 

i 1, i = 1. 

Then the solution r is given by 

x = n ae = ~,aI9(4 - 9ON 
9 1 

2 

Thus for some polynomial a, the solution x is given by 

,+) = a(z)[q(z) - 9(o)1 _ 9(x)o(z) 

2 

9(4 [ 
44 - 49 - 

= - 44 1 + 
9(z)a(O) 4z)9(0) 

.z 2 

Since deg x < deg 9, it follows that 

(2.4) 
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and hence 

~(~) = 9(+(o) -449(O) 

z 

So in case a(0) Z 0, we set 

lJ(z)=a(0)-1zx(z)=9(z)-a(O)-19(O)+); 

it follows that 

(2.5) 

(2.6) 

B(a,y)=B(a,9-a(O)-‘9(O)a)=B(a,9). 

Also note that (2.5) implies 

(2.7) 

x n-l = a,. (2.8) 

Thus we can state the following result, which in view of the representation 
results for Bezoutiants obtained by PC& [13] and Fuhrmann [6], is equivalent 
to the Gohberg-Semencul theorem. 

<, 

THEOREM 2.1. Let a and x be the solutions of the system (1.26) with the 
right hand side being given respectively by (0,. . . ,O, 1)hnd (l,O, . . . ,O): Then 

if x n _ 1 z 0, the Hankel matrix H is invertible and 

H-’ = B(a, Y). (2.9) 

Proof. We saw already that, assuming H is nonsingular, the inverse of H 
is the Bezoutiant of a and y. To complete the proof of the theorem we will 
show that the assumptions imply the invertibility of H. 

The existence of a solution with the right hand side (0,. . . ,O, l)- implies 
that the McMillan degree of a minimal rational extension of g,, . . . , g,,_ 1 is 
at least n. We will show that it has an extension of McMiUan degree n. To 
this end let us define 9(z) by 

9(z) =x,‘,zx(z) (2.10) 
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and a(z) a before. Define the polynomial p by 

P(z) = Cgiei(z), (2.11) 

where ei is the control basis determined by 9, Let G = p/9 = CG,z-“. We 
will show that G is an extension of g,, . . . , g,,_ r. 

Since {e, ,..., e,} and {l,..., 2”-‘} are dual bases relative to the pairing 
introduced in [3], 

(f*g)= [9-1f,gl, (2.12) 

itfollowsthatfori=l,...,n 

Gi = [G, zi-‘1 = [9_rp, zip’1 = ( xgiej, .z-‘) = gi. 

Now as p = Gq, we have, equating coefficients, 

G,+i+9n-1G,+i-l+ ... +9lGi+l=O* (2.13) 

Equation (1.26) with the right hand 
multiplying both sides by xi!,, as 

The last n - 1 equations imply 

side (LO,..., 0) * can be rewritten, 

91 
‘x,!, 

0 = -Ii:1 ; ; : 
0 
; 

g n+i +9n-lgn+i-l+ mm. + 9lgi+l=O (2.14) 

for i=l,..., n - 1. Since Gi = gi for i = 1,. . . , n, the equalities extend the 
range i = 1,. . . , 2n - 1. Thus G is a minimal rational extension of McMillan 
degree n. Therefore the Hankel matrix H is necessarily nonsingular. n 

Note that in view of the representation result of Ptak [13] (see also [6]), 
Equation (2.9) can also be rewritten as 

H-l= B(a,q) = {a(S”)q#(S) - 9(3)a#(GI.L 
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and 

/o 1 0 * . * 0 0 
0010-~~0 

. . 

s= : 
. . 

* 0 . 
1 0 

0 1 
\() . . . . . () () 

\ 

/ 

Thus in this case the inverse of a Hankel matrix is determined by two of 
its columns, the first and the last, provided the extra condition x,_ i # 0 is 
satisfied. This is not always the case: see Iohvidov [lo]. Ben-Artzi and Shalom 
[14] have shown that three columns of H- ’ are always enough for its 
reconstruction. We give an alternative proof of their result. This uses the 
underlying equation for the control basis, namely 

S,ei=ei_l-~i-len, i=l ,..., n. (2.15) 

where e_ I is defined-as the zero polynomial. 
Let (~a,..., y,_i) and (we,..., w, _ r)- be the solutions of the system 

(1.26) with the right hand side being (a,, i,. . . , a,,, i)” and (S,, im i,. . . ,a,,, i_ 1>- 
respectively. Set 

Y(Z) = CYjZ’, W(2) = CWjZ’. 

Then clearly 

and 

y = 7rqaei (2.16) 

(2.17) w = 77qaei_l. 
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We define now a polynomial h by 

h(z) = zy(z) - W(Z) 

= za(S,)ei - a(S,)ei_l. 

Now in general for f in X,, 

SJ= zfb) - 4Wf’ (2.19) 

where Sf is a constant depending linearly on jT Using this we compute 

h(z)=m(S,)e,-u(S,)ei_l 

=S,u(S,)ei + (7(z)S-u(zq)ei-~ 

= u(S,)[S,e, - ei_l] + q(z)8 

= - %P(S,)% + q(z)6 

= 9(‘)’ - qi-l’(‘) 

as 

It remains to evaluate S. From (2.19) it follows that 6 is the coefficient of 
z “- ’ of the polynomial u(S,)ei = y. So 6 = y,- 1. However, this can be 
evaluated in terms of the coefficients of a. Indeed, 

u(S,)e, = CukS$ei. (2.20) 

It is quite easy to see that Siei has degree less than n - 1 unless k = i - 1. In 
that case it is manic of degree n - 1. Thus from (2.20) it follows that the zn-’ 
coefficient of u(Sq)ei is ui_ i. Hence 

S=Yn-l=“i-l. (2.21) 
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Thus we have the representation 

Clearly, if a i _ r # 0, then we can define a polynomial f by 

(2.22) 

and then 

We can summarize this as follows. 

THEOREM 2.2 (Ben-&tzi and Shalom). Given the Hunkei matrix H of 
(1.1) let (u. ,..., u,_J , (y. ,..., Y,_~) , and (w,, ,..., w,-~) be the so&- 
tions of the _system (1.26) with the ?ght hand side being (0,. . . ,O, 1) , 

(81,i>m’e9 s”,i> > und (61,i-l,***Y 6,,+,) . Zf ui_l# 0, then the inverse of H 
can be written in terms of these columns. 

Next we pass to the analysis of a rather general case. Again we consider 
the system (1.26), with the right hand sides being given by (LX,, . . . , a,): and 

(P r,...JJ”. Let th e respective solutions be given by ( yO,. . . , y,_ r) and 
(w,,...,w,_r)-. Set 

Ytz) = CYizi and w(z) = cwizi. (2.23) 

Then, by the same reasoning applied before, we have 

and 

Let us define the polynomial f(z) by 

f(z) = ZY(Z) - 44. (2.24) 
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Then 

Now 6 is the coefficient of .zn- ’ of the polynomial Caiu(S,)ei, and hence 

6 = &iui_l. (2.25) 

Thus we can state the following theorem. 

THEOREM 2.3. Given the Hunkel matrix (1.1). Let y and w be the 
polynomials corresponding to the solutions of the system (1.26) with the right 
hand sides (a1 ,..., a,) -and (PI ,..., &) -respectively. Let a be the poly- 
nomial corresponding to the solution of Equution (1.8). Zf &~~a~_~ # 0 and 
&1=cii fori=2,..., n, then H is invertible and its inverse given by 

H-l= B(u,@f). (2.26) 

Proof. Follows from the fact that 

That H is nonsingular follows by reasoning similar to that employed in the 
proof of Theorem 2.1. n 

If, for the previous polynomial y, we define the polynomial f by 

f(z) = ZY(Z) - Y(Z)3 (2.27) 

then the previous computation yields 
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THEOREM 2.4 (Ben-Artzi and Shalom). Given the Hankel matrix (1.1). 
Let y be the polynomial corresponding to the solution of the system (1.26) 
with the right hund side (a,, . . . , a,): Let a be the polynomial corresponding 
to the solution of Equation (1.8). Zf y,_, # 0 and ai_l = ai for i = 1,. . ., 
n - 1, then H is invertible and its inverse given by 

H-l= B(a, y;!,f). (2.28) 

The author is grateful to the referee for pointing out the paper by 
Balinskij and LA-Gun-Y [l]. 
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