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Abstract

The purpose of this note is the characterization of the class of behavior homomorphisms that have nice polynomial
representations. The key to this is a judicious application of duality theory together with additional continuity requirements.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Behaviors; Continuous behavior homomorphisms; Duality

1. Introduction

Behaviors were introduced and extensively stud-
ied in a series of seminal papers, Willems [6–8]. In
Fuhrmann [4,5], a study of discrete time behaviors
was undertaken, of which probably the central contri-
bution to the behavioral literature was the introduc-
tion and characterization of behavior homomorphisms.
The approach adopted in that paper used duality the-
ory as a core idea. The identi>cation of the space of
formal vectorial power series, z−1Fm[[z−1]], as the
dual to the space of vector polynomials, Fm[z], a du-
ality introduced in Fuhrmann [3], led essentially to an
algebraic analysis. For the characterization of behav-
iors in terms of kernel representation, a result due to
Willems, one had to add a completeness condition on
the behavior. This condition, though of an algebraic
?avor, is actually a topological condition that is equiv-
alent to a closure condition in a suitable topology.
Behaviors turned out to be generalizations of rational
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models introduced and studied in many papers be-
ginning with Fuhrmann [2], in fact a rational model
is just what is referred to in the behavioral literature
as an autonomous behavior. However, contrary to the
case of polynomial and rational models which are al-
ways >nite dimensional as linear vector spaces, this
is no longer the case for behaviors. Thus, we are in
the context of in>nite-dimensional spaces, and nonre-
?exive at that. In fact, a crucial point in Fuhrmann [5]
was overlooked and so part of Theorem 4.5, a cen-
tral result in that paper, is incorrect as stated. This can
be remedied. In fact, the process of restating the re-
sult correctly sheds some more light on behaviors and
behavior homomorphisms and may be of use in the
analysis of behaviors in diEerent settings.
We attempt now to point out the diFculty. It

was quite easy to extend the principal results about
polynomial model homomorphisms to the case
of quotient modules of Fm[z]. Clearly, the dual
of an F[z]-homomorphism Z :Fp[z]=M (z)Fm[z] →
F Hp[z]= HM (z)F Hm[z] is an F[z]-homomorphism Z∗ :
Ker M̃ (�) → Ker H̃M (�). However, and this is a
gap in the statement of Theorem 4.5 in Fuhrmann
[5], not every F[z]-homomorphism HZ : Ker M̃ (�) →
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Ker H̃M (�) is the dual of an F[z]-homomorphism
Z :Fp[z]=M (z)Fm[z] → F Hp[z]= HM (z)F Hm[z]. The char-
acterization of the class of behavior homomorphisms
which are themselves duals is the main result of the
present paper. It turns out that we have to add a conti-
nuity requirement on the homomorphisms HZ in order
for it to be an adjoint. The continuity is with respect
to the weak∗ topologies in the two behaviors. The
end result is that, with the addition of a single word,
the problematic theorem remains true.
I would like to thank JeErey Wood for pointing out

the gap in the statement of Theorem 4.5 in Fuhrmann
[5], to George Weiss and Michael Lin for providing
valuable references and to Vladimir Fonf for a very
helpful discussion.

2. Preliminaries

Let F denote an arbitrary >eld. We will denote by
Fm the space of all m-vectors with coordinates in F .
Fm[z] the space of all polynomials with coeFcients
in Fm; z−1Fm[[z−1]] the space of formal power se-
ries vanishing at in>nity and Fm((z−1)) the space of
truncated Laurent series. Let 
+ and 
− denote the
projections of Fm((z−1)) on Fm[z] and z−1Fm[[z−1]]
respectively. Since

Fm((z−1)) = Fm[z]⊕ z−1Fm[[z−1]]; (1)


+ and 
− are complementary projections. All three
spaces Fm((z−1)); Fm[z] and z−1Fm[[z−1]] carry
natural F[z]-module structures. In the >rst two, poly-
nomials act by multiplication. In z−1Fm[[z−1]], the
module structure is given by

p · h= p(�)h= 
−ph; h∈ z−1Fm[[z−1]]: (2)

The operator � is called the backward shift, or
simply the shift. This can be generalized. For a
polynomial matrix U ∈Fp×m[z] we de>ne a map
U (�) : z−1Fm[[z−1]] → z−1Fp[[z−1]] by

U (�)h= 
−Uh: (3)

Given x∗ ∈X ∗ and x∈X we will write

[x; x∗] = x∗(x):

In the special case of X = Fm, we can also identify
X ∗ with Fm and then we write [x; y] = ỹx where ỹ

denotes the transpose of the column vector y. The sole
exception will be the complex inner-product spaces
where [x; y] will be interpreted as the inner product
itself. Now given f∈Fm((z−1)) and g∈Fm((z−1))
we de>ne a pairing

[f; g] =
∞∑

j=−∞
[fj; g−j−1]: (4)

It is clear that [·; ·] is a bilinear form on Fm((z−1))×
Fm((z−1)). It is well de>ned as in the de>ning sum at
most a >nite number of terms are nonzero. Also this
form is nondegenerate in the sense that [f; g] = 0 for
all g∈Fm((z−1)) if and only if f=0. Given a subset
M ⊂ X we de>ne its annihilator M⊥ by

M⊥ = {x∗ ∈X ∗|[m; x∗] = 0 ∀m∈M}:
Similarly ifM ⊂ X ∗ we de>ne the preannihilator ⊥M
by

⊥M = {x∈X |[x; x∗] = 0 ∀x∗ ∈M}:
It is a simple check of the de>nitions that Fm[z]⊥ =
Fm[z] and ⊥(Fm[z]) = Fm[z]. It is well known, see
Fuhrmann [3], that the dual space of Fm[z] can be
identi>ed with z−1Fm[[z−1]].
We digress a bit about topology. Let F be an arbi-

trary >eld. We make into a topological space by adopt-
ing the discrete topology, where every subset is open.
This means that even when working with the real or
complex number >elds which have their own metric
topology, these topologies are disregarded. Let X be
a linear vector space over the >eld F and let X ∗ be
its algebraic dual. An element x∈X can be viewed as
linear functional x̂ on X ∗ by de>ning x̂(x∗)=x∗(x) for
every x∗ ∈X ∗. The X topology of X ∗, or more com-
monly referred to as the weak∗ topology, is the weak-
est topology that makes all such functionals continu-
ous. Thus, a local base at 0∈X ∗ is given by sets of
the form {x∗|x∗(xi) = 0; i = 1; : : : ; n; n∈Z+; xi ∈X }.
Given a linear space Y and its dual Y∗, we can

make Y a linear topological space by choosing the
weakest topology that makes all linear functionals
of the form �(y∗) = [y∗; y] continuous. This is re-
ferred to as the weak∗ topology of Y∗. We note that
a net y∗

� ∈Y∗ converges to y∗ ∈Y∗ in the weak∗

topology if for every y∈Y we have [y∗
� ; y] →

[y∗; y].
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3. Behaviors

The following proposition, which is probably stan-
dard, was proved in Fuhrmann [5].

Proposition 3.1. Let X be a linear vector space over
a 5eld F and let X ∗ be its algebraic dual. Then a
subspace V ⊂ X ∗ satis5es

(⊥V)⊥ =V (5)

if and only if for any h0 �∈ V there exists an x∈⊥V
such that h0(x) �= 0.

De�nition 3.1. In z−1Fm[[z−1]] we de>ne the projec-
tions Pn; n∈Z+ by

Pn

∞∑
i=1

hi
zi

=
n∑

i=1

hi
zi
: (6)

We say that a subsetB ⊂ z−1Fm[[z−1]] is complete if
for any w =

∑∞
i=1 wiz−i ∈ z−1Fm[[z−1]] and for each

positive integer N; PNw∈PN (B) implies w∈B.
A behavior in our context is de>ned as a linear, shift

invariant and complete subspace of z−1Fm[[z−1]].

The following proposition was proved in Fuhrmann
[5].

Proposition 3.2. Let F be a 5eld and let V ⊂
z−1Fm[[z−1]] be a subspace. Then V is complete if
and only if

(⊥V)⊥ =V: (7)

Completeness can be shown to be equivalent
to closure with respect to an appropriate topol-
ogy. This topology we proceed to introduce in
terms of convergence of nets. We say a net
f(�)(z) =

∑∞
j=1(f

(�)
j =zj)∈ z−1Fm[[z−1]] converges

to f(z) =
∑∞

j=1(fj=zj)∈ z−1Fm[[z−1]] if for any
n∈Z+, there exists a � such that for all �¿� we
have f(�)

j = fj; j = 1; : : : ; n. It is clear that this
topology is just the weak∗ topology of z−1Fm[[z−1]].

Theorem 3.1. A subspace V ⊂ z−1Fm[[z−1]] is
closed in the above topology if and only if

(⊥V)⊥ =V: (8)

Proof. Assume (8) holds. Each element f∈⊥V in-
duces a linear functional �f on V by �f(h) = [f; h].
This functional is continuous in the weak∗ topology
of z−1Fm[[z−1]] as this is by de>nition the weakest
topology that makes all functionals �f continuous.
By continuity Ker �f is a closed subspace. Any in-
tersection of closed sets is closed, so V= (⊥V)⊥ =⋂

f∈⊥V Ker �f is closed.
To prove the converse, assume without loss of gen-

erality that V is a proper subspace of z−1Fm[[z−1]].
Applying Proposition 3.1, it suFces to show that
for every h∈ z−1Fm[[z−1]] − V there exists an
f∈⊥V such that [f; h] �= 0. De>ne for each inte-
ger n∈Z+ the projections Pn by (6). Clearly, for all
n∈Z+; Pn(V) is a >nite-dimensional vector space, in
fact dim Pn(V)6mn. Since h �∈ V and V is closed,
it follows that for some n0; Pn0h �∈ Pn0 (V). By >-
nite dimensionality, there exists a polynomial vector
f∈Fm[z] of degree ¡n0 such that [f; Pn0 (V)] = 0
and [f; Pn0h] �= 0. It is obvious that [f;V] = 0, i.e.
f∈⊥V, and [f; h] �= 0.

Corollary 3.1. A subspace V ⊂ z−1Fm[[z−1]] is
complete if and only if it is closed.

Proof. Both conditions are equivalent to (⊥V)⊥ =
V.

For the principal result we will need the follow-
ing theorem. In the context of Banach spaces, it was
proved by Banach. In Yosida [9], it is proved in the
context of locally convex linear topological vector
spaces. Since we are working over an arbitrary >eld,
we adapt Yosida’s proof to that context.

Theorem 3.2. Let X be a be a vector space over the
5eld F and let X ∗ be its dual. A linear functional f
on X∗ is of the form

f(x∗) = [x∗; x] = x̂(x∗) (9)

for some x∈X if and only if f is continuous in the
weak∗ topology of X∗.

Proof. Clearly, every functional of the form f= x̂ is
continuous by the de>nition of the weak∗ topology.
Conversely, let f :X∗ → F be a linear functional

continuous in the weak∗ topology. Since f−1(0) is
an open neighborhood of 0∈X∗, it contains a set of
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the form {x∗|x∗(xi) = 0; i = 1; : : : ; n; n∈Z+; xi ∈X }.
Thus, x∗xi = 0; i = 1; : : : ; n implies f(x∗) = 0.
De>ne a linear transformation L :X∗ → Fn by
L(x∗) = (x∗(x1); : : : ; x∗(xn)). Clearly L(x∗1 ) = L(x∗2 )
if and only if x∗1 (xi) = x∗2 (xi) for i = 1; : : : ; n.
Thus, the functional � :L(X∗) → F given by
�(x∗(x1); : : : ; x∗(xn)) = f(x∗) is well de>ned. We
extend this functional to Fn which we still de-
note by �. Clearly, there exists �i ∈F such that
�( 1; : : : ;  n) =

∑n
i=1 �i i. We compute

f(x∗) =�(x∗(x1); : : : ; x∗(xn)) =
n∑

i=1

�ix∗(xi)

=

[
x∗;

n∑
i=1

�ixi

]
:

Thus f = x̂ with x =
∑n

i=1 �ixi.

A linear transformation HT :Y∗ → X∗ is continuous
with respect to the weak∗ topologies inY∗ andX∗, or
simply continuous, if for every weak∗ convergent net
y∗
� → y∗, we have the weak∗ convergence HTy∗

� →
HTy∗. This is equivalent to [ HTy∗

� ; x] → [ HTy∗; x] for
every x∈X.
The following theorem is given as an exercise in

Dunford and Schwartz [1] where the context is that of
Banach spaces. Using the characterization of weak∗

continuous functionals given in Yosida [9], it is easily
extended to arbitrary, locally convex linear topological
vector spaces. We give the proof for the case of an
arbitrary >eld.

Theorem 3.3. Let X;Y be vector spaces over an
arbitrary 5eld F . Let the dual spaces, X∗;Y∗, be
endowed with the respective w∗ topologies. Let
HT :Y∗ → X∗ be a linear transformation that is con-
tinuous with respect to these topologies. Then there
exists a linear transformation T :X → Y such that
HT = T ∗.

Proof. First we show that T ∗ :Y∗ → X∗ is contin-
uous. Let y∗

� be a net converging to y∗ in the weak∗

topology of Y∗. We compute

[T ∗y∗
� ; x] = [y∗

� ; Tx] → [y∗; Tx] = [T ∗y∗; x]:

To prove the converse, let HT :Y∗ → X∗ be a continu-
ous linear transformation. Thus, given any x∈X, the

map �x :Y∗ → F de>ned by

�x(y∗) = [ HTy∗; x] (10)

is a continuous linear functional in the weak∗ topology
of Y∗. By Theorem 3.2, there exists a vector Hy∈Y
such that [ HTy∗; x]=[y∗; Hy]. Clearly, Hy depends linearly
on x and so we can write Hy = Tx for some linear
transformation T :X → Y. It follows that

[ HTy∗; x] = [y∗; Tx]

for all y∗ ∈Y∗ and x∈X. This implies HT = T ∗.

A central tool in behavior theory, introduced in
Fuhrmann [5] is that of a behavior homomorphism.
Given two behaviors B1;B2, we de>ne for the
backward shift operator � its restriction to the be-
haviors by �Bi = �|Bi. If the behaviors are given
in kernel representations Bi = Ker Pi(�), we will
write also �Pi for �Bi . A behavior homomorphism is
an F[z]-homomorphism with respect to the natural
F[z]-module structure in the behaviors, i.e. it satis>es
Z�P1 = �P2Z . Our interest is in the characterization of
behavior homomorphisms. It turns out that no general
characterization of behavior homomorphisms is avail-
able. However, adding some continuity constraints
makes the problem tractable by duality theory. We
will say that a linear map Z : KerM (�) → Ker HM (�)
is continuous if it is continuous with respect to the w∗

topologies in the two behaviors. Thus we can state:

Theorem 3.4. Let M ∈Fp×m[z] and HM ∈F Hp× Hm[z] be
of full row rank. ThenKerM (�) is anF[z]-submodule
of z−1Fm[[z−1]] and Ker HM (�) is an F[z]-submodule
of z−1F Hm[[z−1]]. Moreover HZ : KerM (�) → Ker
HM (�) is a continuous behavior homomorphism, if and
only if there exist HU ∈F Hp×p[z] and U in F Hm×m[z]
such that

HU (z)M (z) = HM (z)U (z) (11)

and

HZh= U (�)h; h∈KerM (�): (12)

Proof. Assume HZ : KerM (�) → Ker HM (�) is a con-
tinuous F[z]-homomorphism. For a linear space X
and a subspace V ⊂ X , we have the isomorphism
(X=V)∗ 
 V⊥. We note that

(M̃ (z)Fp[z])⊥ =KerM (�); (13)
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and this leads to

(Fm[z]=M̃Fp[z])∗ =KerM (�); (14)

with the duality pairing

[h; [f]M̃ ] = [h; f]: (15)

It is easily checked, using (13), that this is independent
of the choice of equivalence class representative. By
Theorem 3.3, there exists a map Z :F Hm[z]= H̃MF Hp[z] →
Fm[z]=M̃Fp[z] such that HZ = Z∗. The identity HZSM =
S HM HZ , i.e. HZSM = S HM HZ , leads to ZS H̃M

= SM̃Z , that is
Z is an F[z]-module homomorphism. By Theorem
4.2 in Fuhrmann [5], there exist polynomial matri-
ces HU ∈F Hp×p and U ∈F Hm×m, satisfying Ũ H̃M = M̃ H̃U ,
which is equivalent to (11), and for which

Z[f] H̃M
= [ H̃Uf]M̃ :

We can easily check now that necessarily HZ :
KerM (�) → Ker HM (�) is given by (12).

Conversely, let h∈KerM (�). Then M (�)(�h) =
�(M (�)h) = 0, i.e. �h∈KerM (�) which shows
that it is a submodule. Similarly for Ker HM (�). Let
HZ be de>ned by (12), with (11) holding. Then,
for h∈KerM (�); HM (�) HZh = HM (�)(U (�)h)=
HU (�)(M (�)h)=0, i.e. HZh∈Ker HM (�). Moreover, we
compute

HZSMh= U (�)�h= �U (�)h= S HM HZh;

that is HZ is an F[z]-homomorphism. The continuity
of HZ in the weak∗ topology follows from the equality
[U (�)h; f] = [h; Ũf], holding for all h∈KerM (�)
and f∈Fm[z].
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