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Abstract

The paper presents the results of the study of behavior theory as developed by J.C. Wil-
lems from the point of view of polynomial and rational models. Considering behaviors, in
the discrete time case, to be generalizations of rational models, a natural focal point becomes
the concept of a behavior homomorphism. We give a characterization of behavior homomor-
phisms and analyze their invertibility properties in terms of embeddings in unimodular poly-
nomial matrices. These results, which are of intrinsic interest, are then applied to the uniform
derivation of a large number of results for equivalence in different classes of behavior rep-
resentations. To a certain extent, these are generalizations of the strict system equivalence
concept for the class of polynomial matrix description of systems in the style of Rosenbrock. A
study of behavioral controllability is undertaken and gives some new insights into connections
with geometric control theory. © 2002 Published by Elsevier Science Inc.

Keywords: Linear systems; Behaviors; Behavior homomorphism; Strict system equivalence; Polynomial
models; Rational models

1. Introduction

As the title indicates, the present paper is an individual, and obviously very sub-
jective, account of the author’s experience in the study of Jan Willems’ behavioral
theory, see Willems [1986,1989,1991] and Polderman and Willems [1997]. Since
any two individuals are different, they would look at the same object, be it a work of
art, a piece of music, a novel or for that matter a scientific theory from a different,
highly personal, perspective. Here we use the word study in a broad sense. We do
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not equate study with the learning of all the facts available, but rather incorporating
the facts in a broader context that represents the person’sWeltanschauung.

It is with this in mind that the present work was undertaken. Clearly, even if
a complete study and representation of behaviors, after more than two decades of
research, was possible, it is certainly beyond the ability of the present author. It would
be questionable if a record of the author’s struggle to understand behaviors justifies
publishing a paper of this length. However, in the course of studying the subject,
new insights came up which enable a more coherent and compact description of basic
results in behavioral theory. Moreover, the approach taken in this paper not only clar-
ifies many underlying connections to classical system theory, but introduces methods
that relate to the circle of ideas in operator theory that centers around the commutant
lifting theorem. This connection is not new and, in fact, was introduced by the author,
see Fuhrmann [1976], for the study of homomorphisms of polynomial models, their
invertibility properties and their use in analyzing equivalence of different system rep-
resentation. The study of strict system equivalence in Fuhrmann [1977] is a case in
point. As a matter of fact the introduction and characterization of behavior homomor-
phism and their application to a unified derivation of equivalence results for different
behavior representations are the principal new results described in this paper.

Behavioral theory is an attempt to present a mathematical framework for the de-
scriptions of dynamical systems from a point of view that is not based on the in-
put/output paradigm. Thus, it is a radical change from the standard linear system
theory and its emphasis on a state space point of view. In Willems’ definition a
dynamical system� as a triple

� = (T ,W,B), (1)

whereT ⊂ R is the time axis, W is an abstract set called thesignal alphabetand
B ⊂ WT is called thebehavior. The elements ofB are called thetrajectoriesof
the system. The term behavior can be traced back, in the automata theory context,
to Eilenberg [1974]. For a detailed discussion of this, see Willems [1989]. Thus,
for us, a system has variables taking values in the setW. The specifics of the sys-
tem are given in terms of its time behavior, namely the set of all permissible time
trajectories. The behavior is thus the result of the underlying laws that govern the
dynamical evolution of the system. As such, the definition of a dynamical system
is very general and little can be said unless more specific assumptions are made.
Since we are interested principally in finite dimensional linear systems, we will re-
strict the class of behaviors significantly. This work was partially motivated by the
applicability of behavioral theory to coding theory, see Rosenthal [2000]. For this as
well as for technical reasons, we restrict ourselves to the case of linear discrete-time
systems over an arbitrary fieldF. Moreover, we take the time axis to beT = Z+.
By the assumption of linearity, the signal alphabet is a linear vector space which we
identify with Fm. The space of all time trajectories, that isWT, we identify with
z−1Fm[[z−1]], the space of all formal power series inz−1 with vanishing constant
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term. The spacez−1Fm[[z−1]] has a naturalF [z]-module structure induced by the
left or backward shift operatorS− or σ defined by

S−h = σh = π−zh, h ∈ z−1Fm[[z−1]], (2)

whereπ− is the projection ofFm((z−1)) onto z−1Fm[[z−1]] corresponding to the
direct sum representation

Fm((z−1)) = Fm[z] ⊕ z−1Fm[[z−1]]. (3)

The complementary projection is denoted byπ+. In principle, behaviors are lin-
ear, shift invariant subspaces, i.e.F [z]-submodules, ofz−1Fm[[z−1]]. However, this
class of submodules is too large and we further restrict it by requiring behaviors to
be linear, shift invariant and complete subspaces. In our context, completeness turns
out to be a purely algebraic constraint and this will be explained in Section 3. It is
equivalent to the existence of an autoregressive (AR), or kernel representation, of
the behavior. This is what makes the study of these system managable by algebraic
techniques.

As soon as this definition of a behavior is adopted, one has to recall the funda-
mental insight of Kalman, see Chapter 10 in Kalman et al. [1969], of treating a finite
dimensional, linear time invariant system as anF [z]-module. Of course, the setting
in which Kalman worked was that of input/output descriptions. Indeed, it seems
that the principal break of behavioral theory from the classical theory lies in chang-
ing the emphasis from input/output maps to either full time or future trajectories.
In the Kalman approach to linear systems, realization theory is the corner stone. The
realization procedure is based on the restricted i/o map, i.e. a Hankel operator, that
maps past inputs to future outputs. In fact, under Nerode type equivalence, the past
inputs provide a natural abstract state space. In behavioral theory, as presented in this
paper, one looks, to the contrary, at the set of future trajectories. In the case of i/o
systems we look at the map from state at time zero and future inputs to future outputs.
In principle, all the information on the system structure, up to natural equivalences,
should be recoverable from this data, i.e. from future trajectories. The history of the
use of spaces of trajectories in the analysis of linear systems predates behavior the-
ory. In particular one should note the contributions of Rosenbrock [1970], Pernebo
[1977], Hinrichsen and Prätzel-Wolters [1980a,b], Prätzel-Wolters [1981], Callier
and Desoer [1982] and Blomberg and Ylinen [1983].

As far as this author is concerned, the principal insight that was needed to gain
a better understanding of behaviors is the fact that a behavior is a generalization of
a rational model, see Fuhrmann [1976]. It is easily established that rational models
are identical to a subclass of behaviors, specifically to the subclass of autonomous
behaviors. Since a principal tool in the study of polynomial and rational models
was the characterization of the corresponding model homomorphisms and isomor-
phisms, it is self-evident that a corresponding study has also to be undertaken in
the behavioral setting. Thus, given a behaviorB, it is natural to consider the map
σB which is defined as the restriction of the (backward) shiftσ to the behavior.
Given two behaviorsBi , i = 1, 2, a behavior homomorphism is defined to be a map
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Z : B1 → B2 satisfyingZσB1 = σB2Z. Thus behavior homomorphisms are inter-
twining maps and their analysis relate to the celebrated commutant lifting theorem
of Sarason and Sz.-Nagy–Foias. Thus it is expected that the method presented in this
paper will be found to be applicable in other contexts, most notably in the setting of
Hardy spaces. Some of the relevant mathematics for this can be found in Fuhrmann
[1981b] and Fuhrmann [1994].

We recall that the approach to the study of equivalence in the setting of polyno-
mial matrix descriptions of linear systems taken in Fuhrmann [1977] is based on the
characterization of isomorphism of two polynomial models as derived in Fuhrmann
[1976]. The derivation of this result is split into the characterization of all module
homomorphisms of two polynomial models and, once this has been established, the
characterization of invertibility conditions on the homomorphisms in terms of co-
primeness conditions. Our aim in this paper is to adopt this philosophy and apply
it to the study of behaviors. The principal insight is the fact that a behavior is a
generalization of a rational model, see Fuhrmann [1976]. Thus the homomorphisms
of rational models can be easily derived from the characterization of the homomor-
phism of polynomial models. This gives us a clue to the characterization of behavior
homomorphisms which we derive in Section 4.

The paper is structured as follows: Section 2 presents some basic material, mostly
on the representation ofF [z]-submodules ofFm[z], polynomial models, duality,
model homomorphisms and the shift realization. This material is a prerequisite for
all that follows either because it is actually used or, more importantly, as it serves as a
guide to the appropriate extensions. Finally, we recall the shift realization developed
by the author in Fuhrmann [1976,1977].

In Section 3 we study the concept of completeness of a submodule ofz−1

Fm[[z−1]] and use it to derive the kernel representation, due to Willems [1986],
of a behavior. We proceed to study subbehaviors in terms of factorization theory and
extend some results on sums and intersections of rational models to the behavioral
setting. The idea is to study geometry in terms of the arithmetic of, in this case rectan-
gular, polynomial matrices. We proceed to study the concept of a doubly unimodular
embedding which turns out to be a principal technical tool in our development.

In Section 4 we fill what seems to be a gap in the behavioral literature by introduc-
ing the concept of a behavior homomorphism and, more specifically, that of a behav-
ior isomorphism. These seem to be basic objects and, once they are characterized, the
study of the equivalence of different behavior representations is simplified. All the
results contained in this section could be easily adapted for the study of integral ma-
trices, i.e. matrices over the ring of integers or, even more generally, to matrices over
an arbitrary Euclidean domain. For reasons of readability, we leave the setting as it is.

To study behavior homomorphisms, we first extend the analysis and character-
ization of the linear maps intertwining two polynomial or rational models and their
invertibility properties. We do this by looking at factor modules of the free module
of polynomial vectors, that is at factor modules of the formFp[z]/MFm[z], with
M(z) a p × m polynomial matrix which, without loss of generality, can be taken
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to be of full column rank. We characterize the torsion submodule of such a factor
module in terms of factorization theory. TheF [z]-homomorphisms between such
factor spaces are described and their invertibility properties characterized in terms
of coprimeness conditions and the existence of doubly unimodular embeddings. As
a byproduct, we obtain the classical characterization of finitely generated modules
over the polynomial ringF [z]. By using appropriately duality theory, we extend
these results to behavior homomorphisms. As indicated above, all of this is related
to lifting theorems, which are the algebraic analogs of the commutant lifting theorem.
While we discuss these results for the case of the ringF [z], the results could easily
proved for other Euclidean rings or even more generally principal ideal domains. Of
particular potential interest is the derivation of these overZ, i.e. a theory of integral
matrices.

Section 5 is devoted to the description of various representations of behaviors.
We pay special attention to a representation we call a normalized ARMA (NARMA)
representation which turns out to be of exceptional importance for the analysis of var-
ious classes of representations. This has been studied before in Schumacher [1989]
where it is called an AR/MA representation. Its importance lies in the fact that every
behavior representation is reducible to a NARMA one. The transformation to first
order representations, essentially realization theory, is described via the use of the
shift realization. This section is very close in spirit to Schumacher [1989] but differs
somewhat in results and techniques.

Section 6 is devoted to the study of the behavioral controllability concept of Wil-
lems. We introduce the notion of reachability in the behavioral setting. It turns out to
be equivalent to controllability but easier to apply. Moreover, we show the relation of
behavioral controllability to the classical controllability characterization of the shift
realization as well as to the concept of controllability in geometric control theory.
We also discuss briefly the question of stability in the behavioral setting.

In Section 7 we present the principal application to behavioral theory and that is
the unified derivation of equivalence results for different behavior representations.
The question of equivalence is to find characterization of two system representations
which give rise to the same behavior. These problems are not new. The Kalman
state space isomorphism, see Kalman et al. [1968], result is of this type. So is Ro-
senbrock’s [1970] notion of strict system equivalence and its modification known as
Fuhrmann [1977] system equivalence, see also Kailath [1980] and Özgüler [1994]. In
the context of behaviors of particular importance is Hinrichsen and Prätzel-Wolters
[1980a,b], the work of Kuijper [1992,1994] and of Schumacher [1989]. In fact, part
of the insight for the present work is due to several, highly suggestive, formulas
in Kuijper’s thesis. More recently, in the context of multidimensional systems, Zerz
[2000] as well as Hou et al. [1997] contain similar ideas. The paper by Valcher [2000]
may also be relevant. This section is concluded with a study of minimality of several
behavior representations. The results are familiar and appear in Kuijper [1992,1994],
however the derivations are different inasmuch as they use elementary operations on
polynomial matrices rather than state space based iterative algorithms.
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Limitations of space and time have excluded several topics from this paper. We
have already alluded to the possible extensions of the behavioral theory to the Har-
dy space context. There is already some work in this direction, see Weiland and
Stoorvogel [1997]. However, we feel that the approach taken in the present paper
has a great potential usefulness in that context. Moreover, since it is functional ori-
ented, it might be extended to some infinite dimensional situations. Another topic
that was not treated sufficiently, but only hinted at, is the study of the connections
between behaviors and geometric control theory in the style of Basile and Marro
[1973] or Wonham [1979]. We find it surprising that this connection has not been
sufficiently addressed in the numerous publications on behaviors. While behaviors
can and are introduced in the setting of time trajectories, it is easy to reformulate
the problems and study behaviors in polynomial terms. Thus essentially the study
of behaviors is reducible to the study of rectangular polynomial matrices arising
through AR or ARMA representations of the behavior. Rectangular polynomial ma-
trices appear most naturally in the study of finite dimensional, linear, time invari-
ant systems and they represent numerator matrices in matrix fraction representa-
tions or polynomial system matrices in the Rosenbrock [1970] formulation of linear
system theory. Incidentally, polynomial system matrices have their own interpre-
tation as representing the zero structure, see Hautus and Fuhrmann [1980] for the
details. Thus the study of rectangular polynomial matrices is intimately related to
the study of zeros of rational matrices. This in turn is the focal point of geometric
control. Another approach to the analysis of zeros of rational matrices is the ab-
stract module theoretic approach initiated by Wyman and Sain [1981] and Wyman
et al. [1989]. The link between geometric control theory to polynomial theory has
its origin in Emre and Hautus [1980] and Antoulas [1980], with later developments
by Fuhrmann and Willems [1979,1980], Fuhrmann [1981], Khargonekar and Emre
[1982] as well as the work of Özgüler [1986]. All this body of work is based on
the theory of polynomial models introduced in Fuhrmann [1976,1977]. Thus it is
to be expected that deep links exist between behavioral theory and geometric con-
trol. This will be part of a continuation of the present research. Another topic that
has not been addressed in this paper is the study of symmetries in the behavioral
setting.

The author would like to thank an anonymous reviewer who pointed out the refer-
ence to the seminal paper, Oberst [1990], which resulted in significant simplifications
and streamlining of the original exposition.

2. Preliminaries

2.1. Polynomial and rational models

Let F denote an arbitrary field. We will denote byFm the space of allm-vectors
with coordinates inF. Fm[z] the space of all polynomials with coefficients inFm,
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z−1Fm[[z−1]] the space of formal power series vanishing at infinity andFm((z−1))

the space of truncated Laurent series. Letπ+ and π− denote the projections of
Fm((z−1)) onFm[z] andz−1Fm[[z−1]] respectively. Since

Fm((z−1)) = Fm[z] ⊕ z−1Fm[[z−1]], (4)

π+ andπ− are complementary projections. We recall thatU ∈ Fm×m[z] is unimod-
ular if it has a polynomial inverse. An elementP ∈ Fp×m[z] is left prime if it has
a polynomial right inverse. Two polynomial matricesQ,P are left coprimeif the
polynomial matrix(Q P ) is left prime. Right primeness and right coprimeness are
analogously defined. We proceed to introduce polynomial and rational models. Giv-
en a nonsingular polynomial matrixD in Fm×m[z] we define two projectionsπD :
Fm[z] → Fm[z] andπD : z−1Fm[[z−1]] → z−1Fm[[z−1]] by

πDf = Dπ−D−1f for f ∈ Fm[z], (5)

πDh = π−D−1π+Dh for h ∈ z−1Fm[[z−1]], (6)

and define two linear subspaces ofFm[z] andz−1Fm[[z−1]] by

XD = ImπD (7)

and

XD = ImπD. (8)

An elementf of Fm[z] belongs toXD if and only if π+D−1f = 0, i.e. if and only if
D−1f is a strictly proper rational vector function. Thus we have also the following
description of the polynomial modelXD:

XD = {
f ∈ Fm[z] | f = Dh, h ∈ z−1Fm[[z−1]]}. (9)

The advantage of this characterization is that it makes sense for an arbitraryp × m

polynomial matrixV. Thus we define the following Emre and Hautus [1980]:

XV = {
f ∈ Fp[z] | f = V h, h ∈ z−1Fm[[z−1]]}. (10)

Analogously,h ∈ XD if and only ifπ−Dh = 0, i.e. if and only ifh is in the kernel of
the Toeplitz mapTD : z−1Fm[[z−1]] → z−1Fm[[z−1]] defined byTDh = π−Dh.
We shall also, for reasons of compatibility with behavioral theory usage, writeσ =
S− andD(σ) = TD.

We shall refer toXD as apolynomial modelwhereas toXD as arational model.
We turnXD into anF [z]-module by defining

p · f = πDpf for p ∈ F [z], f ∈ XD. (11)

Note that KerπD = DFm[z] and thatπD : Fm[z] → XD is a surjective module ho-
momorphism. Thus we have the important isomorphism

XD � Fm[z]/DFm[z]. (12)

The representation of quotient modules is more general inasmuch as it makes sense
for arbitrary submodules. We shall return to this in Section 3. We recall, see Fuhr-
mann [1976], that a submoduleM ⊂ Fm[z] is a full submoduleif Fm[z]/M is a
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torsion module; also,M is full if and only if M has a representationM = DFm[z]
with D nonsingular. One might therefore mimic the construction of polynomial and
rational models for the case of nonfull submodules or, equivalently, for the case of
rectangular polynomial matrices. Indeed, this can be done and has important impli-
cations for behaviors. We will pursue this subject in Section 3. It is easy to check that
the set of all rational models coincides with the set of all finitely generated torsion
submodules ofz−1Fm[[z−1]]. For more on this, see Proposition 3.4.

Similarly, we introduce inXD a module structure by

p · h = π−ph for p ∈ F [z], h ∈ XD. (13)

In XD we will focus on a special mapSD, a generalization of the classical com-
panion matrix, which corresponds to the action of the identity polynomialz, i.e.

SDf = πDzf for f ∈ XD. (14)

It is easily checked that

SDf = zf (z) − D(z)ξf , (15)

where the constant vectorξf depends linearly onf. In fact we haveξf = π+zD
(z)−1f . It follows from (14) that the module structure inXD is identical to the mod-
ule structure induced bySD throughp · f = p(SD)f . With this definition the study
of SD is identical to the study of the module structure ofXD. In particular the in-
variant subspaces ofSD are just the submodules ofXD which are characterized next.
They are related to factorization of polynomial matrices.

Similarly, we introduce inXD a module structure, given by

SDh = π−zh, h ∈ XD, (16)

i.e.SD is the restriction of the backward shift operator to the backward shift invariant
subspaceXD.

Polynomial and rational models are closely related. Thus we have the following
result obtainable via a trivial computation.

Proposition 2.1. The polynomial modelXD and the rational modelXD are iso-
morphic, with the isomorphismρD : XD → XD given byf �→ D−1f. Moreover
we have

SDρD = ρDSD. (17)

The set of all full submodules is a lattice and the set operations are given by the
arithmetic of nonsingular polynomial matrices.

Theorem 2.1.
1. Given nonsingular polynomial matricesD1,D2 ∈ Fm×m[z], thenD1F

m[z] ⊂
D2F

m[z] if and only ifD1 = D2E for some nonsingular polynomial matrix E.
2. Given nonsingular polynomial matricesDi ∈ Fm×m[z], i = 1, . . . , k, then
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k∑
i=1

DiF
m[z] = DFm[z], (18)

where D is a greatest common left divisor(g.c.l.d.) of theDi.

3. Given nonsingular polynomial matricesDi ∈ Fm×m[z], i = 1, . . . , k, then
k⋂

i=1

DiF
m[z] = EFm[z], (19)

where E is a least common right multiple(l.c.r.m.) of theDi.

The following theorem, a consequence of the previous one, is of great importance
as it connects factorization theory to the geometry of invariant subspaces.

Theorem 2.2.
1. Let D ∈ Fm×m[z] be a nonsingular polynomial matrix. A subset M ofXD is

a submodule, or equivalently anSD invariant subspace, if and only if M =
D1XD2 for some factorizationD = D1D2 with Di m × m, necessarily nonsin-
gular, polynomial matrices.

2. A subset M ofXD is a submodule, or equivalently anSD invariant subspace, if
and only ifM = XD2 for some factorizationD = D1D2 withDi m × m, neces-
sarily nonsingular, polynomial matrices.

3. A subset M ofXD is a submodule, or equivalently anSD invariant subspace, if
and only ifM = XD1 for some factorizationD = D1D2 with Di ∈ Fm×m[z].

We summarize now the all important connection between the geometry of invari-
ant subspaces and the arithmetic of polynomial matrices. This allows us to make
factorization theory one of the cornerstones of algebraic system theory.

Theorem 2.3. LetMi, i = 1, . . . , s, be submodules ofXD, having the representa-
tionsMi = EiXFi

, that correspond to the factorizations

D = EiFi.

Then the following statements are true:
1. M1 ⊂ M2 if and only ifE1 = E2R, i.e. if and only ifE2 is a left factor ofE1.

2.
⋂s

i=1 Mi has the representationEνXFν withEν the l.c.r.m. of theEi andFν the
g.c.r.d. of theFi.

3. M1 + · · · + Ms has the representationEµXFµ withEµ the g.c.l.d. of theEi and
Fµ the l.c.l.m. of all theFi.

Corollary 2.1. LetD = EiFi for i = 1, . . . , s. Then
1. We have

XD = E1XF1 + · · · + EsXFs

if and only if theEi are left coprime.
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2. We have
⋂s

i=1 EiXFi
= 0 if and only if theFi are right coprime.

3. The decomposition

XD = E1XF1 ⊕ · · · ⊕ EsXFs

is a direct sum if and only ifD = EiFi for all i , theEi are left coprime and the
Fi are right coprime.

The following theorem, proved in Fuhrmann [1976], is the algebraic version of
the celebrated commutant lifting theorem proved, in the context of operator theory
in Hilbert spaces, by Sarason in the scalar case and by Sz.-Nagy and Foias in the
general case.

Theorem 2.4. LetD ∈ Fp×m[z] andD ∈ Fp×m[z] be nonsingular. ThenZ : XD →
XD is anF [z]-homomorphism if and only if there existN ∈ Fp×p andN ∈ Fm×m[z]
such that

ND = DN (20)

and

Zf = πDNf. (21)

The following theorem, proved in Fuhrmann [1976], characterizes the invertibility
properties ofF [z]-module homomorphisms between polynomial models. In turn, it
is based on operator theoretic results, see Fuhrmann [1981b] and the further refer-
ences therein.

Theorem 2.5. LetZ : XD → XD1 be the module homomorphism defined by

Zf = πDNf (22)

with

ND = DN (23)

holding. Then:
1. KerZ = EXG, whereD = EG and G is a g.c.r.d. of D and N.
2. ImZ = E1XG1, whereD = E1G1 andE1 is a g.c.l.d. ofD andN.

3. Z is invertible if and only if D and N are right coprime andD andN are left
coprime.

Both Theorems 2.4 and 2.5 will be generalized in Section 3. The isomorphism
between polynomial and rational models proved in Proposition 2.1 allows us to trans-
late the content of Theorems 2.4 and 2.5 to the rational model context. Thus we
have:
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Theorem 2.6. LetD ∈ Fm×m[z] andD ∈ Fm×m[z] be nonsingular. ThenZ : XD

→ XD is an F [z]-homomorphism if and only if there existN ∈ Fp×p and N ∈
Fm×m[z] such that

ND = DN (24)

and

Zh = π−Nh, h ∈ XD. (25)

Theorem 2.7. Let Z : XD → XD be the module homomorphism defined by(25),
with condition(24) satisfied. Then:
1. KerZ = XG, whereD = EG and G is a g.c.r.d. of D and M.
2. ImZ = XG, whereD = EG and E is a g.c.l.d. ofD and N.
3. Z is invertible if and only if D and N are right coprime andD andN are left

coprime.

2.2. Duality

In this section we review basic duality results as developed in Fuhrmann [1981].
These are crucial for the study of behaviors. Given a vector spaceV over a fieldF we
denote byV ∗ thedual spaceof V that is the space of linear functionals onV. Given
v∗ ∈ V ∗ andv ∈ V we will write

[v, v∗] = v∗(v).
In the special case ofV = Fm we can also identifyV ∗ with Fm and then we write
[x, y] = ỹx whereỹ denotes the transpose of the column vectory. The sole exception
will be the complex inner product spaces where[x, y] will be interpreted as the inner
product itself. Now givenf ∈ Fm((z−1)) andg ∈ Fm((z−1)) we define a pairing

[f, g] =
∞∑

j=−∞
[fj , g−j−1]. (26)

It is clear that[·, ·] is a bilinear form onFm((z−1)) × Fm((z−1)). It is well defined
as in the defining sum at most a finite number of terms are nonzero. Also this form
is nondegeneratein the sense that[f, g] = 0 for all g ∈ Fm((z−1)) if and only if
f = 0. Given a subsetM ⊂V we define itsannihilatorM⊥ by

M⊥ = {
v∗ ∈ V ∗ | [m, v∗] = 0 ∀m ∈ M

}
.

Similarly if M ⊂V ∗ we define thepreannihilator⊥M by
⊥M = {

v ∈ V | [v, v∗] = 0 ∀v∗ ∈ M
}
.

It is a simple check of the definitions thatFm[z]⊥ = Fm[z] and⊥(Fm[z]) = Fm[z].

Theorem 2.8. The dual space ofFm[z] is z−1Fm[[z−1]].
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Proof. Clearly every elementh ∈ z−1Fm[[z−1]] defines, by way of the previous
pairing (26), a linear functional onFm[z]. Conversely let� be a linear functional on
Fm[z]. It induces linear functionalsφi onFm by defining

φi(x) = [zix, φ] = �(zix)

and an elementh ∈ z−1Fm[[z−1]] is defined by lettingh(z) = ∑∞
j=0 φjz

−j−1. It
follows that�(f ) = [f, h]. �

Throughout the paper, given a matrixA, we will denote byÃ its transpose. The
same holds for polynomial matrices or, more generally, to elements ofFp×m((z−1)).
Thus givenA ∈ Fp×m((z−1)) with A(z) = ∑n

j=−∞ Ajz
j we will denote byÃ the

element ofFm×p((z−1)) given by

Ã(z) =
n∑

j=−∞
Ãj z

j .

As usual, given bilinear forms onV × V ∗ andW × W ∗ and a mapA : V → W

thedual mapA∗ : W ∗ → V ∗ is defined by the equality

[Av,w∗] = [v,A∗w∗].
In the following proposition we summarize, without proofs, the computational

rules related to the duality defined by (26). For the full details, see Fuhrmann [1981a].

Proposition 2.2.
1. GivenA ∈ Fp×m((z−1)). LetLA : Fm((z−1)) → Fp((z−1) be the correspond-

ing Laurent operator defined by

(LAf )(z) = A(z)f (z) =
∑

gj z
j , (27)

wheregj = ∑∞
i=−∞ Aj−ifi . Then

(LA)
∗ = L

Ã
. (28)

2. The duals of the projectionsπ+ andπ− are given by

π∗+ = π−, π∗− = π+. (29)

3. Fm[z] is a submodule, relative to the ringF [z], of Fm((z−1)) thenFm[z] is
S-invariant thus we can defineS+ by

S+ = S|Fm[z].
We also defineS− : z−1Fm[[z−1]] → z−1Fm[[z−1]] by

S−h = π−zh.

4. The dual of the mapS+ : Fm[z] → Fm[z] is given byS∗+ = S− : z−1Fm[[z−1]]
→ z−1Fm[[z−1]].
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5. LetM ⊂Fm[z] be a submodule. ThenM⊥ is a submodule ofz−1Fm[[z−1]].
6. LetM = DFm[z] with D ∈ Fm×m[z] nonsingular. ThenM⊥ = XD̃.

7. The disjoint ofπD is πD̃.

By theorem 2.8,(Fm[z])∗ is z−1Fm[[z−1]]. However,Fm[z] is not a reflexive
space. Thus Proposition 2.2.5 is true in one direction only. Purely on mathematical
grounds, it is of great interest to characterize those submodels ofz−1Fm[[z−1]] that
are annihilators of submodels ofFm[z]. This will be done in Section 3. It is a pleasant
surprise that these submodels coincide, in our context, with behaviors in the sense of
Willems. Thus, they have important system theoretic significance.

In due course, this allows us to analyze set operations on behaviors by reduction
to the corresponding analysis of set operations on submodules ofFm[z] and these
in turn reduce to the arithmetic of polynomial matrices. These duality results can
be traced to Fuhrmann [1981]. A detailed analysis of a related duality theory, in the
context of multidimensional systems, is available in the major paper Oberst [1990].

In our characterization of torsion quotient modules ofFm[z] and of finitely gen-
erated torsion submodules ofz−1Fm[[z−1]] there were many similarities. This is not
coincidental but is related to a further study of duality in the functional model setting.
With our identification ofz−1Fm[[z−1]] as the dual ofFm[z] it follows that if M is
a subset ofFm[z] thenM⊥ is a subset ofz−1Fm[[z−1]].

2.3. The shift realization

We recall now the shift realization introduced in Fuhrmann [1976,1977]. Assume
a proper rational functionG is given by

G(z) = V (z)T (z)−1U(z) + W(z), (30)

whereV, T ,U,W are appropriately sized polynomial matrices andT is nonsingular.
This representation is the cornerstone of Rosenbrock’s theory. To this representation
we associate, following Rosenbrock [1970], the polynomial system matrix

P =
(
T −U

V W

)
. (31)

To the polynomial system matrix (31), we associate the state spaceXT and the maps

Af = ST f = πT zf, f ∈ XT ,

Bη = πDUη, η ∈ Fm,

Cf = (V T −1f )−1,

D = π+G.

(32)

It was established in Fuhrmann [1977] that this is a realization ofG, called theshift
realization. This realization is controllable (reachable if we consider discrete time)
if and only if T ,U are left coprime and it is observable if and only ifV, T are right
coprime.
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From any minimal realization we can easily construct a basis for the model space
associated with a right coprime factorization. This extremely useful construction
goes back to Hautus and Heymann [1978], see also Wimmer [1979]. We omit the
proof.

Theorem 2.9. Let G be a proper rational function of McMillan degree n and let

G =
(
A B

C D

)
(33)

be a minimal realization. ThenC(zI − A)−1 = T (z)−1H(z) for some polynomial
matrices T and H. DefiningU(z) = H(z)B we have

G = D + T −1U = T −1(T D + U). (34)

A basis forXT is given by the columnsHi of H and a basis forXT is given by the
columns ofC(zI − A)−1. In particular, we have

XT = {
C(zI − A)−1ξ | ξ ∈ Rn

}
. (35)

As a result we conclude that, given any polynomial matrixN, thenT −1N is strict-
ly proper if and only if there exists a constant matrixK for whichN(z) = H(z)K.

2.4. Bits of geometric control

As noted in Section 1, there are deeper connections between behavior theory and
geometric control. This topic is beyond the scope of this paper. However, we will
indicate in the sequel some of these connections. To this end we will need some
results concerning the polynomial model approach to geometric control. This line
of research originated in Emre and Hautus [1980] and continued in Fuhrmann and
Willems [1980], Fuhrmann [1981] and Khargonekar and Emre [1982]. Very relevant
to this topic is also Özgüler [1986].

We recall that, given a state space system with transfer function

G(z) =
(
A B

c D

)
,

then a subspaceV of the state spaceX is calledcontrolled invariantif, for some
feedback mapK, we have(A + BK)V⊂V. It is an output nulling controlled
invariant subspaceif, for some feedback mapK, we have(A + BK)V⊂V⊂ Ker
(C + DK). Finally, a subspaceR⊂X is anoutput nulling reachability subspaceif
it is an output nulling controlled invariant subspace and satisfies, for some feedback
mapK, R = 〈A + BK|B ∩ R〉. It is established in geometric control theory that,
given a state space system, there exist unique maximal output nulling controlled in-
variant and maximal output nulling reachability subspaces which are denoted byV∗
andR∗ respectively. The following theorem presents the relevant characterizations.
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Theorem 2.10. Let G = Q−1P be ap × m proper rational function. Then, with
respect to the associated shift realization(32), we have

V∗ = XP ,

R∗ = XP ∩ PFm[z]. (36)

If G, and hence P, has full row rank thenV∗ = R∗ if and only if P is left prime.

For the case of a strictly proper rational functionG the characterization ofV∗
is due to Emre and Hautus [1980] and Fuhrmann and Willems [1980]. The charac-
terization ofR∗, in a slightly different formulation, is due to Fuhrmann [1981] and
Khargonekar and Emre [1982]. The full proof of these, and related results, will be
published elsewhere.

3. Elements of behavior theory

The object of this section is to present the basics of behavior theory in the setting
of discrete time systems. We give the definition of dynamical systems and behaviors
as used in Willems [1991]. In this setting the notion of completeness can be ad-
dressed purely from the algebraic point of view. This we do and rederive the kernel
representation of behaviors. This is a key result in behavioral theory inasmuch as it
allows to reformulate the problems and study behaviors in polynomial terms. Thus
essentially the study of behaviors is reducible to the study of rectangular polyno-
mial matrices arising through a kernel, or AR, representation of the behavior. We
proceed to the study of subbehaviors and their connection to factorization theory.
This is an extension of the fact that in the theory of polynomial and rational mod-
els invariant subspaces relate to factorizations. Next we proceed to introduce and
study doubly unimodular embeddings. This is an important technical subject that
is used throughout the rest of the paper for studying the invertibility properties of
behavior homomorphisms. We conclude with some more results on factorizations of
polynomial matrices and behaviors.

The behavioral approach differs from the classical approach, dominated by Kal-
man’s ideas, see Chapter 10 in Kalman et al. [1969], in changing the emphasis from
input/output maps to either full time or future trajectories. In the Kalman approach
to linear systems, realization theory is the corner stone. The realization procedure is
based on the restricted i/o map, i.e. a Hankel operator, that maps past inputs to future
outputs. In fact, under Nerode type equivalence, the past inputs provide a natural
abstract state space. In behavior theory to the contrary one looks at the set of future
trajectories. In the case of i/o systems we look at the map from state at time zero and
future inputs to future outputs. In principle, all the information on the system should
be recoverable from this data. The history of the use of spaces of trajectories in the
analysis of linear systems predates behavior theory. In particular one should note the
contribution of Rosenbrock [1970], Blomberg and Ylinen [1983], Pernebo [1977],
Hinrichsen and Prätzel-Wolters [1980a,b] and Prätzel-Wolters [1981].
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We follow Willems [1991] in defining adynamical system� as a triple

� = (T ,W,B), (37)

whereT ⊂ R is the time axis, W is an abstract set called thesignal alphabetand
B⊂WT is called thebehavior. The elements ofB are called thetrajectoriesof the
system. In this generality the definition has its origin in automata theory, see Eilen-
berg [1974].

This definition is very general and is representation free. In the context of this
paper we will identifyT with Z+, the set of positive integers, assumeF is an ar-
bitrary field and takeW = Fm. We identify WT with z−1Fm[[z−1]]. The space
z−1Fm[[z−1]] has a standardF [z]-module structure induced by theleft or backward
shift operatorS− or σ defined by

S−h = σh = π−zh, h ∈ z−1Fm[[z−1]]. (38)

Recall thatπ− is the projection ofFm((z−1)) ontoz−1Fm[[z−1]] corresponding to
the direct sum representation

Fm((z−1)) = Fm[z] ⊕ z−1Fm[[z−1]] (39)

and that the complementary projection is denoted byπ+.
Given a polynomial matrixP(z) ∈ Fp×m[z], it defines a Toeplitz mapTP , usually

denoted in the behavior literature asP(σ), as the mapTP = P(σ) : z−1Fm[[z−1]] →
z−1Fp[[z−1]] via

TP h = P(σ)h = π−Ph, h ∈ z−1Fm[[z−1]]. (40)

Clearly the operators of the formP(σ) are a special class of Toeplitz operator and it
is their kernels that are of interest to us. In fact we would like to characterize those
subspaces ofz−1Fp[[z−1]] that are representable in the form KerP(σ) for some
polynomial matrixP(z). This kernel representation, due to Willems [1986], is the
key result for the study of behaviors. In what follows we shall describe a purely
algebraic approach to this representation result. To this end, letX be a linear vector
space over an arbitrary fieldF and letX∗ be its algebraic dual. Given a subspace
M ⊂X, we denote byM⊥ its annihilator, i.e.

M⊥ = {
h ∈ X∗|h|M = 0

}
. (41)

Similarly, given a subspaceV ⊂X∗, we denote by⊥V its preannihilator, i.e.
⊥V = {

x ∈ X|h(x) = 0 ∀h ∈ V
}
. (42)

We have the following characterization of preannihilators.

Proposition 3.1. Let X be a linear vector space over a field F and letX∗ be its
algebraic dual. Then a subspaceV ⊂X∗ satisfies

(⊥V )⊥ = V (43)

if and only if for anyh0 /∈ V there exists anx ∈ ⊥V such thath0(x) /= 0.
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Proof. We prove both implications by contradiction.
Assume(⊥V )⊥ = V holds but the other condition is not satisfied, i.e. there exists

h0 /∈ V such that for allx ∈ ⊥V we haveh0(x) = 0. This impliesh0 ∈ (⊥V )⊥ = V

which is a contradiction.
Conversely, assume(⊥V )⊥ /= V . Since clearlyV⊂(⊥V )⊥, it follows that there

existsh0 ∈ (⊥V )⊥ − V such that for allx ∈ ⊥V we haveh0(x) = 0. Again we have
obtained a contradiction.�

Since submodules of the spaceFm[z] of vector polynomial are well studied and
have a nice representation in terms of polynomial matrices, it leads immediately to
a nice representation of those submodules ofz−1Fm[[z−1]] that are annihilators of
submodules ofFm[z].

As anF [z] module, the spacez−1Fm[[z−1]] has a multitude of submodules, i.e.
linear, shift invariant subspaces. In this class we single out a special, small, subclass
which is determined by the extra property of completeness.

Definition 3.1. In z−1Fm[[z−1]] we define the projectionsPn, n ∈ Z+, by

Pn

∞∑
i=1

hi

zi
=

n∑
i=1

hi

zi
. (44)

We say that a subsetB⊂ z−1Fm[[z−1]] is completeif for any w = ∑∞
i=1 wiz

−i ∈
z−1Fm[[z−1]] and for each positive integerN, PNw ∈ PN(B) implies w ∈ B. A
behaviorin our context is defined as a linear, shift invariant and complete subspace
of z−1Fm[[z−1]].

Proposition 3.2. Let F be a field and letV ⊂ z−1Fm[[z−1]] be a subspace. Then V
is complete if and only if

(⊥V )⊥ = V. (45)

Proof. AssumeV is a complete subspace ofz−1Fm[[z−1]]. Leth ∈ z−1Fm[[z−1]] −
V . With the projections defined in (44), it is clear thatPN(V ) is a finite dimen-
sional vector space, with dimPN(V ) � mN . Since h /∈ V and V is assumed
complete, there exists an indexN0 for whichPN0h /∈ PN0(V ). By elementary linear
algebra, there exists a linear functionalφ on PN0(V ) such thatφ|PN0(V ) = 0 and
φ(PN0h) /= 0. Extending the definition ofφ to PN0(z

−1Fm[[z−1]]) it is clear that
we can identifyφ with a polynomial vectorf ∈ PN0[z] ⊂Fm[z]. Thus we have
f ∈ ⊥V and h(f ) /= 0. Applying Proposition 3.1 we conclude that (45)
holds. �

Propositions 3.1 and 3.2 are due to Fonf [2000]. The principal characterization of
behaviors, due to Willems [1986], is now an easy corollary.
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Theorem 3.1. A subsetB⊂ z−1Fm[[z−1]] is a behavior if and only if it admits a
kernel representation, i.e. there exists ap × m polynomial matrixP(z) for which

B = KerP(σ) = {
h ∈ z−1Fm[[z−1]] |π−Ph = P(σ)h = 0

}
. (46)

Proof. Let B⊂ z−1Fm[[z−1]] be a behavior. By completeness we have(⊥B)⊥ =
B. Clearly, ⊥B is a submodule ofFm[z], hence of the form⊥B = QFm[z] for
some polynomial matrixQ(z). An elementary calculation yieldsB = (QFm[z])⊥ =
KerQ̃(σ ) and we setP(z) = Q̃(z).

Conversely, assumingB = KerP(σ). Clearly,B is linear and shift invariant.
Moreover, we have⊥B = P̃ Fp[z] and hence(⊥B)⊥ = KerP(σ) = B. By Prop-
osition 3.2,B is complete. �

Since, given two submodulesM ⊂N ⊂Fm[z], we clearly haveN⊥ ⊂M⊥, we
can state the following all important result due, in slightly different form and in the
multidimensional setting, to Oberst [1990].

Theorem 3.2. The mappingM �→ M⊥ establishes a bijective, inclusion reversing
correspondence between submodules ofFm[z] and behaviors inz−1Fm[[z−1]].

Theorem 3.2 is a key result inasmuch as it allows us to study behaviors in
z−1Fm[[z−1]] by studying submodules ofFm[z]. As a first step, we study the full
lattice of submodules ofFm[z] and its relation to the factorizations of rect-
angular polynomial matrices. This is a generalization of Theorem 2.1 which covered
only the case of full submodules. Thus, omitting the standard proof, we
have:

Theorem 3.3.
1. Any submoduleM ⊂Fm[z] has a representation of the form

M = PF l[z] (47)

for some polynomial matrixP ∈ Fm×l[z] of full column rank. P (z) is uniquely
defined up to a right unimodular factor.

2. For P ∈ Fm×l[z], we have

PF l[z] = Fm[z] (48)

if and only if P is left prime.
3. Given two submodulesMi = PiF

li [z], i = 1, 2, with Pi ∈ Fm×li [z] of full col-
umn rank, thenM1 ⊂M2 if and only if

P1 = P2Q (49)

for some polynomial matrixQ ∈ F l2×l1[z], i.e. P2 is a left factor, or divisor,
of P1.
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4. Given submodulesMi = PiF
li [z] ⊂Fm[z], i = 1, . . . k, then

k⋂
i=1

Mi = PF l[z], (50)

where P is a greatest common left divisor(g.c.l.d.) of thePi.

5. Given submodulesMi = PiF
li [z] ⊂Fm[z], i = 1, . . . , k, then

k∑
i=1

Mi = PF l[z], (51)

where P is a least common right multiple(l.c.r.m.) of thePi.

Given ak × m polynomial matrixP(z), then KerP = {f ∈ Fm[z]|Pf = 0}⊂
Fm[z] is clearly a submodule and hence has also an image representation KerP =
ImQ for an essentially unique polynomial matrixQ of full column rank. However,
not every submodule ofFm[z] has a kernel representation. The following proposition
characterizes submodules having a kernel representation. As we shall see later, this
characterization is dual to the characterization of controllable behaviors.

Proposition 3.3.
1. LetP ∈ Fk×m[z] and letE ∈ Fk×k[z] be nonsingular. Then

KerE(z)P (z) = KerP(z). (52)

2. GivenP ∈ Fk×m[z]. ThenKerP has a representation of the formKerP with
P ∈ Fk×m[z] left prime.

3. A submoduleM = QFl[z] ⊂Fm[z] with Q ∈ Fm×l[z] of full column rank has
a kernel representationM = KerP if and only if Q is right prime.

4. Given two left prime polynomial matricesPi ∈ Fk1×m[z]. Then

KerP1(z)⊂ KerP2(z) (53)

if and only ifP2(z)=A(z)P1(z) for some, necessarily left prime, A ∈ Fk2×k1[z].
Under the same assumptions, we have

KerP1(z) = KerP2(z) (54)

if and only ifP2(z)=A(z)P1(z) for some, necessarily unimodular, A∈Fk×k[z],
with k = k1 = k2.

5. KerP(z) = 0 if and only ifP(z) has full column rank.

Proof.
1. Clear.
2. Let U be a unimodular polynomial matrix for whichUP = (

P̂
0

)
with p̂ of full

row rank. This shows KerUP = KerP = Ker P̂ . Factor nowP̂ = EP with E
nonsingular andP left prime. By Part 1, we have Ker̂P = KerP .
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3. Assume thatM = QFl[z] and thatQ is right prime. ExtendQ to a unimodular

polynomial matrixU = (Q Q) and setU−1 = (
P
P

)
. Then(

P

P

) (
Q Q

) =
(
I 0
0 I

)
and in particularPQ = 0, i.e. KerP ⊃ QFl[z]. To prove the converse inclu-
sion, assumef ∈ KerP . Thenf = Qf1 + Qf2 and hencePf = 0 = PQf1 +
PQf2 = f2. Sof = Qf1 ∈ ImQ and we get KerP ⊂QFl[z].

4. The factorizationP2(z) = A(z)P1(z) clearly implies the inclusion (53).
Conversely, the left primeness of thePi implies the existence of unimodular

completions
(
P i

Pi

)
. We let

(
Qi Qi

) =
(
P i

Pi

)−1

.

Thus we have(
P i

Pi

) (
Qi Qi

) =
(
I 0
0 I

)
,

and hence also(
Q̃i

Q̃i

)(
P̃ i P̃i

)
=
(
I 0
0 I

)
.

Since KerPi = ImQi , the inclusion (53) is equivalent to ImQi ⊂ ImQ2 and
hence, by Theorem 3.3, there exists a polynomial matrixT such thatQ1 = Q2T .
Now the transposed unimodular product yields KerQ̃i = Im P̃i . We also have
Q̃1 = T̃ Q̃2, and hence the inclusion Ker̃Q2 ⊂ KerQ̃1. Thus in turn implies
Im P̃2 ⊂ Im P̃1. Thus there exists an appropriately sized polynomial matrixA
for which P̃2 = P̃1Ã. Transposing the last equality leads toP2 = AP1.
The equality (54) is equivalent to the existence ofA,B for which P2(z) =
A(z)P1(z) and P1(z) = B(z)P2(z). Thus we haveP2(z) = A(z)B(z)P2(z),
which by the left primeness ofP2 impliesA(z)B(z) = I . ThatB(z)A(z) = I

follows by a similar argument.
5. This is immediate.

An important subclass of behaviors arises when we restrict the polynomial matrix
in a kernel representation to be nonsingular. Following Willems, we say that a be-
haviorB is autonomousif it is finite dimensional as a vector space overF. We have
the following.

Proposition 3.4. The following statements are equivalent:
1. The behaviorB is autonomous.
2. B = KerD(σ) for some nonsingular polynomial matrixD(z).

3. B is equal to the rational modelXD.
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4. There exists an observable pair(C,A) for which

B = {
C(zI − A)−1ξ | ξ ∈ Fn

}
. (55)

We omit the details of the proof.

3.1. Subbehaviors

Central results in the polynomial approach to the study of linear transformations
and linear systems are the representation of submodules to the free moduleFp[z]
and the transformation of the analysis of the lattice of submodules to the arithme-
tic of factorizations of polynomial matrices. Since there is, via duality theory as in
Theorem 3.1, a bijective correspondence between behaviors inz−1Fm[[z−1]] and
submodules of the free moduleFp[z], we expect to use this correspondence for the
study of the lattice of subbehaviors of a given behavior and relate it to factorizations.
This we proceed to do, and we begin by defining subbehaviors.

We begin by defining subbehaviors.

Definition 3.2. A subsetB0 ⊂ B is called asubbehaviorif it is itself a behavior,
i.e. it is linear, shift invariant and complete.

We wish to point out that not every linear, shift invariant subspace of a behavior
is a subbehavior. Completeness is neccessary.

We can apply now Theorem 3.3 to the analysis of the lattice structure of behav-
iors, using duality as expressed in Theorem 3.2. As for submodules ofFm[z], the
geometric structure is reduced to the factorization theory of rectangular polynomial
matrices.

Theorem 3.4.
1. Given two behaviorsB1,B2 ⊂ z−1Fm[[z−1]] in kernel representationsBi =

KerPi(σ ). ThenKerP1(σ ) ⊂ KerP2(σ ) if and only if, for some polynomial ma-
trix Q(z), we haveP2(z) = Q(z)P1(z).

2. If Pi have full row rank, then KerP1(σ ) = KerP2(σ ) if and only if P2(z) =
U(z)P1(z) for some unimodular polynomial matrix U.

3. P ∈ Fp×m[z] is right prime if and only ifKerP(σ) = 0.
4. Given behaviorsBi ⊂ z−1Fm[[z−1]] in kernal representationsBi = KerPi(σ ),

then
∑k

i=1Bi is a behavior and has a kernal representation

k∑
i=1

Bi = KerR(σ), (56)

where R is a l.c.l.m of thePi.

5. Given behaviorsBi ⊂ z−1Fm[[z−1]] in kernel representationsBi = KerPi(σ ),

then
⋂k

i=1Bi is a behavior and has a kernel representation
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k⋂
i=1

Bi = KerQ(σ), (57)

where Q is a g.c.r.d. of thePi.

Proof. Follows by duality from Theorem 3.3.�

The previous results are not new, see Oberst [1990]. Theorem 3.4.1 is due to
Hinrichsen and Prätzel-Wolters [1980b]. Next we analyze image representation of
behaviors.

Definition 3.3. We say that a behaviorB has animage representationif, for some
polynomial matrixQ ∈ Fm×l[z], we have

B = ImQ(σ). (58)

We can state next the following.

Proposition 3.5.
1. GivenQ ∈ Fm×l[z]. ThenImQ(σ) is a behavior.
2. LetQ ∈ Fm×l[z], and letR ∈ F l×l[z] be nonsingular. Then

Im(QR)(σ ) = ImQ(σ). (59)

3. LetQ ∈ Fm×l[z]. Then there exists a right prime polynomial matrixQ ∈ Fm×k

[z] for whichImQ(σ) = ImQ(σ).

4. LetP ∈ Fm×l[z]. Then

ImP(σ) = z−1Fm[[z−1]] (60)

if and only if P has full row rank.
5. GivenP ∈ Fk×m[z] left prime andM ∈ Fm×l[z] right prime. Then

KerP(σ) = ImM(σ)

if and only if

Im P̃ (σ ) = KerM̃(σ ).

Proof. ClearlyB = ImQ(σ) is a submodule ofz−1Fm[[z−1]]. Indeed, for anyh ∈
z−1Fm[[z−1]], we haveσQ(σ)h. ThatB is a linear space is obvious. To see closure
it suffices to note that

ImQ(σ) = (KerQ̃(z))⊥.
This follows from the following computation:

[Q(σ)h, f ] = [π−Q(z)h, f ] = [h, Q̃(z)f ].
All other statements now follow from Proposition 3.3.�
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3.2. Doubly unimodular embeddings

We proceed to prove a proposition that is the analog, in the behavioral setting
of the doubly coprime factorizations the play such an important role in standard
system theory. The importance is due to the fact, already apparent in the statement
and its proof, that they provide the key to many duality results. For the use of doubly
coprime factorizations in different settings, see Fuhrmann and Ober [1993] as well
as Fuhrmann [1994].

Given a pair of polynomial matricesK2, L1 we say that there exists adoubly
unimodular embedding, if there exist polynomial matricesK1, L2 such that(

K1(z)

K2(z)

) (
L1(z) L2(z)

) =
(
I 0
0 I

)
, (61)

with both matrices on the left unimodular.
We start with a simple lemma, generalizing a well known result for linear trans-

formations.

Lemma 3.1. LetP(z) ∈ Fp×m[z]. We considerP(z) as a multiplication map from
Fm(z) into Fp(z) which is clearlyF(z)-linear. ThenKerP(z) and ImP(z) are lin-
ear subspaces ofFm(z) and Fp(z) respectively. Both carry also a naturalF [z]
module structure. Moreover:
1. We have

m = dim KerP + dim ImP. (62)

2. Given a nonsingular polynomial matrixR ∈ Fm×m[z], then

ImP(z) = ImP(z)R(z). (63)

Proof.
1. Follows from the fact thatFm(z) is a finite dimensional vector space over the

field F(z) of rational functions and the multiplication operatorP(z) is F(z)-
linear.

2. SinceR(z) is nonsingular, the corresponding multiplication operator inFm(z)

is invertible. �

Lemma 3.2. Given a pair of polynomial matricesK2, L1. Then:
1. There exists a doubly unimodular embedding if any only ifK2 is left prime, L1

right prime and

KerK2(z) = ImL1(z). (64)

2. There exists a doubly unimodular embedding forK2 andL1 if and only if there
exists a doubly unimodular embedding for(

K2(z) 0
0 I

)
and

(
L1(z)

0

)
.
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3. Given polynomial matrices satisfying

N2M1 = M2N1, (65)

withM1,M2 square and nonsingular. Then a doubly unimodular embedding for(− N2 M2
)
,

(
M1
N1

)
exists if and only ifM1, N1 are right coprime andM2, N2 are left coprime.

Proof.
1. If (61) is a doubly unimodular embedding, then clearlyK2 is left prime and

L1 right prime. The equalityK2(z)L1(z) = 0 implies KerK2(z) ⊃ ImL1(z).
Moreover, the assumption that all matrices in (61) are unimodular implies(

L1 L2
) (K1

K2

)
= I.

Assumingf ∈ KerK2, we have

f = (
L1 L2

) (K1f

K2f

)
= L1(K1f ) ∈ ImL1(z).

So KerK2(z) ⊂ ImL1(z) and (64) follows.
Conversely, assumeK2 is left prime,L1 right prime and (64) holds. LetL′

2 be a
polynomial right inverse ofK2 andK1 a polynomial left inverse ofL1. Thus(

K1
K2

) (
L1 L′

2

) =
(
I Q

0 I

)
.

We defineL2 = L′
2 − L1Q. For concreteness, assumeLi ∈ Fµ×λi [z], i.e.(

K1
K2

) (
L1 L2

) =
(
Iλ1 0
0 Iλ2

)
. (66)

It remains to show that both matrices on the left are unimodular. Since the
multiplication map(L1 L2) : Fλ1+λ2[z] → Fµ[z] has a left inverse, it is in-
jective and so are the multiplication maps given byL1, L2. So rank ImLi =
λi . Note also that, sinceK2L2 = Iλ2,K2 : Fµ[z] → Fλ2[z] is surjective, so
rank ImK2 = λ2. Using now Lemma 3.1, we compute

µ= rank KerK2 + rank ImK2

= rank ImL1 + rank ImK2

= λ1 + λ2.

This shows that the polynomial matrices(L1 L2) and
(
K1
K2

)
are both square and

hence, by (66), necessarily unimodular.
2. Assume there exists a doubly unimodular embedding forK2, L1 of the form(

K1
K2

) (
L1 L2

) =
(
I 0
0 I

)
. (67)
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ThenK1 0
K2 0
0 I

(L1 L2 0
0 0 I

)
=
I 0 0

0 I 0
0 0 I

 (68)

which is clearly a doubly unimodular embedding for(
K2(z) 0

0 I

)
and

(
L1(z)

0

)
.

Conversely, if a doubly unimodular embedding exists for(
K2(z) 0

0 I

)
and

(
L1(z)

0

)
,

it is necessarily of the form (68). Eliminating the third rows and columns, we
obtain (67).

3. Clearly, if a doubly unimodular embedding for(−N2 M2),
(
M1
N1

)
exists, then

necessarily the coprimeness conditions hold.
To prove the converse, we note that (65) implies the coprime factorizations
N1M

−1
1 = M−1

2 N2. From equality (65) we immediately obtain the inclusion

Im

(
M1
N1

)
⊂ Ker

(−N2 M2
)
.

To prove the reverse inclusion, assume
(
f1
f2

) ∈ Ker(−N2 M2), i.e.N2f1 = M2f2.

From this it follows thatf2 = M−1
2 N2f1 = N1M

−1
1 f1. Definingg = M−1

1 f1,
we have(

f1
f2

)
∈ Ker

(−N2 M2
) =

(
M1
N1

)
g ∈ Im

(
M1
N1

)
.

So

Ker
(−N2 M2

) ⊂ Im

(
M1
N1

)
⊂ Ker

(−N2 M2
)
,

and equality follows. �

Proposition 3.6. Let
(
M1
M2

)
be ap × k right prime polynomial matrix. Let (N1 N2)

be a left prime polynomial matrix satisfying

Ker
(
N1(z) N2(z)

) = Im

(
M1(z)

M2(z)

)
. (69)

Then:
1. There exist unimodular extensions of both matrices that satisfy(

V1(z) V2(z)

N1(z) N2(z)

)(
M1(z) U1(z)

M2(z) U2(z)

)
=
(
I 0
0 I

)
. (70)

We call such an extension adoubly unimodular extension.
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2. We have also(
M1(z) U1(z)

M2(z) U2(z)

)(
V1(z) V2(z)

N1(z) N2(z)

)
=
(
I 0
0 I

)
. (71)

3. (a) M1 is a left prime polynomial matrix if and only ifN2 is.
(b) M2 is a left prime polynomial matrix if and only ifN1 is.
(c) V1 is a left prime polynomial matrix if and only ifU2 is.
(d) U1 is a left prime polynomial matrix if and only ifV2 is.

4. We have(
M̃1(z) M̃2(z)

Ũ1(z) Ũ2(z)

)(
Ṽ1(z) Ñ1(z)

Ṽ2(z) Ñ2(z)

)
=
(
I 0
0 I

)
(72)

and(
Ṽ1(z) Ñ1(z)

Ṽ2(z) Ñ2(z)

)(
M̃1(z) M̃2(z)

Ũ1(z) Ũ2(z)

)
=
(
I 0
0 I

)
. (73)

We refer to the above as thedual doubly unimodular extension.
5. N1 has full column rank if and only ifM2 has.
6. N1 is nonsingular if and only ifM2 is.
7. N1 is a right prime polynomial matrix if and only ifM2 is.

Proof.
1. By the right primeness of(

M1(z)

M2(z)

)
,

there exist appropriately sized polynomial matricesV1, V2 such thatV1(z)M1(z)

+ V2(z)M2(z) = I . Similarly, there existU ′
1, U ′

2 such thatN1(z)U
′
1(z) + N2(z)

U ′
2(z) = I . LetV1(z)U

′
1(z) + V2(z)U

′
2(z) = Q(z). Defining(

U1(z)

U2(z)

)
=
(
U ′

1(z)

U ′
2(z)

)
−
(
M1(z)

M2(z)

)
Q(z),

the factorization (70) follows.
2. That (71) follows from (70) is clear.
3. AssumeM1 has full row rank. IfN2 does not have full row rank, we can apply a

unimodular matrix on the left so that

U
(
N1 N2

) =
(
N11 N12
N21 0

)
and this implies(

N11 N12
N21 0

)(
M1
M2

)
=
(

0
0

)
.

Now N21M1 = 0 together with the assumption thatM2 has full row rank yield
N21 = 0. This contradicts the assumption that(N1 N2) is left prime. So neces-
sarilyN2 has full row rank.
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Conversely, assumeN2 has full row rank. We apply the first part to the equality(
M2 U2

) (V2
N2

)
= 0 (74)

that follows from (71). This impliesM1 has full row rank.
4. Assume thatM1(z) is left prime. Then there exists a polynomial matrixM

7
1 such

thatM1M
7
1 = I . Computing

(
N1 N2

) (M1M
7
1

M2M
7
1

)
= (

N1 N2
) ( I

M2M
7
1

)
which leads toN1 = −N2M2M

7
1. This in turn implies(

N1 N2
) = N2

(
−M2M

7
1 I

)
.

This shows thatN2 is left prime.
Conversely, assume thatN2 is left prime. Again, applying the first part to (74)
yields the left primeness ofM1(z).

5. Follows by transposing the equalities (70) and (71) respectively.
6. Follows from Part 3 using the duality provided by the dual doubly unimodular

extensions.
7. Follows from Part 3(a) using the duality provided by the dual doubly unimodular

extensions. �

A special case of Proposition 3.6 has been proved by Kuijper [1992,1994], see
Lemma 3.24. Other results have been obtained independently by Bisiacco and Val-
cher [2001].

Proposition 3.7. Let P(z) ∈ Fp×m[z] be left prime. ConsiderFp((z−1)) as a p-
dimensional vector space over the fieldF((z−1)) of truncated Laurent series. LetV
be the subspace defined by

V = KerP(z) = {
h ∈ Fp((z−1)) |P(z)h = 0

}
. (75)

Let
(
P
P1

)
be a unimodular completion with inverse(Q1 Q). Then

V = KerP(z) = ImQ(z) = Q(z)Fm−p((z−1)). (76)

Proof. SinceP(z)Q(z) = 0 we clearly have KerP(z) ⊃ Q(z)Fm−p((z−1)).
Conversely, leth ∈ KerP(z). We have

h = (
Q1 Q

) (P

P1

)
h = Q1Ph + QP1h = Q1f1 + Qf2.

Applying P to this equality we obtain, withh1 = Q1f1,

0 = Ph = PQ1f1 + PQf2 = PQ1f1 = f1.
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Soh = Qf2 ∈ Q(z)Fm−p((z−1)). �

Remarks.
1. An analogous result holds true if the fieldF((z−1)) is replaced by the field of

rational functionsF(z).
2. The polynomial matrixQ in the representation (76) is uniquely determined up to

a right unimodular factor. Thus without loss of generality, we can assumeQ to
be column proper with column indicesδ1 � · · · � δm−p.

4. Behavior homomorphisms

In this section we introduce and study the very natural concept of behavior homo-
morphism. It seems that, in most of the literature on behaviors, the biggest missing
item is indeed the study of these homomorphisms. At least as far as this author
is concerned, the principal insight that was needed to gain a better understand-
ing of behaviors is the fact that a behavior can be looked at as a generalization
of a rational model, introduced in Fuhrmann [1976] and reviewed in Section 2.
Given a nonsingular polynomial matrixD, the rational modelXD given byXD =
{h ∈ z−1Fm[[z−1]]|Dh ∈ Fm[z]} = KerD(σ). As we saw in Proposition 3.4, ratio-
nal models are identical to a subclass of behaviors, specifically to the subclass of
autonomous behaviors.

Now a rational modelXD is isomorphic to the polynomial modelXD via a sim-
ple multiplication map (17). Thus the isomorphism of two polynomial models can
be translated into the isomorphism of the corresponding rational models. However,
the isomorphisms between polynomial models have been characterized in Fuhrmann
[1976] and are quoted in Theorem 2.4. These results are easily translated to the
setting of rational models. To this end, let us consider two nonsingular polynomi-
al matricesD,D. If Z : XD → XD is anF [z]-module homomorphism, thenZ :
XD → XD defined byZf = D2ZD−1

1 f , with f ∈ XD is given byZf = πD2Nf

and the intertwining relationND = DN holds for some polynomial matricesN,N .
Now, forh ∈ XD, we have

Zh =D
−1

ZDh = D
−1

πDNDh

=D
−1

Dπ−D
−1

NDh = π−Nh

=N(σ)h

orZh = N(σ)h, withND = DN holding. Thus a homomorphismZ : KerD(σ) →
KerD(σ) is given by a Toeplitz map of the formTN = N(σ) restricted toXD =
KerD(σ). The invertibility properties ofZ are the same as forZ. Hence, using the
results of Fuhrmann [1976],Z is injective if and only ifN, D are right coprime andZ
is surjective if and only ifN,D are left coprime.
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In view of this, it would not come as a great surprise if anF [z]-homomorphism
Z : KerM(σ) → KerM(σ) turns out to be of the formZ = V (σ)|KerM(σ) for
some polynomial matrixV (z), with an identity of the formU(z)M(z) = M(z)V (z)

holding. Indeed, this turns out to be the case and is the content of Theorem 4.5. We
proceed to study this problem via the use of the duality introduced in Section 2.

Applying duality considerations, it is easy to translate these results to the be-
havioral context. Given a behaviorB, it is natural to consider the mapσB which
is defined as the restriction of the (backward) shiftσ to the behavior. Given two
behaviorsBi , i = 1, 2, a behavior homomorphism is defined to be a mapZ : B1 →
B2 satisfyingZσB1 = σB2Z. Thus behavior homomorphisms are intertwining maps
and their analysis relate to the celebrated commutant lifting theorem of Sarason and
Sz.-Nagy–Foias. Thus it is expected that the method presented in this paper will be
found to be applicable in other contexts, most notably in the setting of Hardy spaces.
Some of the relevant mathematics for this can be found in Fuhrmann [1981b] and
Fuhrmann [1994].

Let the backward shift operatorS− : z−1Fm[[z−1]] → z−1Fm[[z−1]] be defined
by

S−h = σh = π−zh, h ∈ z−1Fm[[z−1]]. (77)

Definition 4.1. Given a behaviorB, we define the corresponding restricted shift
operatorSB by

SB = S−|B. (78)

If the behaviorBP is given in AR form asBP = KerP(σ), then we will write also
SP for SBP .

Next we introduce behavior homomorphisms.

Definition 4.2. Given two behaviorsB1, B2. A mapZ : B1 → B2 is a behavior
homomorphismif Z intertwinesSB1 andSB2, i.e. if

ZSB1 = SB2Z. (79)

Two behaviors areisomorphicor equivalentif there exists an invertible behavior
homomorphismZ : B1 → B2.

Clearly, behavior equivalence is an equivalence relation.
With applications to behavior theory in mind, we want to extend Theorems 2.4

and 2.5 concerning homomorphisms of polynomial and rational models and their
invertibility properties. Note that, for the case of a nonsingular polynomial matrix
D, the polynomial modelXD is isomorphic to the quotient moduleFm[z]/DFm[z],
and this quotient module is a torsion module. Similarly, the rational modelXD is
a torsion submodule ofZ−1Fm[[z−1]]. We generalize these results by dropping the
nonsingularity assumptions. AnF [z]-submoduleL of Fp[z] has a, not necessarily



332 P.A. Fuhrmann / Linear Algebra and its Applications 351–352 (2002) 303–380

unique, representation of the formL = MFm[z], with M ∈ Fp×m[z]. Given ap ×
m polynomial matrixM(z) andf ∈ Fp[z], we shall denote by[f ]M the equivalence
class off in the quotient moduleFp[z]/MFm[z]. We denote byπM the canonical
projection ofFp[z] ontoFp[z]/MFm[z], i.e.πmf = [f ]M .

Before analyzing behavior homomorphisms, we study in some detail factor mod-
ules ofFp[z]. We recall that an elementf in anyF [z]-moduleM is atorsion element
if there exists a polynomial 0/= a ∈ F [z] for which af = 0. The set of all torsion
elements inM is clearly a submoduleT which we call thetorsion submodule. The
moduleM is calledtorsion freeif T = {0}. It is well known, see Hilton and Wu
[1974, p. 174], that the factor moduleM/T is a free module. Moreover, any finitely
generated torsion free module overF [z] is a freeF [z]-module.

LetM ∈ Fp×k[z] be of full column rank. The quotient spaceFp[z]/MFk[z] has
a naturalF [z]-module structure induced by the shift operatorSM : Fp[z]/MFm[z]
→ Fp[z]/MFm[z] defined by

SM [f ]M = z · [f ]M = [zf ]M, (80)

i.e. for any polynomiala ∈ F [z], we have

a · [f ]M = [af ]M. (81)

We proceed to study factor modules ofFp[z].

Theorem 4.1. LetM ∈ Fp×k[z] be of full column rank. Let

M = ME (82)

be a factorization withM right prime and E nonsingular and nonunimodular. Then:
1. The torsion submodule ofFp[z]/MFk[z] is given byMFk[z]/MFk[z]. More-

over, we have the isomorphism

Fp[z]/MFk[z] � (Fp[z]/MFk[z])/(MFk[z]/MFk[z]) (83)

with Fp[z]/MFk[z] free.
2. The factor moduleFp[z]/MFk[z] is torsion free if and only if M is right prime.
3. The factor moduleFp[z]/MFk[z] is a torsion module if and only ifp = k, i.e.

M is square and nonsingular.

Proof.
1. The isomorphism (83) follows by standard arguments from the inclusions

Fp[z] ⊃ MFk[z] ⊃ MFk[z].
Assume first thatM = ME is a factorization withM right prime andE non-
singular and nonunimodular. We proceed to show that all elements ofMFk[z]/
MFk[z] are torsion elements. To this end, let[f ]m ∈ MFk[z]/MFk[z] are tor-
sion elements. This is equivalent to the existence ofg ∈ Fk[z] such thatf = Mg

and[f ]M = [Mg]m. Lete = detE. Then, using the identity(detE)I = E adjE,
we compute
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e[f ]M = [ef ]M = [eMg]M = [Meg]M
= [ME(adjEg)]M = [M(adjEg)]M = 0.

So[f ]M is a nonzero torsion element.
Conversely, letM⊂Fp[z] be the set of allf ∈ Fp[z] for which [f ]M is a
torsion element ofFp[z]/MFk[z]. ClearlyM is a submodule ofFp[z] which
containsMFk[z]. As a submodule, it has a representation of the formM =
MFl[z] for somep × l polynomial matrixM of full column rank. The inclu-

sionMFk[z] ⊂MFl[z], with MFk[z] andMFl[z] free submodules of rankk
and l respectively, impliesk � l as well as a factorizationM = ME with E ∈
F l×k[z]. The torsion submodule ofFp[z]/MFk[z] is thereforeMFk[z]/MFk[z].
Moreover, an isomorphism result for modules implies the isomorphism

Fp[z]/MF l[z] � (Fp[z]/MFk[z])/(MF l[z]/MFk[z]). (84)

We show now that the right primeness ofM implies thatFp[z]/MFk[z] is tor-
sion free. In fact if[f ]M is a torsion element ofFp[z]/MFk[z], then for some
nonzeroa ∈ F [z] andg ∈ Fk[z], we haveaf = Mg. SinceM is right prime, it
has a polynomial left inverseM7. Applying it to the equalityaf = Mg, we get
g = M7(af ) = aM7f . Soaf = Mg = M(aM7f ) = a(Mf ) with f = M7f .
Sincea is nonzero, we havef = Mf and hence[f ]M = 0 contrary to our as-
sumption that[f ]M is a nonzero element. Thus we have the inclusionMFk[z] ⊃
M = MFl[z]. Since both modules are free, of ranksk and l respectively, we

must havek = l. The two factorizationsM = ME andM = ME imply now
thatE is also nonsingular andE andE differ by at most a left unimodular factor.

So, without loss of generality, we can assumeE = E andM = M.
2. Follows from Part 1.
3. AssumeM is nonsingular. In particulark = p. In this caseM = I in the factor-

ization (82) and the torsion submodule is equalFp[z]/MFp[z].
Conversely, assume the factor moduleFp[z]/MFk[z] is a torsion module. This
impliesFp[z] = MFk[z]. Necessarilyk = p andM is unimodular, which with-
out loss of generality can assume to beI. SoM, being square and of full column
rank, is necessarily nonsingular.�

We proceed to study the module homomorphisms of polynomial factor modules.

Theorem 4.2. LetM ∈ Fp×m[z] andM ∈ Fp×m[z] be of full column rank. Then:
1. Z : Fp[z]/M(z)Fm[z] → Fp[z]/M(z)Fm[z] is anF [z]-homomorphism if and

only if there existU ∈ Fp×p[z] andU ∈ Fm×m[z] such that

UM = MU (85)

and

Z[f ]M = [Uf ]M. (86)
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2. The map dual to Z is the mapZ∗ : KerM̃(σ ) → KerM̃(σ ) given by

Z∗ = Ũ (σ ). (87)

Proof.
1. If Z is defined as above, then we have

ZSM [f ]M = Z[zf ]M = [Uzf ]M = [zUf ]M = SM [Uf ]M = SMZ[f ]M,

i.e.Z is anF [z]-homomorphism.
Define the mapZ1 : Fp[z] → Fp[z]/M(z)Fm[z] by Z1f = Z[f ]M for f ∈
Fp[z]. Clearly

Z1S+f = Z1[zf ]M = [Uzf ]M = [zUf ]M = SM [Uf ]M = SMZ1f,

i.e.

Z1S+ = SMZ1. (88)

Let e1, . . . , ep be the standard basis elements inFp. Let Z1ei = [ui]M with
ui ∈ Fm[z]. Theui are fixed but not uniquely determined. LetU be thep × m

polynomial matrix whose columns are theui . It is easy to check that by defining
Z : Fp[z] → Fp[z] via Zf = Uf for f ∈ Fp[z] we have obtained (86).
Finally, since we haveZπM = πMZ, it follows that Z KerπM ⊂ KerπM , or
ZM(z)Fp×m[z] ⊂Fp×m[z]. This, by a standard argument, implies the existence
of a polynomial matrixU for which (85) holds.

2. Givenf ∈ Fp[z] andh ∈ KerM̃(σ ), we compute

[Z[f ]M, h] = [[Uf ]M, h] = [Uf, h] = [f, Ũh]
= [π+f, Ũh] = [f, π−Ũh] = [f, Ũ(σ )h]
= [[f ]M,Z∗h],

or Z∗ = Ũ (σ ). �

We proceed to analyze the invertibility of the module homomorphisms character-
ized by Theorem 4.2.

Theorem 4.3. LetM ∈ Fp×m[z] andM ∈ Fp×m[z] be of full column rank. LetZ :
Fp[z]/M(z)Fm[z] → Fp[z]/M(z)Fm[z] be an F [z]-homomorphism defined by
(86) with (85) holding for someU ∈ Fp×p[z] andU ∈ Fm×m[z]. Then:
1. Z is injective if and only ifU,M are right coprime and

Ker
(−U(z) M(z)

) = Im

(
M(z)

U(z)

)
. (89)

2. Z is surjective if and only ifU,M are left coprime.
3. Z as defined above is the zero map if and only if, for some appropriately sized

polynomial matrixV (z), we have
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U(z) = M(z)V (z). (90)

4. Z is invertible if and only if there exists a doubly unimodular embedding(
X −Y

−U M

)(
M Y

U X

)
=
(
I 0
0 I

)
(91)

of(−U(z) M(z)
)

and

(
M(z)

U(z)

)
.

5. If Z is invertible, then in terms of the doubly unimodular embedding(91), Z−1 :
Fp[z]/M(z)Fm[z] → Fp[z]/M(z)Fm[z] is given by

Z−1[g]M = −[Yg]M. (92)

Proof.
1. AssumeU,M are right coprime and (63) holds. By Lemma 3.2, there exists a

doubly unimodular embedding (91). Let[f ]M ∈ KerZ, i.e. [Uf ]M = 0. This
implies the existence of a polynomial vectorg satisfying

Uf = Mg or
(−U(z) M(z)

) (f
g

)
= 0.

Since(
f

g

)
∈ Ker

(−U(z) M(z)
)

and (63) holds, there exists a rational functionh for which(
f

g

)
=
(
M

U

)
h. (93)

We use now the Bezout equationXM − YU = I to obtainh = Xf − Yg, which
shows thath is actually a polynomial vector. From (93) we obtainf = Mh and
hence[f ]M = 0, i.e.Z is injective.
Conversely, assume the mapZ defined in (86) is injective. Clearly, as by as-
sumptionM has full column rank, so has

(
M
U

)
. If

(
M
U

)
is not right prime, we can

write(
M

U

)
=
(
M1
U1

)
R

for some, nonsingular and nonunimodular, polynomial matrixR. Let 0 /= g ∈
XR, i.e.g = Rh for some strictly properh. Letf = M1g. We show that[f ]M /=
0. Indeed,[f ]M = 0 if and only iff = Mg for some polynomial vectorg. Thus

f = Mg = M1Rg = M1g = M1Rh = Mh

or M(g − h) = 0. Now M has full column rank and hence KerM(z) = 0. This
impliesg = h = 0, contradicting our assumption thatg /= 0. Next we compute
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[Uf ]M = [UM1g]M = [UM1Rh]M = [UMh]M
= [MUh]M = [MU1Rh]M = [M(U1g)]M
= 0,

i.e.Z is not injective.
Next we show the necessity of condition (63). The intertwining conditionUM =
MU shows that

Ker
(−U(z) M(z)

) ⊃ Im

(
M(z)

U(z)

)
.

Hence we have the constraint(p + k) − p � k. Note now that the homomor-
phismZmaps to torsion elements into torsion elements. LetM = M0E andM =
M0E be factorizations withE,E nonsingular and nonunimodular andM0,M0
right prime. ThereforeZ induces an injective mapZ : Fp[z]/M0F

k[z] →
Fp[z]/M0F

k[z] between the free modules. These modules have rankp − k and
p − k respectively. Since ImZ is a free submodule ofFp[z]/M0F

k[z], we have
p − k ≤ p − k. The two constraints imply the equality(p + k) − p = k and as
a result (63) holds.

2. AssumeU,M are left coprime. Thus there exist polynomial matricesX, Y for
which the Bezout equationMX − UY = I is satisfied, Letg ∈ Fp[z]. Then
g = MXg − UYg and hence[g]M = [U(−Yg)]M = [Uf ]M , with f = −Yg.
Thus the mapZ is clearly surjective.
Conversely, we show that ifU,M are not left coprime, then the mapZ is not sur-
jective. Indeed, ifU,M are not left coprime then there exists a nonsingular, non-
unimodular polynomial matrixRsuch that(−U(z) M(z))=R(−U1(z) M1(z)).
(Note that if(−U(z) M(z)) does not have full row rank, we can find suchR of
arbitrary degree). SinceR is nonunimodular,RFp[z] is a proper submodule of
Fp[z]. Choose ag ∈ Fp[z] but not inRFp[z]. We claim that[g]M /∈ ImZ. To
see this, assume the contrary, i.e. that there existsf ∈ Fp[z] for which

Z[f ]M = [Uf ]M = [RU1f ]M = [g]M.

This means thatg − RU1f ∈ MFm[z] = RM1F
m[z], or g ∈ R(U1F

m[z] +
M1F

m[z])⊂RFp[z], contrary to our choice ofg.
3. If (90) holds, then for every[f ]M ∈ Fp[z]/M(z)Fm[z] we haveZ[f ]M =

[Uf ]M = [M(Vf )]M = 0.
Conversely, ifZ[f ]M = 0 for every[f ]M ∈ Fp[z]/M(z)Fm[z], then for every
f ∈ Fp[z] we haveUf ∈ MFm[z]. This implies the factorization (90).

4. Follows from Parts 1 and 2, as the two coprimeness conditions and (63) are
equivalent, by Lemma 3.2, to the existence of a doubly unimodular embedding
(91).

5. Let W : Fp[z]/M(z)Fm[z] → Fp[z]/M(z)Fm[z] be given by W [g]M =
−[Yg]M . From the doubly unimodular embedding (91) we have two Bezout
equationsMX − YU = I andMX − UY = I . Using the first equation, we com-
pute
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[f ]M = [(MX − YU)f ]M = [MXf ]M − [YUf ]M = −[YUf ]M
= W [Uf ]M = WZ[f ]M,

i.e.WZ = I . Similarly,

[g]M = [(MX − UY)g]M = [MXg]M − [UYg]M = −[UYg]M
= z[Ug]M = ZW [g]M

or ZW = I andW = Z−1. �

The source of asymmetry in the first two statements of the theorem is the fact that
we are dealing with rectangular polynomial matrices. In the case of two nonsingular
polynomial matrices, condition (63) is an immediate consequence of the coprimeness
conditions. This was proved in Lemma 3.2. The following corollary was proved in
Fuhrmann [1976].

Corollary 4.1. LetT1 ∈ Fm×m[z], T2 ∈ Fp×p[z] be nonsingular and let

N2T1 = T2N1. (94)

Then the mapZ : Fm[z]/T1F
m[z] → Fp[z]/T2F

p[z] is invertible if and only if
N1, T1 are right coprime andN2, T2 are left coprime.

Proof. The necessity of the coprimeness conditions follows from Theorem 4.3. To
prove sufficiency, in view of the assumed coprimeness conditions, it suffices to show
that

Ker
(
N2(z) T2(z)

) = Im

(
T1(z)

N1(z)

)
.

Clearly, we have the inclusion

Im

(
T1(z)

−N1(z)

)
⊂ Ker

(
N2(z) T2(z)

)
.

To prove the converse inclusion, assumefi are rational vector functions with(
f1
f2

)
∈ Ker

(
N2(z) T2(z)

)
,

i.e.N2f1 + T2f2 = 0. Noting that (94) impliesT −1
2 N2 = N1T

−1
1 , we compute

f2 = −T −1
2 N2f1 = −N1T

−1
1 f1.

Settingg = T −1
1 f1, we havef1 = T1g andf2 = −N1g, or(

f1
f2

)
=
(
T1(z)

N1(z)

)
g ∈ Im

(
T1(z)

−N1(z)

)
. �
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As a corollary to Theorem 4.3, we get the structure theorem for finitely generated
modules overF [z].

Theorem 4.4. Every finitely generated moduleM over F [z] is isomorphic to a
direct sum of cyclic modules and a finitely generated free module overF [z], i.e. we
have

M � F [z]/d1F [z] ⊕ · · · ⊕ F [z]/dkF [z] ⊕ F (p−k)[z], (95)

with di, i = 1, . . . , k, nonzero polynomials satisfyingdi |di−1 for i = 2, . . . , k.

Proof. Let M be a finitely generated module overF [z] and lete1, . . . , ep be a set
of generators forM. Define a mapφ : Fp[z] → M by

φ

f1
...

fp

 =
p∑

i=1

fiei . (96)

Clearlyφ is a surjectiveF [z] homomorphism. Since Kerφ is a submodule ofFp[z],
it has a representation Kerφ = MFk[z] for somep × k polynomial matrixM of full
column rank. Thus we have the isomorphismM � Fp[z]Kerφ = Fp[z]/MFk[z].
From Theorem 4.3 it follows that ifU,Vare appropriately sized unimodular matrices,
thenFp[z]/MFk[z] � Fp[z]/UMVFk[z]. Hence, without loss of generality, we
can assume thatM is in its Smith form, i.e.

M =



m1 0 · · ·
0 · · · ·
· · · · ·
· · · · 0
· · · · mk

0 · · · 0
· · · · ·
· · · · ·
· · · · ·
0 · · · 0


,

with mi , i = 1, . . . , k, the invariant factors ofM. From this the isomorphism (95)
follows with r = p − k. �

We note thatr = codim ImP(z) with P(z) the multiplication operator from
Fm(z) into Fp(z).

Corollary 4.2. Given appropriately sized polynomial matricesM,M,N,N with
M,M of full row rank. Then there exists a doubly unimodular embedding for(− N M

)
,

(
M

N

)
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if and only ifM,M have the same nontrivial invariant factors andcodimM(z) =
codimM(z).

The composition of two invertibleF [z]-homomorphisms is an invertibleF [z]-
homomorphism. The following proposition investigates the corresponding doubly
unimodular embedding.

Proposition 4.1. LetMi ∈ Fpi×mi [z], i = 1, 2, 3, be of full column rank. LetZ1 :
Fp1[z]/M1(z)F

m1[z] → Fp2[z]/M2(z)F
m2[z] be an invertible F [z]-homo-

morphism defined by

Z1[f ]M1 = [U2f ]M2 (97)

corresponding to the doubly unimodular embedding(
X1 −Y 1

bu2 M2

)(
M1 Y2
U1 X2

)
=
(
I 0
0 I

)
,

(
M1 Y2
U1 X2

)(
X1 −Y 1

bu2 M2

)
=
(
I 0
0 I

)
,

(98)

and Z2 : Fp2[z]/M2(z)F
m2[z] → Fp3[z]/M3(z)F

m3[z] be an invertibleF [z]-ho-
momorphism defined by

Z2[g]M2 = [U3g]M3 (99)

corresponding to the doubly unimodular embedding(
X2 −Y 2

bu3 M3

)(
M2 Y3
U2 X3

)
=
(
I 0
0 I

)
,

(
M2 Y3
U2 X3

)(
X2 −Y 2

bu3 M3

)
=
(
I 0
0 I

)
.

(100)

ThenZ = Z2Z1 : Fp1[z]/M1(z)F
m1[z] → Fp3[z]/M3(z)F

m3[z] defined by

Z[f ]M1 = [U3U2f ]M3 (101)

is also an invertibleF [z]-homomorphism and it corresponds to the doubly unimod-
ular embedding(

X1 − Y 1X2U2 Y 1Y 2

−U3U2 M3

)(
M1 −Y2Y3
V2V1 X3 − V2X2Y3

)
=
(
I 0
0 I

)
,

(
M1 −Y2Y3
V2V1 X3 − V2X2Y3

)(
X1 − Y 1X2U2 Y 1Y 2

−U3U2 M3

)
=
(
I 0
0 I

)
.

(102)

Proof. From the identitiesU2M1 = M2V1 andU3M2 = M3V2, we obtain(U3U2)

M1 = M3(V2V1). We also have

Z2Z1[f ]M1 = Z2[U2f ]M2 = [U3U2f ]M3.
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So, to complete the proof, we show, using Theorem 4.3, that(− U3U2 M3
)
,

(
M1
V2V1

)
have a doubly unimodular embedding. The doubly unimodular embeddings (98) and
(100) yield 16 relations which we use in the rest of the proof. We begin by checking
the first Bezout equation

(−U3U2)(−Y2Y3) + M3(X3 − V2X2Y3)

= M3X3 + U3U2Y2Y3 − M3V2X2Y3

= M3X3 + U3U2Y2Y3 − U3M2X2Y3

= M3X3 + U3(U2Y2 − M2X2)Y3

= M3X3 − U3Y3 = I.

We proceed to check the other Bezout equation

(X1 − Y 1X2U2)M1 + (Y 1Y 2)(V2V1)

= X1M1 − Y 1X2M2V1 + Y 1Y 2V2V1

= X1M1 − Y 1(X2M2 − Y 2V2)V1

= X1M1 − Y 1V1 = I.

Finally we calculate

(X1 − Y 1X2U2)Y2Y3 − Y 1Y 2(X3 − V2X2Y3)

= X1Y2Y3 − Y 1X2U2Y2Y3 − Y 1Y 2X3 + Y 1Y 2V2X2Y3

= Y 1X2Y3 − Y 1X2U2Y2Y3 − Y 1X2Y3 + Y 1Y 2V2X2Y3

= Y 1(X2 − X2U2Y2 − X2 + Y 2V2X2)Y3

= Y 1(X2 − X2U2Y2 − X2 + (X2M2 − I )X2)Y3

= Y 1(−X2U2Y2 − X2 + X2M2X2)Y3

= Y 1X2(−U2Y2 − I + M2X2)Y3 = 0.

The other relations in (102) are checked similarly.�

Given ap × m polynomial matrixM, then KerM(σ) is a submodule ofz−1

Fm[[z−1]]. We define the restricted shift mapSM : KerM(σ) → KerM(σ) by
SMh = π_zh = σh. By a judicious use of duality we can state the analog of
Theorem 2.6.

Theorem 4.5. Let M ∈ Fp×m[z] and M ∈ Fp×m[z] be of full row rank. Then
KerM(σ) is an F [z]-submodule ofz−1Fm[[z−1]] and KerM(σ) is an F [z]-sub-
module ofz−1Fm[[z−1]]. MoreoverZ : KerM(σ) → KerM(σ) is anF [z]-homo-
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morphism, i.e. satisfiesZSM = SMZ, if and only if there existU ∈ Fp×p[z] and U
in Fm×m[z] such that

U(z)M(z) = M(z)U(z) (103)

and

Zh = U(σ)h, h ∈ KerM(σ). (104)

Proof. Leth ∈ KerM(σ). ThenM(σ)(σh) = σ(M(σ)h) = 0, i.e.σh ∈ KerM(σ)

which shows that it is a submodule. Similarly for KerM(σ).
Let Z be defined by (104), with (103) holding. Then, forh ∈ KerM(σ),M(σ)Zh

= M(σ)(U(σ)h) = U(σ)(M(σ)h) = 0, i.e.Zh ∈ KerM(σ). Moreover, we com-
pute

ZSMh = U(σ)σh = σU(σ)h = SMZh,

that isZ is anF [z]-homomorphism.
Conversely, assumeZ : KerM(σ) → KerM(σ) is anF [z]-homomorphism. For

a linear spaceX and a subspaceV ⊂ X, we have the isomorphismV∗ � X∗/V⊥.
We note that

(KerM(σ))⊥ = M̃(z)Fp[z],
and this leads to

(KerM(σ))∗ = Fm[z]/M̃Fp[z]. (105)

The identityZSM = SMZ leads toZ∗S
M̃

= S
M̃
Z∗, that isZ∗ is anF [z]-module

homomorphism. By Theorem 4.2, there exist polynomial matricesU ∈ Fp×p and

U ∈ Fm×m, satisfyingŨM̃ = M̃Ũ , which is equivalent to (103), and for which

Z∗[f ]
M̃

= [f ]
M̃
.

We can easily check now that necessarilyZ : KerM(σ) → KerM(σ) is given by
(104). �

Note that we cannot expect a direct proof of this, as we have to use completeness
and the easiest, maybe the only way, to do this is by using duality, i.e. the fact that
(⊥V )⊥ = V as in Proposition 3.2 and Theorem 3.1.

Both Theorems 4.2 and 4.5 have an interpretation as lifting homomorphism re-
sults. Theorem 4.2 can be restated as follows.

Theorem 4.6. LetM ∈ Fp×m[z] andM ∈ Fp×m[z] have full row rank.
Then anyF [z]-homomorphismZ : Fp[z]/M(z)Fm[z] → Fp[z]/M(z)Fm[z] can

be lifted to anF [z]-homomorphismZ : Fp[z] → Fp[z] such that the following
diagram is commutative:
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HereπM is the canonical projection defined by

πMf = [f ]M, f ∈ Fp[z]. (106)

Proof. For the homomorphismZ given by (104), we defineZf = Uf for f ∈
Fp[z]. �

In much the same way, Theorem 4.5 can be restated as follows.

Theorem 4.7. LetM ∈ Fp×m[z] andM ∈ Fp×m[z] be nonsingular. Then anyF [z]-
homomorphism,Z : KerM(σ) → KerM(σ) can be lifted to anF [z]-homomorphism
Z : z−1Fm[[z−1]] → z−1Fm[[z−1]] such that the following diagram is commuta-
tive:

HereiM andiM are the natural embedding maps.

Proof. DefineZ = V (σ). �

Next we discuss the invertibility properties of behavior homomorphisms.

Theorem 4.8. Given two full row rank polynomial matricesM ∈ Fp×m[z],M ∈
Fp×m[z] describing the behaviorsB = KerM(σ) andB = KerM(σ) respectively.
LetU,U be appropriately sized polynomial matrices satisfying

U(z)M(z) = M(z)U(z), (107)
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and letZ : KerM(σ) → KerM(σ) be defined by

Zh = U(σ)h = π_Uh, h ∈ KerM(σ). (108)

Then:
1. Z is injective if and only ifM,U are right coprime.
2. Z is surjective if and only ifU,M are left coprime and

Ker
(−Ũ (z) M̃(z)

) = Im

(
M̃(z)

Ũ(z)

)
. (109)

3. Z as defined above is the zero map if and only if, for some appropriately sized
polynomial matrixL(z), we have

U(z) = L(z)M(z). (110)

4. Z defined in(108) is invertible if and only if there exists a doubly unimodular
embedding(

X −Y

−U M

)(
M Y

U X

)
=
(
M Y

U X

)(
X −Y

−U M

)
=
(
I 0
0 I

)
(111)

of(−U(z) M(z)
)

and

(
M(z)

U(z)

)
.

5. If Z is invertible, then in terms of the doubly unimodular embedding(61), its
inverseZ−1 : KerM(σ) → KerM(σ) is given by

Z−1 = −Y (σ). (112)

Proof.
1. Transposing (107), we havẽUM̃ = M̃Ũ . The left invertibility ofZ is equivalent,

by Theorem 4.2, to the right invertibility ofZ∗ : Fm[z]/M̃Fp[z] → Fm[z]/
M̃Fp[z] given by

Z∗[f ]
M̃

= [Ũf ]
M̃
, [f ]

M̃
∈ Fm[z]/M̃Fp[z]. (113)

Applying Theorem 4.3, this in turn is equivalent to the left coprimeness ofŨ , M̃,
hence to the right coprimeness ofU,M.

1. The right invertibility ofZ is equivalent, again by Theorem 4.2, to the left invert-
ibility of Z∗ defined in (113). Applying Theorem 4.3, this in turn is equivalent

to the right coprimeness of̃M andŨ together with the condition

Ker
(−Ũ (z) M̃(z)

) = Im

(
M̃(z)

Ũ(z)

)
.

The statement now follows.
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2. We use the fact thatZ = 0 if and only ifZ∗ = 0.
3. Follows from Parts 1 and 2 as in the proof of Theorem 4.3.
4. We use the fact that(Z∗)−1 = (Z−1)∗. �

Proposition 4.1 has a counterpart in the behavioral setting that follows from The-
orem 4.8. We state it without a proof as the proof can be obtained from Proposition
4.1 by duality considerations or directly using the same calculations on the doubly
unimodular embeddings.

Proposition 4.2. LetMi ∈ Fpi×mi [z], i = 1, 2, 3, be of full column rank. LetZ1 :
KerM1(σ ) → KerM2(σ ) be an invertible behavior isomorphism defined by

Z1h = V1(σ )h, h ∈ KerM1(σ ), (114)

corresponding to the doubly unimodular embedding(
X1 −Y 1

−U2 M2

)(
M1 Y2
V1 X2

)
=
(
I 0
0 I

)
,(

M1 Y2
V1 X2

)(
X1 −Y 1

−U2 M2

)
=
(
I 0
0 I

)
.

(115)

Let Z2 : KerM2(σ ) → KerM3(σ ) be an invertible behavior isomorphism defined
by

Z2h = V2(σ )h, h ∈ KerM2(σ ), (116)

corresponding to the doubly unimodular embedding(
X2 −Y 2

−U3 M3

)(
M2 Y3
V2 X3

)
=
(
I 0
0 I

)
,(

M2 Y3
V2 X3

)(
X2 −Y 2

−U3 M3

)
=
(
I 0
0 I

)
.

(117)

ThenZ = Z2Z1 : KerM1(σ ) → KerM3(σ ) defined by

Z2Z1h = V2(σ )V1(σ )h, h ∈ KerM1(σ ), (118)

is also a behavior isomorphism that corresponds to the doubly unimodular embed-
ding (

X1 − Y 1X2U2 Y 1Y 2

−U3U2 M3

)(
M1 −Y2Y3
V2V1 X3 − V2X2Y3

)
=
(
I 0
0 I

)
,

(
M1 −Y2Y3
V2V1 X3 − V2X2Y3

)(
X1 − Y 1X2U2 Y 1Y 2

−U3U2 M3

)
=
(
I 0
0 I

)
.

(119)
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5. Representation of behaviors

Linear systems may have many different representations, and to each represen-
tation corresponds a permissible set of trajectories. The following definition names
the most notable ones. While we are using the term behavior, the fact that these
are indeed behaviors according to Willems’ definition will follow only when we
show that each system listed can be reduced to an AR representation. Since every
representation reduces to a NARMA representation, it suffices to show how NARMA
representations are reducible to AR ones. This will be taken up in Proposition 5.1. In
the following definition, although autoregressive or kernel representations have been
previously defined, they are included for completeness.

Definition 5.1.
1. An autoregressive, denoted byAR, or kernel representationof a behavior is a

representation

BP = KerP(σ) = {
w ∈ z−1Fm[[z−1]] |P(σ)w = 0

}
, (120)

with P ∈ Fp×m[z].
2. An autoregressive moving average, or ARMA, representation of a behavior is a

representation

B = {
w ∈ z−1Fq [[z−1]] | ∃ξ ∈ z−1Fn[[z−1]], P (σ )w = M(σ)ξ

}
. (121)

Thefull behaviorBfull is defined by

Bfull = Ker
(
P(σ) − M(σ)

)
= {

(w, ξ) ∈ z−1Fq [[z−1]] × z−1Fn[[z−1]] |P(σ)w = M(σ)ξ
}
. (122)

Clearly, definingπW(w, ξ) = w, we have

B = πWBfull . (123)

B is also referred to as themanifest behavior.
3. A behaviorB has anormalized ARMA representation, or NARMA representa-

tion, if it satisfies(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ (124)

for M1 ∈ F r×m[z],M2 ∈ Fq×m[z]. Generally, we will assume thatM1 has full
row rank andM1,M2 are right coprime.

4. A behaviorB has adriving variable polynomial matrix description, orDVPMD
description, if it satisfies(

0
I

)
w =

(
T −U

V W

)(
ξ1
ξ2

)
, (125)

with T nonsingular andV, T right coprime.
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5. A moving average MAor image representationof a behavior is a representation

B = ImQ(σ) (126)

for some polynomial matrix Q.
6. A behaviorB with split variablesw = (

y
u

)
has apolynomial matrix description,

or PMD, if{
T (σ)ξ = U(σ)u,

y = V (σ)ξ + W(σ)u.
(127)

With (127) we associate the Rosenbrock polynomial system matrix

P =
(
T (z) −U(z)

V (z) W(z)

)
. (128)

7. A behavior has apencil realization, or P-representation, if there exist constant
matricesG,F,H such that{
(σG − F)ξ = 0,
w = Hξ.

(129)

8. A behavior has adual pencil realization, or DP-representation, if there exist
constant matricesK,L,M such that

σKξ = Lξ + Mw. (130)

9. A behavior with split variablesw = (
y
u

)
has adescriptor representationor D-

representation, if{
σEξ = Aξ + Bu,

y = Cξ + Du.
(131)

10. A behavior with split variables has astate space realizationif{
σξ = Aξ + Bu,

y = Cξ + Du.
(132)

11. Anoutput nulling, state space representation, or ONSTSP, of a behaviorB is a
representation of the form

B = BONSTSP=
{
w

∣∣∣∣ ∃x ∈ z−1Fn[[z−1]],
{
σx = Ax + Bw,

0 = Cx + Dw.

}
(133)

12. Anoutput nulling, PMD representation, or ONPMD, of a behaviorB is a rep-
resentation of the form

B= BONPMD

=
{
w ∈ z−1Fm[[z−1]]

∣∣∣∣ ∃ξ ∈ z−1Fk[[z−1]],
{
T (σ)ξ = U(σ)w,

0 = V (σ)ξ + W(σ)w,

}
(134)

with T ∈ Fk×k[z], U ∈ Fk×p[z], V ∈ Fp×k[z],W ∈ Fp×m[z] and T non-
singular.
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13. Anoutput nulling, left matrix fraction representation, orONLMF, of a behavior
B is a representation of the form

B= BONLMF

=
{
w ∈ z−1Fm[[z−1]]

∣∣∣∣∃ξ ∈ z−1Fp[[z−1]],
{
Q(σ)ξ = P(σ)w,

0 = Iξ,

}
(135)

with Q ∈ Fp×p[z], P ∈ Fp×m[z] andQ nonsingular.

Remarks.
1. In Schumacher [1989], NARMA systems are denoted by AR/MA systems in

contradiction to ARMA systems. We prefer to distinguish between the two in a
stronger way.

2. We followed Weiland and Stoorvogel [1997] in making the definition of output
nulling representations.

We will single out the NARMA representation (124) of a behavior as the focal
point of our study. The reason is that essentially all other representations are easily
transformed into an NARMA representation. This is summed up in Table 1.

We have introduced a large number of possible representations of linear systems.
While in all cases it is clear that the set of trajectories is a linear shift invariant
subspace, it remains to show that they are also complete, i.e. that indeed they describe
behaviors. We do this by showing that all these system representations are reducible
to AR ones. However, as any of the listed system representations is reducible to the
NARMA representation, it suffices to show that the set of trajectories of a system in
NARMA form is a behavior.

Proposition 5.1. Let

B =
{
w

∣∣∣∣ ( 0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

}
.

ThenB is a behavior.

Proof. In view of Theorem 3.1, it suffices to show thatB so defined has a kernel
representation. Assuming(

M1(z)

M2(z)

)
is right prime and let(

M1(z) X1(z)

M2(z) X2(z)

)
be its embedding in a unimodular matrix having(

Y1(z) Y2(z)

N2(z) N2(z)

)
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Table 1

System Representation NARMA representation

AR P(σ)w = 0

(
0
I

)
w =

(
P(σ)

I

)
ξ

ARMA P(σ)w = M(σ)ξ

(
0
I

)
w =

(
P(σ) −M(σ)

I 0

)(
ξ1
ξ2

)
MA w = M(σ)ξ

NARMA

(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

DVPMD

{
T (σ)ξ1 = U(σ)ξ2
w = V (σ)ξ1 + W(σ)ξ2

(
0
I

)
w =

(
T (σ) −U(σ)

V (σ ) W(σ)

)(
ξ1
ξ2

)

PMD

{
T (σ)ξ = U(σ)u

y = V (σ)ξ + W(σ)u

0 0
I 0
0 I

(y
u

)
=
T (σ) −U(σ)

V (σ ) W(σ)

0 I

(ξ1
ξ2

)

STATE SPACE

{
σξ = Aξ + Bu

y = Cξ + Du

0 0
I 0
0 I

(y
u

)
=
σI − A −B

C D

0 I

(ξ1
ξ2

)

DESCRIPTOR

{
σEξ = Aξ + Bu

y = Cξ + Du

0 0
I 0
0 I

(y
u

)
=
σE − A −B

C D

0 I

(ξ1
ξ2

)

P

{
(σG − F)ξ = 0

w = Hξ

(
0
I

)
w =

(
σG − F

H

)
ξ

DP σKξ = Lξ + Mw

(
0
I

)
w =

(
σK − L −M

I 0

)(
ξ1
ξ2

)

ONLMF

{
Q(σ)ξ = P(σ)w

0 = Iξ

0
0
I

w =
P(σ) −Q(σ)

0 I

I 0

(ξ1
ξ2

)

ONPMD

{
T (σ)ξ = U(σ)w

0 = V (σ)ξ + W(σ)w

0
0
I

w =
T (σ) −U(σ)

V (σ ) W(σ)

0 I

(ξ1
ξ2

)

ONSTSP

{
σx = Ax + Bw

0 = Cx + Dw

0
0
I

w =
σI − A −B

C D

0 I

(ξ1
ξ2

)

as its inverse, i.e.(
Y1(z) Y2(z)

N1(z) N2(z)

)(
M1(z) X1(z)

M2(z) X2(z)

)
=
(
I 0
0 I

)
.
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We will show that an AR representation ofB is given by

B = KerN2(σ ), (136)

and henceB is indeed a behavior. To see this, letw ∈ B, and hence

N2(σ )w = (
N1(σ ) N2(σ )

) (0
I

)
w

= (
N1(σ ) N2(σ )

) (M1(σ )

M2(σ )

)
ξ = 0,

i.e.B ⊂ KerN2(σ ).
To prove the converse, we use(

M1(z) X1(z)

M2(z) X2(z)

)(
Y1(z) Y2(z)

N1(z) N2(z)

)
=
(
I 0
0 I

)
and in particular the identity(

M1(z)

M2(z)

)
Y2(z) +

(
X1(z)

X2(z)

)
N2(z) =

(
0
I

)
.

Now, givenw ∈ KerN2(σ ), then(
0
I

)
w =

(
M1(σ )

M2(σ )

)
Y2(σ )w,

i.e. (
0
I

)
w =

(
M1(σ )

M2(σ )

)
h,

with h = Y2(σ )w. This impliesw ∈ B and hence KerN2(σ ) ⊂ B. �

It is important to provide a guide to the transformations between different
representations. The reader is advised to consult Schumacher [1988, 1989] and
Kuijper [1992,1994] for more on this. We will restrict ourselves to showing how
the shift realization, given by (32), can be used to pass from an AR representation
to a state space one. This is a slight variation on the construction in Kuijper and
Schumacher [1990] or Kuijper [1992,1994]. In this connection see also Rosenthal
and Schumacher [1997].

Theorem 5.1. Given a behaviorB in minimal AR representation

B = KerP(σ), (137)

whereP(z) is ap × m, full row rank polynomial matrix. Then a minimal P-repre-
sentation exists.
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Proof. Assume first thatP(z) = (D(z) − N(z)) with D p × p nonsingular and
D−1N proper. Under these assumptions, it follows thatXD = XP = X(D(z) −N(z)).
We choose this space as the state space of aP -representation. Without loss of gener-
ality we can assume that the polynomial matrixP(z) is row proper with row degrees
ν1 � · · · � νp � 0. We set

∑p

i=1 νi = n. Thus

XD =


 f1

...

fp


∣∣∣∣∣∣∣ degfi < νi

 .

The standard basis forXD is given by then vectors


zν1−1

0
·
·
0

 , . . . ,


1
0
·
·
0

 , . . . ,


0
·
·
0

zνp−1

 , . . . ,


0
·
·
0
1


 .

The corresponding standard basis matrix ofXD is given by

� =


zν1−1 · · · 1 0 · · · 0 0 · · · 0

0 · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · 0
0 · · · 0 0 · · · 0 zνp−1 · · · 1

 .

(138)

Write nowD∞ = π+D−1N , thenD(z)−1(N(z) − D(z)D∞) is strictly proper and
hence there exists a uniquely determinedn × (m − p) constant matrixB for which

N(z) − D(z)D∞ = �(z)B.

Next we consider the shift realization(
AD N(z) − D(z)D∞
CD D∞

)
with CD,AD defined by (32). LetC,A be the respective matrix representations of
CD,AD with respect to the standard basis. Thus we get the state space representation
given by

σx = Ax + Bu,

y = Cx + D∞u,
(139)

which can be written in theP -representation
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σI − A −B

) (x
u

)
= 0,(

y

u

)
=
(
C D

0 I

)(
x

u

)
.

(140)

Hereξ = (
x
u

)
is the vector of latent variables, and the representation is with

G = (
I 0

)
, F = (

A B
)
, H =

(
C D

0 I

)
. (141)

In order to see that this is indeed a representation of the behaviorB, we note that
C(zI − A)−1 = D(z)−1�(z) and clearlyD,� are left coprime. The previous equal-
ity can be rewritten asD(z)C = �(z)(zI − A) and therefore

0 = (−�(σ ) D(σ)
) (σI − A

C

)
ξ = (−�(σ ) D(σ)

) (0 B

I −D

)(
y

u

)
= (

D(σ) −(�(σ )B + D(σ)D∞)
) (y

u

)
= (

D(σ) −N(σ)
) (y

u

)
.

Applying Proposition 5.1, we conclude that the behavior is indeedB = KerP(σ).
�

6. Controllability

Controllability and observability are fundamental properties of linear systems that
relate to minimality of realizations. These properties were introduced by Kalman,
see Kalman et al. [1969] and the further references therein. These notions were
extended by Willems [1986] to the behavioral setting, and not surprisingly they relate
to the minimality of various representations of behaviors. This we proceed to discuss.
Here we modify the definition of controllability in order to consider also the cases
of controllability to zero and reachability in the behavioral context. Due to space
constraints, we will omit a discussion of observability.

Definition 6.1.
1. LetB be a behavior defined onZ+.

(a) A trajectoryw ∈ B is reachableif there exists ak ∈ Z+, a polynomial vec-
tor

∑k−1
i=0 fiz

i ∈ Fm[z] such that for allT ∈ Z+, there exists aw ∈ B for
which

wt =


0, 1 � t � T ,

fT+k−t , T + 1 � t � T + k,

wt−T−k, T + k + 1 � t.

(142)

(b) The behaviorB is reachableif every trajectoryw ∈ B is reachable.
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(c) The set of all reachable trajectories is a linear subspace and will be denoted
byBr.

2. (a) LetB be a behavior defined onZ+. A trajectoryw ∈ B is controllable to
zeroif there exists ak ∈ Z+, a polynomial vector

∑k−1
i=0 fiz

i ∈ Fm[z] such
that for allT ∈ Z+, there exists aw ∈ B for which

wt =

wt, 1 � t � T ,

fT+k−t , T + 1 � t � T + k,

0, T + k + 1 � t.

(143)

(b) The behaviorB is controllable to zeroif every trajectoryw ∈ B is control-
lable to zero.

(c) The set of all controllable to zero trajectories is a linear subspace and will
be denoted byBcz.

3. A system iscontrollableif for every two trajectorieswα,wβ ∈ B andT ∈ Z+,
there exists ak ∈ Z+ and a trajectoryw ∈ B such that

wt =
{
wα

t , 1 � t � T ,

w
β
t−T−k, T + k + 1 � t.

(144)

Clearly, if a system is reachable then it is controllable to zero. The converse is
not true. To see this consider the autonomous behaviorB = Kerσn. Obviously it is
controllable to zero but is not reachable. In fact, given any nonsingular polynomial
matrixD(z), then the autonomous behaviorXD = KerD(σ) is nonreachable.

Proposition 6.1. A behaviorB is controllable if and only if it is reachable.

Proof. AssumeB is controllable and letwβ ∈ B. Takingwα to be the zero trajecto-
ry it is clear thatwβ is reachable. Since it is arbitrary, it follows thatB is a reachable
behavior.

Conversely, assumeB is reachable. Letwα,wβ ∈ B be any pair of trajectories.
Clearly,σk+T wα ∈ B and we have

(σ k+T wα)t = wα
t+k+T , t � 1.

We consider the trajectorywβ − σk+T wα. By the assumption of reachability, there
exists a trajectoryv ∈ B such that

vt =
{

0, 1 � t � T ,

w
β
t−T−k − wα

t+k+T , T + k + 1 � t.

By linearity,w = v + wα ∈ B. Clearly

wt =
{
wα

t , 1 � t � T ,

w
β
t , T + k + 1 � t.

ThusB is controllable. �
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Lemma 6.1. LetB = KerP(σ) andB = KerP(σ) be isomorphic behaviors. Then
B is reachable if and only ifB is reachable.

Proof. Since the behaviors are isomorphic, we apply Theorems 4.5 and 4.8 to con-
clude that there exist polynomial matricesU,V satisfyingUP = PV , with U,P

left coprime andP, V right coprime, in terms of which the mapV (σ) : B → B
is a behavior isomorphism. Assume degV (z) = l and letB be reachable. Letw ∈
B. Then there exists a uniquew ∈ B such thatw = V (σ)w. By the assumption of
reachability there existsv ∈ B such that

vt = wt−k−l , t > k + l.

Definev = V (σ)v. A simple computation yields

vt = (V (σ )v)t = wt−k, t > k.

Since behavior isomorphism is an equivalence relation, the converse implication
holds also. �

Lemma 6.2. LetD(z) be ap × p nonsingular polynomial matrix. Then the auton-
omous behaviorXD = KerD(σ) is nonreachable.

Proof. Let d(z) = detD(z) andn = degd. We show thatXD ∩ z−n−1Fp[[z−1]] =
{0}. Let h be any element in the above intersection. Writeh = z−nh′ with h′ ∈
z−1Fp[[z−1]]. SinceXD ⊂ XdI , we compute

h = πdh = π−d−1π+dh = πdh = π−d−1π+dz−nh′ = 0,

asdz−n is proper. �

As a result of Proposition 6.1, the concepts of controllability and reachability for
behaviors coincide. The usefulness of using reachability rather than controllability is
due to the greater ease in using the former.

We proceed to characterize reachability in terms of various behavior representa-
tions.

Theorem 6.1. Given a behaviorB ⊂ z−1Fp[[z−1]]. Then:
1. Let B be given in the AR representationB = KerP(σ), whereP ∈ Fp×m[z]

has full row rank and letP(z) = E(z)P (z) be aninternal/external factorization,
i.e. with E nonsingular andP left prime. Then
(a) Br, the set of all reachable trajectories inB, is a linear subspace for which

we have

Br = {
π−h|h ∈ KerP(z) |Fm((z−1))

}
. (145)

(b) We have

Br = KerP(σ). (146)
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In particular, Br is a subbehavior ofB.

We havew ∈ Br if and only ifP(z)w ∈ XP ∩ PFm[z].
(c) B is reachable if and only ifP(z) is left prime.
(d) AssumeP(z) = (T (z) − U(z)) with T nonsingular andT −1U proper. Let

R be the reachable subspace for the shift realization corresponding to the
matrix fractionT −1U. Then

(
y−
u−
) ∈ Br if and only ifTy− − Uu− ∈ R. We

haveBr = B if and only ifR = XT . The behaviorB is reachable if and on-
ly if the shift realization(32) corresponding to the left matrix fractionT −1U

is reachable, henceB is reachable if and only ifT ,U are left coprime.
(e) LetQ(z) be any nonsingular polynomial matrix for whichQ−1P is proper.

ThenB is reachable if and only if, with respect to the shift realization(32)
corresponding to the matrix fractionQ−1P , we haveV∗ = R∗.

2. The behaviorB has an MA representation if and only if it is reachable.

3. Let the behaviorB be given in the NARMA representation

B =
{
w

∣∣∣∣(0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

}
, (147)

where we assume that the polynomial matrix
(
M1(z)
M2(z)

)
is right prime and that

M1(z) has full row rank. Let

M1(z) = E(z)M1(z) (148)

be an internal/external factorization ofM1. Then:
(a) Br, the reachable sub-behavior, is given by the NARMA equation

Br =
{
w

∣∣∣∣(0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

}
. (149)

(b) B is reachable if and only ifM1(z) is left prime.
4. Given a system in ARMA form

P(σ)w = M(σ)ξ, (150)

where we assume that(P (z) − M(z)) has full row rank andM(z) is right
prime. Let E be a g.c.l.d. of P and M, i.e.

P(z) = E(z)P (z),

M(z) = E(z)M(z),
(151)

with P ,M left coprime. Then:
(a) The reachable subspaceBr has the ARMA representation

Br = Ker
(
P(z) − M(z)

)
. (152)

(b) B is reachable if and only ifP,M are left coprime.
(c) The full behaviorBfull = Ker(P (σ ) − M(σ)) is reachable if and only if the

(manifest) behaviorB = {
w | ∃ξ ∈ z−1Fm[[z−1]], P (σ )w = M(σ)ξ

}
is.
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5. LetB be a behavior with split variablesw = (
y
u

)
, given in the PMD representa-

tion

B =

(
y

u

) ∣∣∣∣∣∣
0 0
I 0
0 I

(y
u

)
=
T −U

V W

0 I

(ξ1
ξ2

) , (153)

where we assume thatV, T are right coprime. Let E be a g.c.l.d. of T and U, i.e.

T (z) = E(z)T1(z),

U(z) = E(z)U1(z),
(154)

with T1, U1 left coprime. Then:
(a) The reachable subbehaviorBr ⊂ B is given by the PMD form

Br =

(
y

u

) ∣∣∣∣∣∣
0 0
I 0
0 I

(y
u

)
=
T1 −U1
V W

0 I

(ξ1
ξ2

) . (155)

(b) LetT , V be defined via a left coprime factorization

T
−1

V = V T −1
1 . (156)

The reachable subbehaviorBr ⊂ B is given by

Br = Ker
(
T (σ) − (T (σ )W(σ) + V (σ)U(σ))

)
. (157)

(c) B is reachable if and only if(T − U) is left prime.
6. A behaviorB with a pencil representation

B =
{
w

∣∣∣∣(0
I

)
w =

(
σG − F

H

)
ξ

}
, (158)

where we assume thatzG − F has full row rank and
(
zG−F

H

)
is right prime. Then

B is reachable if and only ifzG − F is left prime.
7. Let a behaviorB be given in a dual pencil representation

B = {
w|(σK − L)ξ = Mw

}
, (159)

where we assume without loss of generality that(zK − L M) is of full row rank
andzK − L is right prime. ThenB is reachable if and only if(zK − L M) if
left prime.

8. LetB be a behavior with split variablesw = (
y
u

)
, given in the state space rep-

resentation{
σξ = Aξ + Bu,

y = Cξ + Du,
(160)

which is assumed observable. ThenB is reachable if and only if(zI − A B) is
left prime.
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Proof.
1. (a) Leth− ∈ Br. By the definition of reachability, there exists a polynomial

vectorh+ such that for every timeτ we haveπ−P(z)z−τ (h− + h+) = 0.
Choosingτ large enough so thatP(z)z−τ (h− + h+) is strictly proper, it fol-
lows that necessarilyP(z)(h− + h+) = 0, i.e.h− ∈ {π−h |h ∈ KerP(z) |
Fm((z−1))}.
Conversely, ifP(z)(h− + h+) = 0, alsoP(z)z−τ (h− + h+) = 0 and in par-
ticular, forτ > degh+ it follows thath− ∈ Br.

(b) Assumew ∈ KerP(σ), i.e. π−Pw = 0 or for somef ∈ Fp[z], we have
P(z)w = f (z). SinceP is left prime, there exists a polynomial matrixQ
such thatP(z)Q(z) = I . Write f = PQg = −Pg with g = −Qf . It fol-
lows thatPw = −Pg or P(z)(w + f ) = 0. So, withh = w + g we have
w = π−h and h ∈ KerP(z). Since Kerp(z) = KerP(z), it follows that
Kerp(z) ⊂ {π−h |h ∈ KerP(z) |Fm((z−1))}.
Conversely, assumew ∈ {π−h|h ∈ KerP(z) |Fm((z−1))}, i.e. there exists
anh ∈ Fm((z−1)) for whichw = π−h andP(z)h = 0. Definingg = π+h,
it follows thatP(z)h = P(z)(w + g) = 0. This clearly implies thatP(σ)w

= 0, and so{π−h|h ∈ KerP(z)|Fm((z−1))} ⊂ KerP(z) and the equality
(145) follows.

(c) AssumeP(z) is left prime andw ∈ B. Thusπ−Pw = 0, i.e.f (z) = P(z)

w(z) is a polynomial. LetQ(z) be any right inverse ofP(z) and setg = Qf .
Thenf = Pg andPg = Pw or equivalentlyP(g − w) = 0. If degg = k,
thenw = z−k−1(g − w) ∈ z−1Fm[[z−1]] and it clearly satisfies (142).
To prove the converse we show now that ifP is not left prime thenB is not
reachable. By an application of Lemma 6.1, we may assume without loss of
generality that

P(z) =


r1(z) 0 · · · 0

· · · · · ·
· · · · · ·

· · · · · ·
rp(z) 0 · · · 0

 ,

where ri are the invariant factors ofR with at least one nontrivial. This
implies

KerP(σ) = [Xr1 ⊕ · · · ⊕ Xrp ] ⊕ z−1Fm−p[[z−1]]
and, as pointed out before, no nonzero element in the autonomous behavior
[Xr1 ⊕ · · · ⊕ Xrp ] is reachable.

(d) Of course this follows from the first two parts of this statement. However,
we prove this directly and thus provide an independent proof of Part 1(c).
AssumeTy− − Uu− ∈ R, i.e. for some polynomial vectorsu+, y+, we
haveTy− − Uu− = πT Uu+ = Uu+ − Ty+. Write this asT (y− + y+) =
U(u− + u+) or
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T (z) −U(z)

) (y− + y+
u− + u+

)
= 0. (161)

So we conclude
(
y−
u−
) ∈ Br.

Conversely, if
(
y−
u−
) ∈ Br, then by Part 1, there exist polynomial vectors

u+, y+, for which (161) holds. From this we compute

y− = π−(y− + y+) = π−T −1U(u− + u+) = T −1Uu− + π−T −1Uu+.

This in turn implies(
T (z) − U(z)

) (y−
u−

)
∈ R.

Let E be the greatest common left divisor ofT andU. We write (T (z) −
U(z)) = E(T (z) − U(z)) and note thatEXT ⊂ XT is the reachable sub-
space of the shift realization. Clearly, the equalityBr = B impliesR = XT .
Conversely, assumeR = XT . This means thatT ,U are left coprime. If(
y−
u−
) ∈ B, then for some polynomial vectorf+ we haveTy− − Uu− = f+.

SinceT ,U are left coprime, there exist polynomial vectorsu+, y+ for which
f+ = −(T y+ − Uu+). This leads to (161) and hence

(
y−
u−
) ∈ Br and the

equalityB = Br follows. This also shows thatB is reachable if and only
if T ,U are left coprime.

(e) Assume thatB is reachable and henceP(z) is left prime. We know, from
Theorem 2.10, that, with respect to the shift realization corresponding to
Q−1P , we haveV∗ = XP and R∗ = XP ∩ PFm[z]. SinceP(z) is left
prime, thenPFm[z] = Fp[z] and so

R∗ = XP ∩ PFm[z] = XP ∩ Fm[z] = XP = V∗.

Conversely, assumeV∗ = R∗. Given the factorizationP = EP with Enon-
singular andP left prime, then we know, see Fuhrmann [1981], thatV∗/R∗
� XE . Hence the equalityV∗ = R∗ is equivalent to the unimodularity ofE
and hence also to the left primeness ofP. SoB is reachable.

2. AssumeB has a MA representation,B = ImQ(σ), with Q(z) right prime. Ex-
tendQ(z) to a unimodular polynomial matrix(Q1(z) Q(z)) with inverse

(
P(z)
P1(z)

)
.

Then, by Proposition 5.1,B = KerP(σ) and, sinceP(z) is left prime, it follows
thatB is reachable.
Conversely, assumeB is reachable. ThenB = KerP(σ) with P(z) left prime.
Let

(
P(z)
P1(z)

)
be a unimodular extension with inverse(Q1(z) Q(z)). Clearly,

ImQ(σ) is a behavior which, by the same result quoted above, is given by
KerP(σ), i.e.B has an image, or an MA, representation.

3. (a) Clearly the factorization (148) implies

B′ =
{
w

∣∣∣∣(0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

}
⊂ B.
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The right primeness of
(
M1(z)
M2(z)

)
implies the right primeness of

(
M1(z)
M2(z)

)
so there

exist unique, up to unimodular left factors, left prime polynomial matrices
(N1 N2) and(N1 N2) such that

Ker
(
N1 N2

) = Im

(
M1(z)

M2(z)

)
(162)

and

Ker
(
N1 N2

) = Im

(
M1(z)

M2(z)

)
. (163)

By Proposition 5.1, the behaviorB is given in the AR formB = KerN2(σ )

whereasB′ = KerN2(σ ). By Proposition 3.6, we have thatN2 is left prime,
i.e.B′ is reachable. Now (162) implies(
N1E N2

) (M1(z)

M2(z)

)
= 0.

In turn this implies that for some polynomial matrixK, we have(N1E N2)

= K(N1 N2), or N2 = KN2. However this is an internal/external factor-
ization and soBr = KerN2(σ ) which proves the statement.

(b) Embed
(
M1(z)
M2(z)

)
in a doubly coprime extension (70). The result follows from

Proposition 3.6.3a.
4. (a) We rewrite the ARMA equation (150) in the NARMA form(

0
I

)
w =

(
P −M

I 0

)(
ξ1
ξ2

)
.

By Part 3, the reachable subbehavior is given by the NARMA equation(
0
I

)
w =

(
P −M

I 0

)(
ξ1
ξ2

)
which in turn is equivalent to the ARMA equation

P(σ)w = M(σ)ξ.

(b) Follows from the previous part.
(c) AssumeBfull = Ker(P (σ ) − M(σ)), orP(σ)w = M(σ)ξ . Let

U(z) =
(
U1(z)

U2(z)

)
be unimodular with KerU1(z) = ImM(z). Then, by Proposition 5.1, the
manifest behavior is given by the AR representation KerU1(σ )P (σ ). By
our assumption there exist polynomial matricesX, Y such that the Bezout
identity PX − MY = I is satisfied. ApplyingU1 to this we getU1PX −
U1MY = U1PX = U1. Let U7

1 be a polynomial right inverse ofU1. Then

(U1P)(XU
7
1) = I , which shows thatU1P is right unimodular.
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5. (a) This follows from Part 3.
(b) Using (155), it follows from an application of Proposition 5.1.
(c) Follows from Part 5(a).

6. Follows from Part 3.
7. Rewrite the equation(σK − L)ξ = Mw in the NARMA form(

0
I

)
w =

(
σK − L −M

0 I

)
(164)

and apply Part 3.
8. We rewrite Eq. (160) in the form(

0 B

I −D

)(
y

u

)
=
(
zI − A

C

)
ξ

and apply Part 5. Note that(
0 B zI − A

I −D C

)
is left prime if and only if(zI − A B) is. �

The definition of controllability in the behavioral setting as well as the charac-
terization of controllable AR representations is due to Willems [1986]. The charac-
terization of controllability in Part 5 of Theorem 6.1 and its connection to the shift
realization is due to Fuhrmann [1976,1977], see Section 2.3. The controllability test
given in Part 8 is known as theHautus test. In this connection, see also Section 2.3.

We study next how the controllability property is preserved under behavior ho-
momorphisms. A preliminary result was given in Lemma 6.1.

Corollary 6.1. Let Bi = KerPi(σ ) be two behaviors withPi of full row rank.
Then:
1. If Z : B1 → B2 is a surjective behavior homomorphism, then the controllability

ofB1 implies the controllability ofB2.
2. If Z : B1 → B2 is an injective behavior homomorphism, then the controllability

ofB2 implies the controllability ofB1.
3. If Z : B1 → B2 is a behavior isomorphism, thenB1 is controllable if and only

if B2 is.

Proof. By Theorem 4.5, there exit polynomial matricesU,V , satisfyingU(z)P1(z)

= P2(z)V (z) in terms of whichZ = V (σ). By the assumed surjectivity we have the
left coprimeness ofU,P2. We apply Proposition 3.6 to get the result. It is easy to see
that, with a slight modification of the proof, the right coprimeness ofP1, V is not
necessary for the conclusion. The other statements are proved similarly.�

In most parts of the definition we follow Kuijper [1992,1994] whose terminol-
ogy, in turn, follows Willems’. In making the definition of output nulling repre-
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sentations we are motivated by Weiland and Stoorvogel [1997]. These behavior
representations open up the possibility of studying deeper underlying connections
between the behavioral theory and geometric control theory. Of particular interest is
using factorization theory as the unifying tool. This will be the subject of additional
publications.

To conclude this section we digress briefly on the question of stability and sta-
bilizability of behaviors. Up to now we have worked over an arbitrary field. In this
context it seems that the only meaningful way to introduce stability is to say that
a trajectoryw ∈ z−1Fm[[z−1]] is stableif it is eventually zero, i.e. there exists an
index n0 such that, withw(z) = ∑∞

i=1 wiz
−i , we havewi = 0 for i � n0. On the

other hand, if the field is the fieldR of real numbers or the fieldC of complex num-
bers, then we have alternative definitions. Again, we follow Weiland and Stoorvogel
[1997] in making the following definition.

Definition 6.2.
1. A trajectoryw ∈ B is stableif lim n→∞ wn = 0.
2. An autonomous behaviorB over R,C is stable if every trajectoryw ∈ B is

stable.
3. A behaviorB is stabilizableif given any trajectoryw(1) ∈ B and an integern0 >

0, there exits a stable trajectoryw(2) ∈ B satisfyingw(1)
j = w

(2)
j for j � n0.

We recall that a nonsingular polynomial matrix inRm×m[z] or Cm×m[z] is stable
if detP(z) is a stable polynomial, i.e. has all its zeros in the interior of the unit
disk. The following proposition, which we give without proof, is a characterization
of stable and stabilizable behaviors.

Proposition 6.2. Given a real or complex behaviorB = KerP(σ), with P(z) of
full row rank. Then:
1. B is stable if and only ifP(z) is a nonsingular and stable polynomial matrix.

2. B is stabilizable if and only if there exists a factorizationP(z) = E(z)P (z) with
E(z) a nonsingular and stable polynomial matrix andP(z) left prime.

3. The setBst of all stabilizable trajectories inB is a subbehavior. Moreover, if

P(z) = Eas(z)Est(z)P (z) (165)

is a factorization withEas(z) antistable andEst(z) stable, then

Bst = KerEst(σ )P (σ ). (166)

4. If a behaviorB is reachable, then it is stabilizable.
5. Given a behaviorB in the NARMA form(

0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ. (167)
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Let M1 = Eas(z)Est(z)M1(z) be a factorization withEas(z) antistable and
Est(z) stable. Then the stabilizable subbehavior is given by

Bst =
{
w

∣∣∣∣(0
I

)
w =

(
Est(σ )M1(σ )

M2(σ )

)
ξ

}
. (168)

The characterization in Proposition 6.2.2 is essentially the Hautus test for stability.

7. Equivalence of behavior representations

This section is devoted to the central theme of this paper, namely the unified
derivation of equivalence results for different classes of behavior representations.
More specifically, in terms of the system representation’s data, we want to estab-
lish necessary and sufficient conditions for the corresponding behaviors to coincide.
In a way this is a far reaching variation on the theme of equivalence and sim-
ilarity, that is the standard results that two matricesA,B are similar if and
only if the pencilszI − A, zI − B are equivalent. Other examples of results of
the same nature are the Kalman state space isomorphism theorem and the
analysis of strict system equivalence in the context of polynomial matrix
descriptions.

In fact, we begin our analysis of the problem for the class of behaviors given in
NARMA representation that was introduced in Section 5. We do this by extending
the authors’ version of strict system equivalence, referred to by Kailath [1980] and
Özgüler [1994] as Fuhrmann system equivalence (FSE) to distinguish it from Ro-
senbrock’s original definition, by introducing the concept of NARMA equivalence
of two systems given in NARMA representation. We show directly that NARMA
equivalence is indeed a bona fide equivalence relation. We proceed to show that FSE
turns out to be a special case of NARMA equivalence. The principal result, namely
Theorem 7.1, characterizes equivalence for different classes of behavior represen-
tations. First and foremost in importance is that of NARMA representations. This
provides the key for all other cases. To analyze NARMA equivalence, we bring to
bear all the machinery of behavior isomorphism which in turn is based on doubly
unimodular embeddings. It is worthwhile to note that, in the characterization of
similarity of behaviors, contrary to the case of rational models, coprimeness con-
ditions are necessary but, due to the use of rectangular polynomial matrices, are not
sufficient and have to be replaced by the stronger condition of the existence of doubly
unimodular embeddings.

One another thing to point out is that all equivalence results are derived under
conditions weaker than minimality. This is not surprising inasmuch as in the case of
strict system equivalence, no minimality constraints were imposed, see Fuhrmann
[1977].
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We introduce now the new concept of NARMA equivalence. This is related to
another concept of equivalence, namely that of strict system equivalence. For ease
of reference, we also recall the definition of Fuhrmann system equivalence.

Definition 7.1.
1. Given two NARMA representations(

0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ (169)

with the behaviorB, and(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ (170)

with the behaviorB, we say that the representations areNARMA equivalentif
there exists polynomial matricesU,V,X of appropriate size such that(

U(z) 0
−X(z) I

)(
M1(z)

M2(z)

)
=
(
M1(z)

M2(z)

)
V (z), (171)

U,M1 are left coprime and
(
M1(z)
M2(z)

)
, V right coprime and

Ker

(
U(z) 0 M1(z)

−X(z) I M2(z)

)
= Im

M1(z)

M2(z)

−V (z)

 (172)

holds, i.e. there exists a doubly unimodular embedding of the polynomial matri-
ces(

U(z) 0 M1(z)

−X(z) I M2(z)

)
,

M1(z)

M2(z)

−V (z)

 . (173)

2. Two polynomial system matrices

Pi =
(
Ti −Ui

Vi Wi

)
, i = 1, 2,

are calledFuhrmann system equivalent, or FSE, if there exist polynomial matri-
cesM,N,X, Y , with M,T2 left coprimeT1, N right coprime and for which(

M 0
−X I

)(
T1 −U1
V1 W1

)
=
(
T2 −U2
V2 W2

)(
N Y

0 I

)
. (174)

Remarks.
1. Note that the left coprimeness ofU andM1 is equivalent to the left coprimeness

of(
U(z) 0

−X(z) I

)
and

(
M1(z)

M2(z)

)
.
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2. There are two variations on the definition of NARMA equivalence. We say the
two systems areweakly NARMA equivalentif (171) is replaced by(

U(z) 0
−X(z) P

)(
M1(z)

M2(z)

)
=
(
M1(z)

M2(z)

)
V (z), (175)

with P a nonsingular constant matrix, i.e. we allow also a change of basis in
the spaceW. If P is restricted to a permutation matrix, we will say that the sys-
tems arepermutation NARMA equivalent. In this special case of weak NARMA
equivalence, we are allowing only a reordering of the external variables.

Proposition 7.1.
1. NARMA equivalence is an equivalence relation.
2. FSE is an equivalence relation.

Proof. Both statements can be proved directly, however the computations are some-
what tedious and will be omitted. One can easily avoid them. In fact, that FSE is an
equivalence relation proved in Fuhrmann [1977], by showing that two polynomial
system matrices are FSE if and only if the associated shift realizations are similar.
Since system similarity is an equivalence relation, so is FSE. In the same way, one
can show that NARMA equivalence is indeed an equivalence relation by showing
that, under the assumed right primeness conditions, two NARMA systems are NAR-
MA equivalent if and only if they represent the same behavior. This is proved in
Theorem 7.1.3. �

Clearly if a NARMA system(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

is obtained from(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ

through(
M1(z)

M2(z)

)
=
(

U(z) 0
−X(z) I

)(
M1(z)

M2(z)

)
V (z)

with U(z), V (z) appropriately sized unimodular matrices, then the two systems are
NARMA equivalent. This easy observation is useful in the reduction of representa-
tions.

The following theorem is the central result for this section. It characterizes the
conditions, in terms of behavior representation, that two different representations
have the same behavior. The key result is that of NARMA representations and we
derive most other characterizations from this one. Thus we present a uniform deriva-
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tion for the problems of system equivalence. Part 1 is identical to Theorem 3.4.2 and
is included for completeness.

Theorem 7.1.
1. LetP,Q ∈ Fp×m[z] have full row rank. Then

KerP(σ) = KerQ(σ) (176)

if and only ifQ(z) = U(z)P (z) for some unimodular polynomial matrixU.

2. Two behaviors in MA representations

Bi = ImMi(σ), i = 1, 2, (177)

under the assumption thatMi(z) are right prime, are equal if and only ifM2(z) =
M1(z)V (z) for some unimodular V.

3. Given two behaviorsB andB in the NARMA representations(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ (178)

and(
0
I

)
w =

(
M1(σ )

M2(σ )

)
ξ (179)

respectively. We assume that both(
M1(σ )

M2(σ )

)
and

(
M1(σ )

M2(σ )

)
are right prime. ThenB = B if and only if the two representations are NARMA
equivalent.

4. Given two behaviorsBi , i = 1, 2 in DVPMD form(
0
I

)
w =

(
Ti −Ui

Vi Wi

)(
ξ1
ξ2

)
, i = 1, 2, (180)

under the assumption that the polynomial system matrices(
Ti −Ui

Vi Wi

)
are right prime. Then the two behaviors coincide if and only if there exist
appropriately sized polynomial matricesM,X,N11, N12, N21, N22 for
which(

M 0
−X I

)(
T1 −U1
V1 W1

)
=
(
T2 −U2
V2 W2

)(
N11 N12
N21 N22

)
(181)

and there exists a doubly unimodular embedding for

(
M 0 T2 −U2
−X I V2 W2

)
,


T1 −U1
V1 W1

−N11 −N12
−N21 −N22

 .



P.A. Fuhrmann / Linear Algebra and its Applications 351–352 (2002) 303–380 365

5. Given two behaviorsBi , i = 1, 2, with split variablesw = (
y
u

)
in PMD form0 0

I 0
0 I

(y
u

)
=
Ti −Ui

Vi Wi

0 I

(ξ1
ξ2

)
, i = 1, 2, (182)

under the assumption thatTi, Vi are right coprime. Associate with such a system
a polynomial system matrix

Pi =
(
Ti −Ui

Vi Wi

)
, i = 1, 2.

Then:
(a) The associated behaviors are given by

Bi = Ker
(
T i(σ ) − (T i(σ )Wi(σ ) + V i(σ )Ui(σ ))

)
. (183)

(b) The two behaviors are equal if and only if the two polynomial system matri-
cesPi are Fuhrmann system equivalent(FSE).

6. Given two behaviors in observable state space representations0 0
I 0
0 I

(y
u

)
=
σI − Ai −Bi

Ci Di

0 I

(ξ1
ξ2

)
, i = 1, 2. (184)

Then the corresponding behaviors are equal if and only if the two systems are
isomorphic, i.e. there exists a constant, invertible matrixM, such that(

M 0
0 I

)(
zI − A1 −B1

C1 D1

)
=
(
zI − A2 −B2

C2 D2

)(
M 0
0 I

)
. (185)

7. Given two behaviors in DV state space representations(
0
I

)
w =

(
zI − A −B

C D

)(
ξ1
ξ2

)
,

(
0
I

)
w =

(
zI − A −B

C D

)(
η1
η2

)
,

(186)

where we assume that the two polynomial matrices are right prime andD, D are
both injective. Then the two behaviors coincide if and only if there exist constant
matricesU,P,K, with U,P invertible and a permutation matrix�, such that(

U 0
0 �

)(
zI − A −B

C D

)
=
(
zI − A −B

C D

)(
U 0
K P

)
, (187)

i.e. the two state space systems are state feedback equivalent.
8. Given two behaviorsB andB in pencil representations(

0
I

)
w =

(
σG − F

H

)
ξ (188)

and
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0
I

)
w =

(
σG − F

H

)
ξ (189)

respectively. We assume that
(a) G has full row rank.
(b)

(
G
H

)
has full column rank.

(c)
(
zG−F

H

)
is right prime.

Then the two behaviors coincide if and only if there exist unique, nonsingular,
constant polynomial matrices S and T for which(

S 0
0 I

)(
zG − F

H

)
=
(
zG − F

H

)
T . (190)

Proof.
1. See Theorem 3.4.2.
2. Assume first that ImM1(σ ) = ImM2(σ ), i.e. the behaviors are equal. By as-

sumption, the polynomial matricesMi(z) are right prime. By Proposition 3.5, we
have ImMi(σ) = {KerM̃i(z)}⊥, and hence the equality Ker̃M1(z) = KerM̃2(z).
Since theM̃i are left prime, it follows from Proposition 3.3.4 that̃M1 = Ṽ M̃2,
for some unimodularV. ThusM2 = M1V .
Conversely, ifM2(z) = M1(z)V (z) with V unimodular, it follows that ImM2(σ )

⊂ ImM1(σ ). Equality follows by symmetry.
3. Assume first that the representations are NARMA equivalent. Let(N1(z) N2(z))

and(N1(z) N2(z)) be left prime polynomial matrices for which

Ker
(
N1(z) N2(z)

) = Im

(
M1(z)

M2(z)

)
,

Ker
(
N1(z) N2(z)

) = Im

(
M1(z)

M2(z)

)
.

By Theorem 5.1, we haveB = KerN2(σ ) andB = KerN2(σ ). We compute

0 = (
N1(z) N2(z)

) (M1(z)

M2(z)

)
V

= (
N1(z) N2(z)

) ( U(z) 0
−X(z) I

)(
M1(z)

M2(z)

)
= (

(N1(z)U(z) − N2(z)X(z)) N2(z)
) (M1(z)

M2(z)

)
,

i.e.

Ker
(
(N1(z)U(z) − N2(z)X(z)) N2(z)

) ⊃ Ker
(
N1(z) N2(z)

)
.

By Proposition 3.3, there exists a polynomial matrixL(z) for which(
N1(z)U(z) − N2(z)X(z) N2(z)

) = L(z)
(
N1(z) N2(z)

)
.
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This implies the equality KerN2(σ ) ⊃ KerN2(σ ) or B ⊃ B. By Proposition
7.1, NARMA equivalence is an equivalence relation, and in particular a sym-
metric relation. The equalityB = B follows by symmetry.
Conversely, assume the behaviorsB andB are equal. Clearly we have

B = M2(σ )KerM1(σ ) = M2(σ )KerM1(σ ).

The right coprimeness ofM1,M2 implies thatM2(σ )|KerM1(σ ) is injective
and soM2(σ ) as a map from KerM1(σ ) ontoB is bijective. Moreover, it is an
F [z]-homomorphism. In the same wayM2(σ )|KerM1(σ ) : KerM1(σ ) → B is
a behavior isomorphism. We define now a mapZ : KerM1(σ ) → KerM1(σ )

by

Zh = M2(σ )
−1M2(σ )h, h ∈ KerM1(σ ). (191)

Clearly Z is anF [z]-isomorphism, i.e. satisfiesZσM1 = σM1Z and is invert-
ible. SinceM1(z),M1(z) have both full row rank, we can apply Theorem 4.5
to conclude the existence of appropriately sized polynomial matricesU andV
for which U,M1 are left coprime,M1, V are right coprime, they satisfy the
following equality:

Ker
(
U(z) M1(z)

) = Im

(
M1(z)

−V (z)

)
(192)

in terms of whichZ = V (σ). Note that the previous conditions are equivalent to
the existence of a doubly unimodular embedding of(

U(z) M1(z)
)
,

(
M1(z)

V (z)

)
.

Thus we haveM2(σ )
−1M2(σ )h = V (σ)h for all h ∈ KerM1(σ ). So

Ker(M2(σ ) − M2(σ )V (σ )) ⊃ KerM1(σ ).

By Theorem 3.4, we conclude the existence of a polynomial matrixX(z) such
that

M2(z) − M2(z)V (z) = X(z)M1(z). (193)

The equalities (192) and (193), taken together, imply(
U(z) 0 M1(z)

0 I 0

)M1(z)

0
V (z)

 =
(

0
0

)
.

It remains to show that there exists a doubly unimodular embedding for(
U(z) 0 M1(z)

−X(z) I M2(z)

)
,

M1(z)

M2(z)

−V (z)

 .

First, we note that there exists a doubly unimodular embedding for
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U(z) 0 M1(z)

0 I 0

)
,

M1(z)

0
V (z)

 .

This follows from Lemma 3.2 and the fact that there exists a doubly unimodular
embedding of(

U(z) M1(z)
)
,

(
M1(z)

V (z)

)
.

We note that I 0 0
−X(z) I M2(z)

0 0 I

 I 0 0
X(z) I −M2(z)

0 0 I

 =
I 0 0

0 I 0
0 0 I


with both matrices unimodular. Now(

U(z) 0 M1(z)

−X(z) I M2(z)

)
=
(
U(z) 0 M1(z)

0 I 0

) I 0 0
−X(z) I M2(z)

0 0 I


and, using Eq. (193), we have I 0 0

X(z) I −M2(z)

0 0 I

M1(z)

0
V (z)

=
 M1(z)

X(z)M1(z) + M2(z)V (z)

−V (z)


=
M1(z)

M2(z)

V (z)

 ,

and (172) follows.
4. This is a straight application of Part 3.
5. Note that the right coprimeness ofTi, Vi is equivalent to the right primeness ofTi −Ui

Vi Wi

0 I

 .

Assume first that the two polynomial system matrices are FSE. Let, fori =
1, 2, T

−1
i V i be a left coprime factorization ofViT

−1
i . By Proposition 5.1, the

associated behaviors are given in AR representations by

Bi = Ker
(
T i(σ ) − (T i(σ )Wi(σ ) + V i(σ )Ui(σ ))

)
. (194)

Since the two polynomial system matrices are assumed to be FSE, there exist
appropriately sized polynomial matricesM,N,X, Y, with M,T2 left coprime
T1, N right coprime and for which(

M 0
−X I

)(
T1 −U1
V1 W1

)
=
(
T2 −U2
V2 W2

)(
N Y

0 I

)
. (195)
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Note that, by Proposition 7.1, this is equivalent to the existence of a doubly
unimodular embedding. Eq. (195) implies the four identities

MT1 = T2N,

MU1 = U2 − T2Y,

XT1 − V1 = −V2N,

XU1 + W1 = V2Y + W2.

(196)

Let, for i = 1, 2, T
−1
i V i be a left coprime factorization ofViT

−1
i . We compute

now, using (196),

T
−1
1 V 1 = V1T

−1
1 = X + V2NT −1

1 = V2T
−1
2 M

=X + T
−1
2 V 2M = T

−1
2 (T 2X + V 2M). (197)

ThusT 2T
−1
1 V 1 is a polynomial matrix. By the left coprimeness ofT 1, V 1, it

follows thatT 2 = ST 1 for some, necessarily nonsingular, polynomial matrixS.
Now, by Fuhrmann [1976], the equalityMT1 = T2N , taken together with the
assumed coprimeness conditions imply that the invariant factors, and hence also
the determinants, ofT1, T2 are equal. This shows thatS is necessarily unimodu-
lar. We continue, using (197),

T
−1
1 V 1 = T

−1
2 (T 2X + V 2M)

or

SV 1 = T 2X + V 2M.

Since

V 1U1 + T 1W1 = T 1T
−1
2 (T 2X + V 2M)U1 + T 1W1,

we have

S(V 1U1 + T 1W1)= (T 2X + V 2M)U1 + T 2W1

= T 2(XU1 + W1) + V 2MU1

= T 2(V2Y + W2) + V 2MU1

= T 2W2 + T 2V2Y + V 2(U2 − T2Y )

= T 2W2 + V 2U2 + (T 2V2 − V 2T2)Y

= T 2W2 + V 2U2.

So, withSunimodular, we have

S(z)
(
T 1(z) − (T 1(z)W1(z) + V1(z)U1(z))

)
= (

T 2(z) − (T 2(z)W2(z) + V2(z)U2(z))
)
. (198)

Applying Theorem 3.4.2, we have obtained



370 P.A. Fuhrmann / Linear Algebra and its Applications 351–352 (2002) 303–380

Ker
(
T 1(σ ) − (T 1(σ )W1(σ ) + V1(σ )U1(σ ))

)
= Ker

(
T 2(σ ) − (T 2(σ )W2(σ ) + V2(σ )U2(σ ))

)
.

We conclude that the two behaviors are equal.
Conversely, assume the two behaviors are equal. Considering in a natural way
the behavior equations (182) to be NARMA representations. Then, noting that
Vi, Ti , i = 1, 2, are right coprime and applying Part 4, we conclude that there
exist appropriately sized polynomial matricesM1, X1, X2, N11, N12, N21, N22
satisfying M1 0 0

−X1 I 0
−X2 0 I

T1 −U1
V1 W1
0 I

 =
T2 −U2
V2 W2
0 I

(N11 N12
N21 N22

)
, (199)

and for which there exists a doubly unimodular embedding of

 M1 0 0 T2 −U2
−X1 I 0 V2 W2
−X2 0 I 0 I

 ,


T1 −U1
V1 W1
0 I

−N11 −N12
−N21 −N22

 .

Using the unimodular matrices in
I 0 0 0 0
0 I 0 0 0
X2 0 I 0 −I

0 0 0 I 0
0 0 0 0 I




I 0 0 0 0
0 I 0 0 0

−X2 0 I 0 I

0 0 0 I 0
0 0 0 0 I



=


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

 (200)

it follows that there exists also a doubly unimodular embedding of

 M1 0 0 T2 −U2
−X1 I 0 V2 W2

0 0 I 0 0

 ,


T1 −U1
V1 W1

−X2T1 − N21 X2U1 + I − N22
−N11 −N12
−N21 −N22

 .

However, from (199) it immediately follows that
N21 = −X2T1,

N22 = I + X2U1.
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So we get, applying Lemma 3.2.2, that there exists also a doubly unimodular
embedding of

(
M1 0 T2 −U2
−X1 I V2 W2

)
,


T1 −U1
V1 W1

−N11 −N12
−N21 −N22

 .

In particular, we get(
M1 0
−X1 I

)(
T1 −U1
V1 W1

)
=
(
T2 −U2
V2 W2

)(
N11 N12

−X2T1 I + X2U1

)
, (201)

which can be rewritten as(
M1 − U2X2 0

−(X1 − W2X2) I

)(
T1 −U1
V1 W1

)
=
(
T2 −U2
V2 W2

)(
N11 N12
0 I

)
. (202)

By appropriately definingM,X,N, Y , Eq. (202) can be rewritten in the form
(195) and the unimodular embeddability condition still holds. Thus we proved
that the two polynomial system matrices are FSE.

6. As shown in Fuhrmann [1977], the isomorphism of the two systems is equivalent
to the strict system equivalence of the associated polynomial system matrices(

zI − Ai −Bi

Ci Di

)
.

By Part 5, this is equivalent to the coincidence of the behaviors.
Alternatively, we can argue as follows. We apply Part 5 and conclude that the
polynomial system matrices(

zI − Ai −Bi

Ci Di

)
are FSE. Thus there exist polynomial matricesM(z),X(z),N(z), Y (z) with
M,T2 left coprimeT1, N right coprime and for which(

M(z) 0
−X(z) I

)(
zI − A1 −B1

C1 D1

)
=
(
zI − A2 −B2

C2 D2

)(
N(z) Y (z)

0 I

)
.

(203)

Decompose, in a unique way, the polynomial matricesM(z),N(z) in the form

M(z) = M + (zI − A2)M
′(z),

N(z) = N + N ′(z)(zI − A1).
(204)

Substituting in (203), we have(
M + (zI − A2)M

′(z) 0
−X(z) I

)(
zI − A1 −B1

C1 D1

)
=
(
zI − A2 −B2

C2 D2

)(
N + N ′(z)(zI − A1) Y (z)

0 I

)
, (205)
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i.e. we have the following equations:

M(zI − A1) + (zI − A2)M
′(z)(zI − A1)

= (zI − A2)N + (zI − A2)N
′(z)(zI − A1) − MB1 − (zI − A2)M

′(z)B1

= (zI − A2)Y (z) − B2 − X(z)(zI − A1) + C1

= C2N + C2N
′(z)(zI − A1) − X(z)B1 + D1 = C2Y (z) + D2. (206)

Moreover,M, (zI − A2) are left coprime and(zI − A1), M are right coprime.
These coprimeness conditions imply the nonsingularity ofM.
From the first equation we obtainM ′(z)=N ′(z) andM(zI − A1)=(zI − A2)N

which translates into

M = N,

MA1 = A2M.
(207)

The second equation givesY (z) = M ′(z)B1 and

B2 = MB. (208)

From the third equation we inferX(z) = −C2N
′(z) and

C1 = C2M. (209)

We compute now

−X(z)B1 = C2N
′(z)B1 = C2M

′(z)B1 = C2Y (z).

Using this in the last equality of (206), we have

D1 = D2. (210)

Putting (207)–(210) in matrix form, we obtain (185).
7. If such matrices exist, then by Lemma 3.2.3, we obtain the existence of a doubly

unimodular embedding for

(
U 0 zI − A −B

0 I C D

)
,


zI − A −B

C D

−U 0
−K −P

 .

By Part 3, the two behaviors coincide.
To prove the converse we reduce it to the case of state space representations
treated in Part 6. we choose a basis in the signal spaceW for which

D =
(
H11 H12
H21 H22

)
, D =

(
H 11 H 12

H 21 H 22

)
,

whereH22, H 22 are both nonsingular. With respect to this basis we have that the
systems in (186) are permutation NARMA equivalent respectively to



P.A. Fuhrmann / Linear Algebra and its Applications 351–352 (2002) 303–380 3730 0
I 0
0 I

(w1
w2

)
=
zI − A −B

H11 H12
H21 H22

 ,

0 0
I 0
0 I

(w1
w2

)
=
zI − A −B

H 11 H 12

H 21 H 22

 .

(211)

NowzI − A −B

H11 H12
H21 H22

( I 0
H−1

22 H21 H−1
22

)
=
zI − A + BH−1

22 H21 −BH−1
22

H11 − H12H
−1
22 H21 H12H

−1
22

0 I


=
zI − F −G

H J

0 I

 (212)

and similarly for the other system. The new systems, now in observable state
space form, are still NARMA equivalent. Applying Part 6, there exists a constant
invertible matrixU satisfying(

U 0
0 I

)(
zI − F −G

H J

)
=
(
zI − F −G

H J

)(
U 0
0 I

)
.

Putting all this together, we have(
U 0
0 I

)(
zI − A −B

C D

)(
I 0

H−1
22 H21 H−1

22

)

=
U 0 0

0 I 0
0 0 I

zI − F −G

H J

0 I

 =
zI − F −G

H J

0 I

(U 0
0 I

)

=
zI − A −B

H 11 H 12

H 21 H 22

( I 0

H
−1
22 H 21 H

−1
22

)(
U 0
0 I

)
=
(
zI − A −B

C D

)
and so(

U 0
0 I

)(
zI − A −B

C D

)

=
(
zI − A −B

C D

)(
I 0

H
−1
22 H 21 H

−1
22

)(
U 0
0 I

)(
I 0

−H21 H22

)

=
(
zI − A −B

C D

)(
U 0

H
−1
22 H 21U − H

−1
22 H21 H

−1
22 H22

)
.
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This proves the statement by definingK = H
−1
22 H 21U − H

−1
22 H21 and P =

H
−1
22 H22.

8. Assuming nonsingular polynomial matricesSandT exist for which (190) holds,
then applying Lemma 3.2.3, we obtain the existence of a doubly unimodular
embedding for(

S zG − F
)
,

(
zG − F

−T

)
.

By Lemma 3.2.2, so does(
S 0 zG − F

0 I 0

)
,

zG − F

0
−T

 .

Using the identityI 0 0
0 I H

0 0 I

I 0 0
0 I −H

0 0 I

 =
I 0 0

0 I 0
0 0 I


and the equalityH = HT that follows from (190), we infer the existence of a
doubly unimodular embedding for(

S 0 zG − F

0 I H

)
,

zG − F

H

−T

 .

By Part 3, the two behaviors coincide.
In order to prove the converse, we reduce it to Part 7. By our assumption that
G has full row rank, there exist nonsingular constant matricesU, W such that
UGW = (I 0). So(

M 0
0 I

)(
zG − F

H

)
W =

(
zI − A −B

C D

)
. (213)

Similarly, we have(
M 0
0 I

)(
zG − F

H

)
W =

(
zI − A −B

C D

)
W. (214)

These transformations imply the injectivity ofD,D and the right primeness of
the polynomial system matrices(

zI − A −B

C D

)
,

(
zI − A −B

C D

)
.

Thus the two DV state space systems(
0
I

)
w =

(
zI − A −B

C D

)(
ξ1
ξ2

)
,

(
0
I

)
w =

(
zI − A −B

C D

)(
η1
η2

)
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satisfy the conditions of Part 7. Hence, there exists an invertible matricesU, P
and a matrixK for which(

U 0
0 I

)(
zI − A −B

C D

)
=
(
zI − A −B

C D

)(
U 0
K P

)
(215)

holds. Using (213)–(215), we compute

(
U 0
0 I

)(
M 0
0 I

)(
zG − F

H

)
=
(
U 0
0 I

)(
zI − A −B

C D

)
W−1

=
(
zI − A −B

C D

)(
U 0
K P

)
W−1

=
(
M 0
0 I

)(
zG − F

H

)(
U 0
K P

)
W−1,

i.e.

(
M

−1
UM 0

0 I

)(
zG − F

H

)
=
(
zG − F

H

)(
U 0
K P

)
W−1.

So definingS = M
−1

UM andT =
(
U 0
K P

)
W−1, (187) follows. �

Remarks.
1. The equivalence notion given in Part 4 is not new and relates to the study of state

feedback in the context of polynomial matrix descriptions. This has been studied
in great detail in Prätzel-Wolters [1981]. The equivalence of two systems given
in PMD form, given in Theorem 7.1.5, is due to Hinrichsen and Prätzel-Wolters
[1980b].

2. The assumption in Part 7 that in the DV representation (186) the matrixD is
injective is equivalent to the fact that the matrixzI − F −G

H J

0 I


in (212) is in column Kronecker–Hermite form. This, taken together with the
assumption of right primeness is equivalent to the minimality of the represen-
tation, see Schumacher [1989] and Kuijper [1992,1994]. In fact, the proof of
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Part 7 is adapted from Kuijper. Minimality will be discussed in the following
subsection.

3. The three assumptions in Part 8 are equivalent to the minimality of theP -repre-
sentation (188), see Kuijper [1992,1994]. Assumptions (a) and (b) by themselves
again relate to the reduction to column Kronecker–Hermite form.

7.1. Minimality of representations

We end the paper with a brief discussion of minimality of representations. The
results are standard, see Kuijper [1992,1994], however the derivation seems to be
much more elementary as it is based mostly on operations done on polynomial
matrices.

Definition 7.2.
1. We say that a state space representation (184) of a behaviorB, with A : X → X

andB : U → X, is minimal if the dimension of the state spaceX is minimal.
2. We say that a DV-representation (186) of a behaviorB, with A : X1 → X1 and

B : X2 → X1, is minimal if both the dimensions of the spacesX1, X2 are mini-
mal.

3. We say that aP -representation (188) of a behaviorB, with G,F : Z → X and
H : Z → W , is minimal if both the dimensions of the spaces X, Z are minimal.

Note that Part 3 of the definition says that in the representation (188) we use the
minimal number of auxiliary variables (dimZ) and a minimal number of equations
(dim X). The other statements are special cases. The following gives the character-
ization of minimality for the first order systems under discussion.

Theorem 7.2.
1. Necessary and sufficient conditions for the minimality of a P-representation(

0
I

)
w =

(
σG − F

H

)
ξ (216)

are
(a) G has full row rank.
(b)

(
G
H

)
has full column rank.

(c)
(
zG−F

H

)
is right prime.

2. A necessary and sufficient condition for the minimality of a DV-representation(
0
I

)
w =

(
zI − A −B

C D

)(
ξ1
ξ2

)
(217)

is that
(a) D has full column rank.
(b)

(
zI−A
C

)
is right prime.
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3. A necessary and sufficient condition for the minimality of a state space repre-
sentation0 0

I 0
0 I

(y
u

)
=
σI − A −B

C D

0 I

(ξ1
ξ2

)
(218)

is that the pair(C,A) is observable.

Proof.
1. We begin by proving the necessity of conditions 1(a)–(c). IfG is not of full row

rank, then, by applying constant elementary row operations onzG − F , we can
assume without loss of generality that there exists a constant row inzG − F .
It cannot be a zero row as it contradicts minimality. If it is a nonzero row, say
(α1 · · · αm), we can assume without loss of generality thatαm /= 0. This means
α1ξ1 + · · · + αmξm = 0 and henceξm = −α−1

m (α1ξ1 + · · · + αm−1ξm−1). Thus
the number of variables could be reduced, contrary to minimality. This proves
the necessity of 1(a).
Applying an appropriate constant nonsingular matrix on the right, which clearly
does not change the behavior, we can assume without loss of generality that(

zG − F

H

)
=
(
zI − A −B

C D

)
. (219)

Now
(
G
H

)
has full column rank if and only if(

I 0
C D

)
has full column rank. IfD fails to have full column rank, we can assume without
loss of generality that(

zG − F

H

)
=
(
zI − A −B1 −B2

C D1 0

)
with D1 of full row rank. Now, if B2 = 0 then clearly the number of auxiliary
variables can be reduced. IfB2 /= 0, then by elementary column operations we
can eliminate the variables in at least one of the rows of(zI − A − B1 − B2),
which contradicts the assumption of minimality. This proves the necessity of
1(b).
Since we have the equality (219), andD has full column rank, the right primeness
of
(
zG−F

H

)
is equivalent to the right primeness of

(
zI−A
C

)
. If the last matrix is not

right prime, then the pairC,A is not observable, hence in some basis has the
representation
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A =
(
A1 A3
0 A2

)
,

C = (
C1 C2

)
.

The behavior equations are now0
0
I

w =
σI − A1 −A3 −B1

0 σI − A2 −B2
C1 C2 D

 ξ.

The injectivity ofD allows us to assume without loss of generality thatC1 = 0.
Since obviouslyzI − A1 has full row rank, we can apply Proposition 3.5 and
reduced the behavior equations to(

0
I

)
w =

(
σI − A2 −B2

C2 D

)
ξ,

which contradicts minimality. Thus the necessity of 1(c) is proved.
To prove the converse, let us assume that we have twoP-representations of the
same behavior(

0
I

)
w =

(
σGi − Fi

Hi

)
ξ, i = 1, 2. (220)

Let the firstP-representation be minimal whereas the secondP-representation
satisfies assumptions 1(a)–(c). Since these conditions are necessary for mini-
mality, they are satisfied for both systems. Hence, by Theorem 7.1.8, they are
isomorphic, i.e. there exist nonsingular, constant polynomial matricesS andT
for which(

S 0
0 I

)(
sG1 − F1

H1

)
=
(
sG2 − F2

H2

)
T . (221)

2. In this caseG = (I 0) if of full row rank and the result follows from Part 1.
3. In this caseG = (I 0) is of full row rank and(

G

H

)
=
I 0
C D

0 I


has full column rank. Also the right primeness ofzI − A −B

C D

0 I


is equivalent to the right primeness of

(
zI−A
C

)
, i.e. to the observability of the pair

(C,A). So the result follows from Part 1.�
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