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Abstract

The paper presents the results of the study of behavior theory as developed by J.C. Wil-
lems from the point of view of polynomial and rational models. Considering behaviors, in
the discrete time case, to be generalizations of rational models, a natural focal point becomes
the concept of a behavior homomorphism. We give a characterization of behavior homomor-
phisms and analyze their invertibility properties in terms of embeddings in unimodular poly-
nomial matrices. These results, which are of intrinsic interest, are then applied to the uniform
derivation of a large number of results for equivalence in different classes of behavior rep-
resentations. To a certain extent, these are generalizations of the strict system equivalence
concept for the class of polynomial matrix description of systems in the style of Rosenbrock. A
study of behavioral controllability is undertaken and gives some new insights into connections
with geometric control theory. © 2002 Published by Elsevier Science Inc.

Keywords: Linear systems; Behaviors; Behavior homomorphism; Strict system equivalence; Polynomial
models; Rational models

1. Introduction

As the title indicates, the present paper is an individual, and obviously very sub-
jective, account of the author’s experience in the study of Jan Willems’ behavioral
theory, see Willems [1986,1989,1991] and Polderman and Willems [1997]. Since
any two individuals are different, they would look at the same object, be it a work of
art, a piece of music, a novel or for that matter a scientific theory from a different,
highly personal, perspective. Here we use the word study in a broad sense. We do

* Partially supported by GIF under Grant No. I-526-034 and ISF Grant 235/01.
E-mail addresspaf@CS.bgu.ac.il (P.A. Fuhrmann).

1 Earl Katz Family Chair in Algebraic System Theory.

0024-3795/02/$ - see front matter2002 Published by Elsevier Science Inc.
PIl: S0024-3795(02)00282-3



304 P.A. Fuhrmann / Linear Algebra and its Applications 351-352 (2002) 303-380

not equate study with the learning of all the facts available, but rather incorporating
the facts in a broader context that represents the pergdeitanschauung

It is with this in mind that the present work was undertaken. Clearly, even if
a complete study and representation of behaviors, after more than two decades of
research, was possible, it is certainly beyond the ability of the present author. It would
be questionable if a record of the author’s struggle to understand behaviors justifies
publishing a paper of this length. However, in the course of studying the subject,
new insights came up which enable a more coherent and compact description of basic
results in behavioral theory. Moreover, the approach taken in this paper not only clar-
ifies many underlying connections to classical system theory, but introduces methods
that relate to the circle of ideas in operator theory that centers around the commutant
lifting theorem. This connection is not new and, in fact, was introduced by the author,
see Fuhrmann [1976], for the study of homomorphisms of polynomial models, their
invertibility properties and their use in analyzing equivalence of different system rep-
resentation. The study of strict system equivalence in Fuhrmann [1977] is a case in
point. As a matter of fact the introduction and characterization of behavior homomor-
phism and their application to a unified derivation of equivalence results for different
behavior representations are the principal new results described in this paper.

Behavioral theory is an attempt to present a mathematical framework for the de-
scriptions of dynamical systems from a point of view that is not based on the in-
put/output paradigm. Thus, it is a radical change from the standard linear system
theory and its emphasis on a state space point of view. In Willems’ definition a
dynamical syster® as a triple

>=(T,W, %), (1)

whereT C R is thetime axis W is an abstract set called tlsggnal alphabetand

% c WT is called thebehavior The elements o2 are called therajectoriesof

the system. The term behavior can be traced back, in the automata theory context,
to Eilenberg [1974]. For a detailed discussion of this, see Willems [1989]. Thus,
for us, a system has variables taking values in tharsefhe specifics of the sys-

tem are given in terms of its time behavior, namely the set of all permissible time
trajectories. The behavior is thus the result of the underlying laws that govern the
dynamical evolution of the system. As such, the definition of a dynamical system
is very general and little can be said unless more specific assumptions are made.
Since we are interested principally in finite dimensional linear systems, we will re-
strict the class of behaviors significantly. This work was partially motivated by the
applicability of behavioral theory to coding theory, see Rosenthal [2000]. For this as
well as for technical reasons, we restrict ourselves to the case of linear discrete-time
systems over an arbitrary fiell Moreover, we take the time axis to ie= 2.

By the assumption of linearity, the signal alphabet is a linear vector space which we
identify with F™. The space of all time trajectories, thatWg', we identify with
z~1F™[[z71], the space of all formal power serieszn! with vanishing constant
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term. The space1F™[[z~1]] has a naturaF[z]-module structure induced by the
left or backward shift operato§_ or o defined by

S h=och=m_zh, hez *F"[[z7Y], 2)

wherer_ is the projection ofF” ((z~1)) onto z=1F™[[z~1]] corresponding to the
direct sum representation

F"((zh) = F"zl @z TP (12711, 3)
The complementary projection is denoted Ay. In principle, behaviors are lin-
ear, shift invariant subspaces, ifgz]-submodules, of 1F™[[z~1]]. However, this
class of submodules is too large and we further restrict it by requiring behaviors to
be linear, shift invariant and complete subspaces. In our context, completeness turns
out to be a purely algebraic constraint and this will be explained in Section 3. It is
equivalent to the existence of an autoregressive (AR), or kernel representation, of
the behavior. This is what makes the study of these system managable by algebraic
techniques.

As soon as this definition of a behavior is adopted, one has to recall the funda-
mental insight of Kalman, see Chapter 10 in Kalman et al. [1969], of treating a finite
dimensional, linear time invariant system asfn]-module. Of course, the setting
in which Kalman worked was that of input/output descriptions. Indeed, it seems
that the principal break of behavioral theory from the classical theory lies in chang-
ing the emphasis from input/output maps to either full time or future trajectories.
In the Kalman approach to linear systems, realization theory is the corner stone. The
realization procedure is based on the restricted i/o map, i.e. a Hankel operator, that
maps past inputs to future outputs. In fact, under Nerode type equivalence, the past
inputs provide a natural abstract state space. In behavioral theory, as presented in this
paper, one looks, to the contrary, at the set of future trajectories. In the case of i/o
systems we look at the map from state at time zero and future inputs to future outputs.
In principle, all the information on the system structure, up to natural equivalences,
should be recoverable from this data, i.e. from future trajectories. The history of the
use of spaces of trajectories in the analysis of linear systems predates behavior the-
ory. In particular one should note the contributions of Rosenbrock [1970], Pernebo
[1977], Hinrichsen and Pratzel-Wolters [1980a,b], Préatzel-Wolters [1981], Callier
and Desoer [1982] and Blomberg and Ylinen [1983].

As far as this author is concerned, the principal insight that was needed to gain
a better understanding of behaviors is the fact that a behavior is a generalization of
a rational model, see Fuhrmann [1976]. It is easily established that rational models
are identical to a subclass of behaviors, specifically to the subclass of autonomous
behaviors. Since a principal tool in the study of polynomial and rational models
was the characterization of the corresponding model homomorphisms and isomor-
phisms, it is self-evident that a corresponding study has also to be undertaken in
the behavioral setting. Thus, given a behavrit is natural to consider the map
o? which is defined as the restriction of the (backward) shifto the behavior.

Given two behaviorss;, i = 1, 2, a behavior homomorphism is defined to be a map
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Z : B1 — B> satisfyingZo?1 = ¢#2Z. Thus behavior homomorphisms are inter-
twining maps and their analysis relate to the celebrated commutant lifting theorem
of Sarason and Sz.-Nagy—Foias. Thus it is expected that the method presented in this
paper will be found to be applicable in other contexts, most notably in the setting of
Hardy spaces. Some of the relevant mathematics for this can be found in Fuhrmann
[1981b] and Fuhrmann [1994].

We recall that the approach to the study of equivalence in the setting of polyno-
mial matrix descriptions of linear systems taken in Fuhrmann [1977] is based on the
characterization of isomorphism of two polynomial models as derived in Fuhrmann
[1976]. The derivation of this result is split into the characterization of all module
homomorphisms of two polynomial models and, once this has been established, the
characterization of invertibility conditions on the homomorphisms in terms of co-
primeness conditions. Our aim in this paper is to adopt this philosophy and apply
it to the study of behaviors. The principal insight is the fact that a behavior is a
generalization of a rational model, see Fuhrmann [1976]. Thus the homomorphisms
of rational models can be easily derived from the characterization of the homomor-
phism of polynomial models. This gives us a clue to the characterization of behavior
homomorphisms which we derive in Section 4.

The paper is structured as follows: Section 2 presents some basic material, mostly
on the representation df[z]-submodules ofF™[z], polynomial models, duality,
model homomorphisms and the shift realization. This material is a prerequisite for
all that follows either because it is actually used or, more importantly, as it serves as a
guide to the appropriate extensions. Finally, we recall the shift realization developed
by the author in Fuhrmann [1976,1977].

In Section 3 we study the concept of completeness of a submodute 'of
F™[[z~1]] and use it to derive the kernel representation, due to Willems [1986],
of a behavior. We proceed to study subbehaviors in terms of factorization theory and
extend some results on sums and intersections of rational models to the behavioral
setting. The idea is to study geometry in terms of the arithmetic of, in this case rectan-
gular, polynomial matrices. We proceed to study the concept of a doubly unimodular
embedding which turns out to be a principal technical tool in our development.

In Section 4 we fill what seems to be a gap in the behavioral literature by introduc-
ing the concept of a behavior homomorphism and, more specifically, that of a behav-
ior isomorphism. These seem to be basic objects and, once they are characterized, the
study of the equivalence of different behavior representations is simplified. All the
results contained in this section could be easily adapted for the study of integral ma-
trices, i.e. matrices over the ring of integers or, even more generally, to matrices over
an arbitrary Euclidean domain. For reasons of readability, we leave the setting asitis.

To study behavior homomorphisms, we first extend the analysis and character-
ization of the linear maps intertwining two polynomial or rational models and their
invertibility properties. We do this by looking at factor modules of the free module
of polynomial vectors, that is at factor modules of the foFifi[z]/ M F™[z], with
M(z) a p x m polynomial matrix which, without loss of generality, can be taken
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to be of full column rank. We characterize the torsion submodule of such a factor
module in terms of factorization theory. THgz]-homomorphisms between such
factor spaces are described and their invertibility properties characterized in terms
of coprimeness conditions and the existence of doubly unimodular embeddings. As
a byproduct, we obtain the classical characterization of finitely generated modules
over the polynomial ringF[z]. By using appropriately duality theory, we extend
these results to behavior homomorphisms. As indicated above, all of this is related
to lifting theorems, which are the algebraic analogs of the commutant lifting theorem.
While we discuss these results for the case of the Fifig, the results could easily
proved for other Euclidean rings or even more generally principal ideal domains. Of
particular potential interest is the derivation of these &dre. a theory of integral
matrices.

Section 5 is devoted to the description of various representations of behaviors.
We pay special attention to a representation we call a normalized ARMA (NARMA)
representation which turns out to be of exceptional importance for the analysis of var-
ious classes of representations. This has been studied before in Schumacher [1989]
where it is called an AR/MA representation. Its importance lies in the fact that every
behavior representation is reducible to a NARMA one. The transformation to first
order representations, essentially realization theory, is described via the use of the
shift realization. This section is very close in spirit to Schumacher [1989] but differs
somewhat in results and techniques.

Section 6 is devoted to the study of the behavioral controllability concept of Wil-
lems. We introduce the notion of reachability in the behavioral setting. It turns out to
be equivalent to controllability but easier to apply. Moreover, we show the relation of
behavioral controllability to the classical controllability characterization of the shift
realization as well as to the concept of controllability in geometric control theory.
We also discuss briefly the question of stability in the behavioral setting.

In Section 7 we present the principal application to behavioral theory and that is
the unified derivation of equivalence results for different behavior representations.
The question of equivalence is to find characterization of two system representations
which give rise to the same behavior. These problems are not new. The Kalman
state space isomorphism, see Kalman et al. [1968], result is of this type. So is Ro-
senbrock’s [1970] notion of strict system equivalence and its modification known as
Fuhrmann [1977] system equivalence, see also Kailath [1980] and Ozgiiler [1994]. In
the context of behaviors of particular importance is Hinrichsen and Pratzel-Wolters
[1980a,b], the work of Kuijper [1992,1994] and of Schumacher [1989]. In fact, part
of the insight for the present work is due to several, highly suggestive, formulas
in Kuijper’s thesis. More recently, in the context of multidimensional systems, Zerz
[2000] as well as Hou et al. [1997] contain similar ideas. The paper by Valcher [2000]
may also be relevant. This section is concluded with a study of minimality of several
behavior representations. The results are familiar and appear in Kuijper [1992,1994],
however the derivations are different inasmuch as they use elementary operations on
polynomial matrices rather than state space based iterative algorithms.
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Limitations of space and time have excluded several topics from this paper. We
have already alluded to the possible extensions of the behavioral theory to the Har-
dy space context. There is already some work in this direction, see Weiland and
Stoorvogel [1997]. However, we feel that the approach taken in the present paper
has a great potential usefulness in that context. Moreover, since it is functional ori-
ented, it might be extended to some infinite dimensional situations. Another topic
that was not treated sufficiently, but only hinted at, is the study of the connections
between behaviors and geometric control theory in the style of Basile and Marro
[1973] or Wonham [1979]. We find it surprising that this connection has not been
sufficiently addressed in the numerous publications on behaviors. While behaviors
can and are introduced in the setting of time trajectories, it is easy to reformulate
the problems and study behaviors in polynomial terms. Thus essentially the study
of behaviors is reducible to the study of rectangular polynomial matrices arising
through AR or ARMA representations of the behavior. Rectangular polynomial ma-
trices appear most naturally in the study of finite dimensional, linear, time invari-
ant systems and they represent numerator matrices in matrix fraction representa-
tions or polynomial system matrices in the Rosenbrock [1970] formulation of linear
system theory. Incidentally, polynomial system matrices have their own interpre-
tation as representing the zero structure, see Hautus and Fuhrmann [1980] for the
details. Thus the study of rectangular polynomial matrices is intimately related to
the study of zeros of rational matrices. This in turn is the focal point of geometric
control. Another approach to the analysis of zeros of rational matrices is the ab-
stract module theoretic approach initiated by Wyman and Sain [1981] and Wyman
et al. [1989]. The link between geometric control theory to polynomial theory has
its origin in Emre and Hautus [1980] and Antoulas [1980], with later developments
by Fuhrmann and Willems [1979,1980], Fuhrmann [1981], Khargonekar and Emre
[1982] as well as the work of Ozgiiler [1986]. All this body of work is based on
the theory of polynomial models introduced in Fuhrmann [1976,1977]. Thus it is
to be expected that deep links exist between behavioral theory and geometric con-
trol. This will be part of a continuation of the present research. Another topic that
has not been addressed in this paper is the study of symmetries in the behavioral
setting.

The author would like to thank an anonymous reviewer who pointed out the refer-
ence to the seminal paper, Oberst [1990], which resulted in significant simplifications
and streamlining of the original exposition.

2. Preliminaries
2.1. Polynomial and rational models

Let F denote an arbitrary field. We will denote /" the space of alin-vectors
with coordinates irF. F[z] the space of all polynomials with coefficients ft",
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z~LF™[[z71]] the space of formal power series vanishing at infinity &ft((z 1))
the space of truncated Laurent series. ket and 7_ denote the projections of
F™((z~1)) on F™[z] andz~1F™[[z~1]] respectively. Since

F™((z7h) = F"[zl @z ' [z 1) @
74+ andx_ are complementary projections. We recall thag F™*"[z] is unimod-
ular if it has a polynomial inverse. An elemefte F’*™[z] is left primeif it has
a polynomial right inverse. Two polynomial matricés P areleft coprimeif the
polynomial matrix(Q P) is left prime. Right primeness and right coprimeness are
analogously defined. We proceed to introduce polynomial and rational models. Giv-
en a nonsingular polynomial matrBx in F*"[z] we define two projectionsp :
F™[z] — F™[z] andz? : z72F™[[z71] — z71F"[[z~1]] by

npf =Drn_D71f for f e F"[z], (5)

7Ph =n_DYx,Dh forh ez 1FM[7Y), (6)
and define two linear subspacesk*[z] andz~1F"[[z~1]] by

Xp=Immnp (7)
and

XP =imx=P. (8)

An elementf of F”[z] belongs taXp if and only if 7. D=1 f = 0, i.e. if and only if
D~1f is a strictly proper rational vector function. Thus we have also the following
description of the polynomial modédp:

Xp={feF"[zl| f=Dh, hez *F"[[z7'1)}. 9)
The advantage of this characterization is that it makes sense for an arbitxany
polynomial matrixV. Thus we define the following Emre and Hautus [1980]:

Xy ={f eFPlzl| f =Vh, hez Pz 11} (10)
Analogously/: € X? ifand only ifz_Dh = 0, i.e. if and only ifhis in the kernel of
the Toeplitz mapZ p : z F"[[z 1] — z~1F™[[z1]] defined byZ ph = 7_Dh.
We shall also, for reasons of compatibility with behavioral theory usage, write
S_andD(o) =7 p.

We shall refer taX p as apolynomial modeWwhereas tox” as arational model

We turnX p into an F[z]-module by defining

p-f=mppf forpeFlz]l, feXp. (11)
Note that Kettp = DF™[z] and thattp : F™[z] — Xp is a surjective module ho-
momorphism. Thus we have the important isomorphism

Xp >~ F"[z]/DF"[z]. (12)

The representation of quotient modules is more general inasmuch as it makes sense
for arbitrary submodules. We shall return to this in Section 3. We recall, see Fuhr-
mann [1976], that a submoduld C F™[7] is afull submodulef F™[z]/M is a
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torsion module; alsay! is full if and only if M has a representatia = D F™[z]
with D nonsingular. One might therefore mimic the construction of polynomial and
rational models for the case of nonfull submodules or, equivalently, for the case of
rectangular polynomial matrices. Indeed, this can be done and has important impli-
cations for behaviors. We will pursue this subject in Section 3. It is easy to check that
the set of all rational models coincides with the set of all finitely generated torsion
submodules of "1 F™[[z~1]]. For more on this, see Proposition 3.4.

Similarly, we introduce inx” a module structure by

p-h=mn_ph forpeFlz], heXP. (13)

In Xp we will focus on a special mafp, a generalization of the classical com-
panion matrix, which corresponds to the action of the identity polynomiad.

Spf =npzf forfeXp. (14)
It is easily checked that
Spf =zf(z) — D(2)éy, (15)

where the constant vectdgr depends linearly of. In fact we havet; = zD
(z)~1f. It follows from (14) that the module structure ¥y, is identical to the mod-
ule structure induced byp throughp - f = p(Sp) f. With this definition the study
of Sp is identical to the study of the module structureof. In particular the in-
variant subspaces 6f, are just the submodules &fp which are characterized next.
They are related to factorization of polynomial matrices.

Similarly, we introduce inx? a module structure, given by

Sph=m_zh, heXP, (16)

i.e. SP is the restriction of the backward shift operator to the backward shift invariant
subspace?.

Polynomial and rational models are closely related. Thus we have the following
result obtainable via a trivial computation.

Proposition 2.1. The polynomial modek ,, and the rational modek? are iso-
morphic with the isomorphisnpp : X? — Xp given by f — D~1f. Moreover
we have

Sppp = ppSP. (17)

The set of all full submodules is a lattice and the set operations are given by the
arithmetic of nonsingular polynomial matrices.

Theorem 2.1.

1. Given nonsingular polynomial matricdd;, D2 € F™*™[z], thenD1F™[z] C
Do F™[z] if and only if D1 = D, E for some nonsingular polynomial matrix E

2. Given nonsingular polynomial matricd® € F"*"[z],i =1, ..., k, then
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k
Y DiF™z] = DF™[z], (18)
i=1

where D is a greatest common left diviggrc.l.d) of the D;.
3. Given nonsingular polynomial matricd® € F™"*"[z],i =1, ..., k, then
k
(\DiF™z]l = EF™[z]. (19)

i=1
where E is a least common right multipllec.r.m. of the D;.

The following theorem, a consequence of the previous one, is of great importance
as it connects factorization theory to the geometry of invariant subspaces.

Theorem 2.2.

1. Let D € F™*™|z] be a nonsingular polynomial matriXA subset M ofX p is
a submodulgor equivalently anSp invariant subspaceif and only if M =
D1X p, for some factorizatiorD = D1 D, with D; m x m, necessarily nonsin-
gular, polynomial matrices

2. Asubset M o ? is a submoduleor equivalently ans? invariant subspaceif
and only ifM = X P2 for some factorizatiold = D1D; with D; m x m, neces-
sarily nonsingulay polynomial matrices

3. Asubset M o ? is a submoduleor equivalently ans? invariant subspaceif
and only ifM = X P1 for some factorizatioD = D1D, with D; € F"™ " [z].

We summarize now the all important connection between the geometry of invari-
ant subspaces and the arithmetic of polynomial matrices. This allows us to make
factorization theory one of the cornerstones of algebraic system theory.

Theorem 2.3. LetM;, i =1,...,s, be submodules dfp, having the representa-
tionsM; = E; X r,, that correspond to the factorizations
D = E;F;.

Then the following statements are true

1. My Cc MyifandonlyifE; = E2R, i.e. if and only ifE> is a left factor ofE;.

2. (i_1 M; has the representatiof, X , with E, the |.c.rm. of theE; and F, the
g.c.r.d. of theF;.

3. M1+ ---+ M; has the representatiofi, X r, with E,, the g.c.l.d. of theE; and
F, the l.c.l.m. of all theF;.

Corollary2.1. LetD =E;F;fori =1,...,s. Then
1. We have

Xp = ElXF1+~'~+ESXF3
if and only if theE; are left coprime
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2. We haveg);_; E; X, = 0if and only if theF; are right coprime
3. The decomposition

Xp=E1Xp, ® - @ EsXF,
is a direct sum if and only ib = E; F; for all i, the E; are left coprime and the

F; are right coprime

The following theorem, proved in Fuhrmann [1976], is the algebraic version of
the celebrated commutant lifting theorem proved, in the context of operator theory
in Hilbert spaces, by Sarason in the scalar case and by Sz.-Nagy and Foias in the
general case.

Theorem 2.4. LetD € FP*™[z]andD € FP*"[z] be_nonsi_ngular. The#d : Xp —
X5 is anF[z]-homomorphism if and only if there exi$te F7*7 andN € F™*™[¢]
such that

ND = DN (20)
and

Zf = npN f. (21)

The following theorem, proved in Fuhrmann [1976], characterizes the invertibility
properties ofF[z]-module homomorphisms between polynomial models. In turn, it
is based on operator theoretic results, see Fuhrmann [1981b] and the further refer-
ences therein.

Theorem 2.5. LetZ : Xp — Xp, be the module homomorphism defined by

Zf =npNf (22)
with

ND = DN (23)
holding Then

1. KerZ = EXg, whereD = EG and Gis ag.c.r.d. of D and N

2. ImZ = E1Xg,, whereD = E1G; andEj is ag.c.l.d. ofD and N.

3. Zis invertible if and only if D and N are right coprime arfd and N are left
coprime

Both Theorems 2.4 and 2.5 will be generalized in Section 3. The isomorphism
between polynomial and rational models proved in Proposition 2.1 allows us to trans-
late the content of Theorems 2.4 and 2.5 to the rational model context. Thus we
have:
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Theorem 2.6. LetD e F™*™"[z] and D € F™*™[¢] be nonsingularThenZ : x”
— XP is an F[z]-homomorphism if and only if there exidt e F7*7 and N €
F™*™M[z] such that

ND = DN (24)
and

Zh=7_Nh, heXP. (25)

Theorem 2.7. LetZ : XP — XP be the module homomorphism defined(2§),

with condition(24) satisfied Then

1. KerZ = X% whereD = EG and Gisagc.r.d. of Dand M

2. ImZ = X%, whereD = EG andEisag.c.l.d. oD and N

3. Zis invertible if and only if D and N are right coprime arfd and N are left
coprime

2.2. Duality

In this section we review basic duality results as developed in Fuhrmann [1981].
These are crucial for the study of behaviors. Given a vector spawger a fieldF we
denote byV* thedual spaceof V that is the space of linear functionals ¥nGiven
v* e V*andv € V we will write

[v, v*] = v*(v).

In the special case df = F™ we can also identify* with F and then we write

[x, y] = yx wherey denotes the transpose of the column vegtdihe sole exception
will be the complex inner product spaces whirey] will be interpreted as the inner
product itself. Now givery € F"((z~1)) andg € F”((z1)) we define a pairing

[f.el= > [fj. g j-1l (26)

j=—00

It is clear thaf-, -] is a bilinear form onF” ((z~1)) x F"((z~1)). Itis well defined

as in the defining sum at most a finite number of terms are nonzero. Also this form
is nondegeneratén the sense thdtf, g] = 0 for all g € F™((z~1)) if and only if

f = 0. Given a subse¥ c V we define itsaannihilator M+ by

Mt = {v* e V¥|[m, v*]=0V¥m € M}.
Similarly if M c V* we define thgreannihilator-M by
‘M= {v eVi[v,v*]=0Vv* e M}.
Itis a simple check of the definitions that'[z]* = F™[z] andt (F™"[z]) = F™[z].

Theorem 2.8. The dual space of™[z]is z 1F™[[z~1]].
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Proof. Clearly every element € z~1F"[[z~1]] defines, by way of the previous
pairing (26), a linear functional oA™[z]. Conversely letb be a linear functional on
F™[z]. Itinduces linear functionalks; on F™ by defining

di(x) = [Z'x, p] = B(Z'x)

and an element € z71F™[[z71]] is defined by letting:(z) = Z?.;O(pjz_j_l. It
follows that®(f) = [f, h]. O

Throughout the paper, given a matdx we will denote byA its transpose. The
same holds for polynomial matrices or, more generally, to elemerﬂgﬁfl((z:l)).
Thus givenA € FP*"((z~1)) with A(z) = Z;’.:_oo A;z/ we will denote byA the
element of F*7 ((z~1)) given by

n
AQz) = Z Ajzj.
j=—00
As usual, given bilinear forms oW x V* andW x W*andamap : V - W
thedual mapA* : W* — V*is defined by the equality
[Av, w*] = [v, A*w™].

In the following proposition we summarize, without proofs, the computational
rules related to the duality defined by (26). For the full details, see Fuhrmann [1981a].

Proposition 2.2.
1. GivenA e FP*"((z71)). LetL, : F"((z~1Y) — FP((z~1) be the correspond-
ing Laurent operator defined by

(Laf)@=ARfR) =) g7/, (27)
whereg; =>"7°_ _Aj_if;. Then
(La)*=Lj. (28)

2. The duals of the projections, andz_ are given by
i =n_, nf=nmy. (29)

3. F™[z] is a submodulerelative to the ringF[z], of F”((z™1)) then F™[z] is
S-invariant thus we can defirfg. by

S+ == S|Fm [Z]
We also defing_ : z 1F"[[z71]] — z71F™[[z~1]] by
S_h=mn_zh.

4. The dual of the mag; : F™[z] — F™[z]is given bys* = S_ : z7F"[[z71]]
— 7 P71
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5. LetM C F™[z] be a submoduléThenM is a submodule of 1 F™[[z~]].
6. LetM = DF™[Z] Withp € F™™M[z] nonsingular ThenM+ = xP.
7. The disjoint ofrp is 7 2.

By theorem 2.8(F™[z])* is z~1F™[[z~1]]. However, F"[z] is not a reflexive
space. Thus Proposition 2.2.5 is true in one direction only. Purely on mathematical
grounds, it is of great interest to characterize those submodetstét” [[z~1]] that
are annihilators of submodels Bf[z]. This will be done in Section 3. Itis a pleasant
surprise that these submodels coincide, in our context, with behaviors in the sense of
Willems. Thus, they have important system theoretic significance.

In due course, this allows us to analyze set operations on behaviors by reduction
to the corresponding analysis of set operations on submodule jaff and these
in turn reduce to the arithmetic of polynomial matrices. These duality results can
be traced to Fuhrmann [1981]. A detailed analysis of a related duality theory, in the
context of multidimensional systems, is available in the major paper Oberst [1990].

In our characterization of torsion quotient modulesFéf[z] and of finitely gen-
erated torsion submodulesof! F[[z~1]] there were many similarities. This is not
coincidental but is related to a further study of duality in the functional model setting.
With our identification of;~1F”[[z~1]] as the dual o™ [7] it follows that if M is
a subset o™ [z] thenM~ is a subset of "LF™[[z71]].

2.3. The shift realization

We recall now the shift realization introduced in Fuhrmann [1976,1977]. Assume
a proper rational functiofs is given by

Gi@)=VRTR U@ + W), (30)

whereV, T, U, W are appropriately sized polynomial matrices drid nonsingular.
This representation is the cornerstone of Rosenbrock’s theory. To this representation
we associate, following Rosenbrock [1970], the polynomial system matrix

- (7 3)

To the polynomial system matrix (31), we associate the state spaead the maps
Af =Srf=mnrzf, fe€Xr,
Bn=npUn, neFm™,

Cf =(VT )1,
D =mn,G.

It was established in Fuhrmann [1977] that this is a realizatio@,afalled theshift

realization This realization is controllable (reachable if we consider discrete time)

if and only if T, U are left coprime and it is observable if and onlWif T are right
coprime.

(32)
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From any minimal realization we can easily construct a basis for the model space
associated with a right coprime factorization. This extremely useful construction
goes back to Hautus and Heymann [1978], see also Wimmer [1979]. We omit the
proof.

Theorem 2.9. Let G be a proper rational function of McMillan degree n and let

G:(é g) (33)

be a minimal realizationThenC(zI — A)~1 = T'(z) "1H(z) for some polynomial
matrices T and HDefiningU (z) = H(z) B we have

G=D+T W =7"YTD+U). (34)

A basis forX 7 is given by the column&; of H and a basis foX” is given by the
columns ofC(zI — A)~L. In particular, we have

X" ={C@l - A& e R (35)

As a result we conclude that, given any polynomial mattjthenT —1 N is strict-
ly proper if and only if there exists a constant matfifor which N(z) = H(z)K.

2.4. Bits of geometric control

As noted in Section 1, there are deeper connections between behavior theory and
geometric control. This topic is beyond the scope of this paper. However, we will
indicate in the sequel some of these connections. To this end we will need some
results concerning the polynomial model approach to geometric control. This line
of research originated in Emre and Hautus [1980] and continued in Fuhrmann and
Willems [1980], Fuhrmann [1981] and Khargonekar and Emre [1982]. Very relevant
to this topic is also Ozgiiler [1986].

We recall that, given a state space system with transfer function

G(2) = (f g)

then a subspac#” of the state spac&’ is calledcontrolled invariantif, for some
feedback magK, we have(A + BK)7 C /. It is an output nulling controlled
invariant subspacé, for some feedback mald, we have(A + BK)7" C 7~ C Ker

(C + DK). Finally, a subspace& c Z is anoutput nulling reachability subspadg

it is an output nulling controlled invariant subspace and satisfies, for some feedback
mapK, # = (A + BK|# N #). It is established in geometric control theory that,
given a state space system, there exist unique maximal output nulling controlled in-
variant and maximal output nulling reachability subspaces which are denotéed by
and2* respectively. The following theorem presents the relevant characterizations.
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Theorem 2.10. Let G = Q1P be ap x m proper rational function Then with
respect to the associated shift realizati@®), we have

V= Xp,
R =XpNPF™[7].
If G, and hence Phas full row rank therv™ = £* if and only if P is left prime

(36)

For the case of a strictly proper rational functi@Gnthe characterization of ™
is due to Emre and Hautus [1980] and Fuhrmann and Willems [1980]. The charac-
terization of Z*, in a slightly different formulation, is due to Fuhrmann [1981] and
Khargonekar and Emre [1982]. The full proof of these, and related results, will be
published elsewhere.

3. Elementsof behavior theory

The object of this section is to present the basics of behavior theory in the setting
of discrete time systems. We give the definition of dynamical systems and behaviors
as used in Willems [1991]. In this setting the notion of completeness can be ad-
dressed purely from the algebraic point of view. This we do and rederive the kernel
representation of behaviors. This is a key result in behavioral theory inasmuch as it
allows to reformulate the problems and study behaviors in polynomial terms. Thus
essentially the study of behaviors is reducible to the study of rectangular polyno-
mial matrices arising through a kernel, or AR, representation of the behavior. We
proceed to the study of subbehaviors and their connection to factorization theory.
This is an extension of the fact that in the theory of polynomial and rational mod-
els invariant subspaces relate to factorizations. Next we proceed to introduce and
study doubly unimodular embeddings. This is an important technical subject that
is used throughout the rest of the paper for studying the invertibility properties of
behavior homomorphisms. We conclude with some more results on factorizations of
polynomial matrices and behaviors.

The behavioral approach differs from the classical approach, dominated by Kal-
man'’s ideas, see Chapter 10 in Kalman et al. [1969], in changing the emphasis from
input/output maps to either full time or future trajectories. In the Kalman approach
to linear systems, realization theory is the corner stone. The realization procedure is
based on the restricted i/o map, i.e. a Hankel operator, that maps past inputs to future
outputs. In fact, under Nerode type equivalence, the past inputs provide a natural
abstract state space. In behavior theory to the contrary one looks at the set of future
trajectories. In the case of i/lo systems we look at the map from state at time zero and
future inputs to future outputs. In principle, all the information on the system should
be recoverable from this data. The history of the use of spaces of trajectories in the
analysis of linear systems predates behavior theory. In particular one should note the
contribution of Rosenbrock [1970], Blomberg and Ylinen [1983], Pernebo [1977],
Hinrichsen and Pratzel-Wolters [1980a,b] and Pratzel-Wolters [1981].
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We follow Willems [1991] in defining alynamical system¥ as a triple
X=(T,W,%), (37)

whereT C R is thetime axis W is an abstract set called tlsggnal alphabetand
#cWT is called thebehavior The elements o4 are called thérajectoriesof the
system. In this generality the definition has its origin in automata theory, see Eilen-
berg [1974].

This definition is very general and is representation free. In the context of this
paper we will identifyT with Z, the set of positive integers, assufhés an ar-
bitrary field and takeW = F™. We identify W' with z—1F"[[z~1]]. The space
z~LF™[[z71]] has a standarfi[z]-module structure induced by theft or backward
shift operatorS_ or o defined by

S h=ch=m_zh, hez YF"[[z7Y]. (38)

Recall thatr_ is the projection ofF” ((z~1)) ontoz~1F™[[z~1]] corresponding to
the direct sum representation

F™((z™h) = F"[z1 @ z T F"[[z 1] (39)

and that the complementary projection is denotee by

Given a polynomial matriX (z) € FP>*"™[z], it defines a Toeplitz magp, usually
denoted in the behavior literature B¢o'), as the mapp = P(o) : z LF™[[z71]] —
2 YFP[[z7 1] via

Jph = P(o)h =n_Ph, hez *F"[[z7Y). (40)

Clearly the operators of the fori® (o) are a special class of Toeplitz operator and it

is their kernels that are of interest to us. In fact we would like to characterize those
subspaces of 1F?[[z~1]] that are representable in the form Kefo) for some
polynomial matrixP(z). This kernel representatigrdue to Willems [1986], is the

key result for the study of behaviors. In what follows we shall describe a purely
algebraic approach to this representation result. To this enH,beta linear vector
space over an arbitrary field and letX* be its algebraic dual. Given a subspace
M c X, we denote by its annihilator, i.e.

M* = |h e X*|h|M = 0}. (41)
Similarly, given a subspacé c X*, we denote by-V its preannihilator, i.e.
LV = {x e X|h(x) =0Vh € V}. (42)
We have the following characterization of preannihilators.
Proposition 3.1. Let X be a linear vector space over a field F and )&t be its
algebraic dual Then a subspacl c X* satisfies
Vt=v (43)

if and only if for anyhg ¢ V there exists an € -V such thathg(x) 0.
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Proof. We prove both implications by contradiction.

Assume(1 V)L = V holds but the other condition is not satisfied, i.e. there exists
ho ¢ V such that for alk € -V we havehg(x) = 0. This implieshg € (*V)L =V
which is a contradiction.

Conversely, assumg- V) # V. Since clearlyV c(+ V)1, it follows that there
existsho € (+ V)1 — V such that for alk € -V we havehg(x) = 0. Again we have
obtained a contradiction.

Since submodules of the spat&|[z] of vector polynomial are well studied and
have a nice representation in terms of polynomial matrices, it leads immediately to
a nice representation of those submodules dfF"[[z~1]] that are annihilators of
submodules of™[z].

As an F[z] module, the space 1 F™[[z~1]] has a multitude of submodules, i.e.
linear, shift invariant subspaces. In this class we single out a special, small, subclass
which is determined by the extra property of completeness.

Definition 3.1. In z~1F™[[z~1]] we define the projectionB,, n € Z, by

oo n

[ DL ks (44)
i=1 i=1

zt zt

We say that a subse® c z~1F"[[z~1]] is completeif for any w = 7%, w;z ™" €
z~LF™[[z71]] and for each positive integt, Pyw € Py (%) impliesw € 4. A
behaviorin our context is defined as a linear, shift invariant and complete subspace
of z7LF™ [z~ ).

Proposition 3.2. Let F be a field and lev c z=1F™[[z1]] be a subspacé&hen V
is complete if and only if

twnt=v. (45)

Proof. AssumeV is a complete subspaceofl F"[[z~1]]. Leth € z71F™[[z~1]] —

V. With the projections defined in (44), it is clear th8f (V) is a finite dimen-
sional vector space, with diPy (V) <mN. Sinceh ¢ V and V is assumed
complete, there exists an inda¥ for which Py, ¢ Pn,(V). By elementary linear
algebra, there exists a linear functiogabn Py, (V) such thatp|Pn,(V) = 0 and

¢ (Pnyh) # 0. Extending the definition o$ to PNO(z_lF’"[[z_l]]) it is clear that
we can identify¢ with a polynomial vectorf € Py,[z] C F™[z]. Thus we have
fetv and h(f)#0. Applying Proposition 3.1 we conclude that (45)
holds. O

Propositions 3.1 and 3.2 are due to Fonf [2000]. The principal characterization of
behaviors, due to Willems [1986], is now an easy corollary.
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Theorem 3.1. A subset# c z 1F™[[z~1]] is a behavior if and only if it admits a
kernel representation.e. there exists @ x m polynomial matrixP (z) for which

B =KerP(o) = {h ez *F"[[z 1| 7_Ph = P(c)h = 0}. (46)

Proof. Let# c z~1F™[[z~1]] be a behavior. By completeness we haVves)- =
4. Clearly, -4 is a submodule of”[z], hence of the formt%# = QF™[z] for
some polynomial matrix (z). An elementary calculation yield8 = (Q F™[z])* =
Ker Q(c) and we seiP(z) = Q(z).

Conversely, assumingg = Ker P (o). Clearly, 4 is linear and shift invariant.
Moreover, we have-% = P FP[z] and hencg1 %)L = Ker P(c) = #. By Prop-
osition 3.2,% is complete. [

Since, given two submodule® ¢ N c F™[z], we clearly haveN+ c M+, we
can state the following all important result due, in slightly different form and in the
multidimensional setting, to Oberst [1990].

Theorem 3.2. The mapping — M~ establishes a bijective, inclusion reversing
correspondence between submoduleB’fz] and behaviors in =1 F™[[z~1]].

Theorem 3.2 is a key result inasmuch as it allows us to study behaviors in
z~1F™[[z~1] by studying submodules df™[z]. As a first step, we study the full
lattice of submodules off™[z] and its relation to the factorizations of rect-
angular polynomial matrices. This is a generalization of Theorem 2.1 which covered
only the case of full submodules. Thus, omitting the standard proof, we
have:

Theorem 3.3.
1. Any submodul@s C F™[z] has a representation of the form
M = PF'[z] (47)

for some polynomial matri® e F*![z] of full column rank P (z) is uniquely
defined up to a right unimodular factor
2. For P € F"™¥[z], we have

PF'[z] = F"[z) (48)

if and only if P is left prime
3. Given two submodule®; = P;Fli[z], i = 1, 2, with P; € F"*!i[7] of full col-
umn rank thenMy C M» if and only if

Py = PQ (49)

for some polynomial matrix) e Fl2xli[z], i.e. P, is a left factor or divisor,
of Py.
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4. Given submodulest; = P;Fli[z]c F™[z],i =1, ...k, then

k
(M = PF'[z], (50)
i=1

where P is a greatest common left diviggre.l.d) of the P;.
5. Given submoduleaf; = P;Fli[z]Cc F™[z],i =1, ..., k, then

k
> M; = PF'[z], (51)
i=1

where P is a least common right multipgllec.r.m) of the P;.

Given ak x m polynomial matrix P(z), then KerP = {f € F"[z]|Pf = 0}C
F™[z] is clearly a submodule and hence has also an image representatién=Ker
Im Q for an essentially unique polynomial mati@xof full column rank. However,
not every submodule df”[z] has a kernel representation. The following proposition
characterizes submodules having a kernel representation. As we shall see later, this
characterization is dual to the characterization of controllable behaviors.

Proposition 3.3.
1. LetP e FF"[z] and letE € F**¥[z] be nonsingularThen

KerE(z)P(z) = Ker P(z). (52)

2. Given P € F*™[z]. ThenKer P has a representation of the forKer P with
P € FF*m[z] left prime

3. A submodule = QF'[z] C F™[z] with Q € F™*![] of full column rank has
a kernel representatiod = Ker P if and only if Q is right prime

4. Given two left prime polynomial matricé e F¥1xm[z] Then

Ker P1(z) C Ker Pa(z) (53)

if and only if P>(z) = A(z) P1(z) for some necessarily left primed e Fk2xki[z].
Under the same assumptignvge have

Ker P1(z) = Ker Px(z) (54)

if and only if P2(z) = A(z) P1(z) for some necessarily unimodulard € F¥*¢[z],
withk = k1 = ko.
5. KerP(z) = 0if and only if P(z) has full column rank

Proof.

1. Clear. .

2. LetU be a unimodular polynomial matrix for whidti P = (g) with 5 of full
row rank. This shows Kel/ P = Ker P = Ker P. Factor nowP = EP with E
nonsingular and? left prime. By Part 1, we have Két = Ker P.
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3. Assume that/ = QF![z] and thatQ is right prime. Extend to a unimodular
polynomial matrixU = (Q Q) and se/~* = (}). Then

(F)e 2-(5 7)

and in particularP Q = 0, i.e. KerP > QF![z]. To prove the converse inclu-
sion, assumg € Ker P. Thenf = Qf1 + Qf> and hencef =0= PQf1 +
POf»= f>.Sof = Qf1 € ImQ and we get KeP c QF/[z].

4. The factorizationP2(z) = A(z) P1(z) clearly implies the inclusion (53).
Conversely, the left primeness of thig implies the existence of unimodular

completions(ii"). We let

e a=(5) "

Thus we have

(i) (0 T)= (g ?),

and hence also

(5)Em)= (5 9).

Since KerP; = Im Q;, the inclusion (53) is equivalent to I®; ¢ Im O, and
hence, by Theorem 3.3, there exists a polynomial matsuch thaiQ; = Q»T.
Now the transposed unimodular product yields Qr—gr_ Im P;. We also have
01 =T 0>, and hence the inclusion Kér c Ker Q1. Thus in turn implies
Im P,  Im Py. Thus there exists an appropriately sized polynomial matrix
for which P> = P1A. Transposing the last equality leads”Rp= A P;.
The equality (54) is equivalent to the existence AfB for which P(z) =
A(2)P1(z) and P1(z) = B(z)P2(z). Thus we havePs(z) = A(z)B(z) P2(2),
which by the left primeness aP, implies A(z)B(z) = I. That B(z)A(z) = 1
follows by a similar argument.

5. This is immediate.

An important subclass of behaviors arises when we restrict the polynomial matrix
in a kernel representation to be nonsingular. Following Willems, we say that a be-
havior Z is autonomousf it is finite dimensional as a vector space o¥eWe have
the following.

Proposition 3.4. The following statements are equivalent

1. The behavio®z is autonomous

2. # = Ker D(o) for some nonsingular polynomial matrix(z).
3. #is equal to the rational modet?.
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4. There exists an observable p&, A) for which
B={C@l-A)E |t e F'). (55)

We omit the details of the proof.
3.1. Subbehaviors

Central results in the polynomial approach to the study of linear transformations
and linear systems are the representation of submodules to the free nigdule
and the transformation of the analysis of the lattice of submodules to the arithme-
tic of factorizations of polynomial matrices. Since there is, via duality theory as in
Theorem 3.1, a bijective correspondence between behaviarstii™[[z~1]] and
submodules of the free modul’[z], we expect to use this correspondence for the
study of the lattice of subbehaviors of a given behavior and relate it to factorizations.
This we proceed to do, and we begin by defining subbehaviors.

We begin by defining subbehaviors.

Definition 3.2. A subset%g C 4 is called asubbehavioiif it is itself a behavior,
i.e. itis linear, shift invariant and complete.

We wish to point out that not every linear, shift invariant subspace of a behavior
is a subbehavior. Completeness is neccessary.

We can apply now Theorem 3.3 to the analysis of the lattice structure of behav-
iors, using duality as expressed in Theorem 3.2. As for submodul&¥'pf], the
geometric structure is reduced to the factorization theory of rectangular polynomial
matrices.

Theorem 3.4.

1. Given two behaviors#1, 4> C z 1F™[[z71]] in kernel representation%; =
Ker P; (o). ThenKer P1(o) C Ker P2(o) if and only if for some polynomial ma-
trix Q(z), we haveP(z) = Q(z) P1(2).

2. If P; have full row rank thenKerPyi(c) = Ker P2(o) if and only if Pa(z) =
U (z) P1(z) for some unimodular polynomial matrix. U

3. P € FP*™[z]is right prime if and only iKKer P(c) = 0.

4. Given behaviors; c z-1F™[[z~1]]in kernal representation®; = Ker P; (o),
thenY"*_, 4, is a behavior and has a kernal representation

k
> B =KerR(o). (56)
i=1

where Ris a l.c.l.m of th&;.

5. Given behaviorsg; c z~1F™[[z~1]]in kernel representation®; = Ker P; (o),

then*_, % is a behavior and has a kernel representation
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k
ﬂ% = KerQ(o), (57)
i=1

where Q is a g.c.r.d. of th&;.

Proof. Follows by duality from Theorem 3.3.]

The previous results are not new, see Oberst [1990]. Theorem 3.4.1 is due to
Hinrichsen and Pratzel-Wolters [1980b]. Next we analyze image representation of
behaviors.

Definition 3.3. We say that a behavia® has anmage representatioif, for some
polynomial matrixQ € F™*![z], we have

% =1mQ(o). (58)
We can state next the following.

Proposition 3.5.
1. GivenQ e F™*![z]. Thenlm Q(o) is a behavior
2. LetQ e F"*![z], and letR € F'*![z] be nonsingularThen

IM(QR)(0) = Im Q(0). (59)

3. LetQ € F™*![z]. Then there exists a right prime polynomial mat@xe F™*k
[z] for whichlm Q(c) = Im Q(0).
4. LetP e F™*![z]. Then

Im P(o) =z LF"[[z71]] (60)

if and only if P has full row rank
5. GivenP e FK*m[z] left prime andM e F™*![z] right prime Then

KerP(o) =ImM (o)
if and only if
Im P(0) = Ker M (o).
Proof. ClearlyZ = Im Q(o) is a submodule of "1 F"[[z~1]]. Indeed, for any: €

z~YF™[[z711], we haver Q(o)h. ThatZ is a linear space is obvious. To see closure
it suffices to note that

Im Q(0) = (Ker Q(z))*.
This follows from the following computation:

[Q(@)h, f1=[7-Q@h, f1=1[h, Q@) f].
All other statements now follow from Proposition 3.3
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3.2. Doubly unimodular embeddings

We proceed to prove a proposition that is the analog, in the behavioral setting
of the doubly coprime factorizations the play such an important role in standard
system theory. The importance is due to the fact, already apparent in the statement
and its proof, that they provide the key to many duality results. For the use of doubly
coprime factorizations in different settings, see Fuhrmann and Ober [1993] as well
as Fuhrmann [1994].

Given a pair of polynomial matricek,, L1 we say that there exists doubly
unimodular embeddingf there exist polynomial matrice&1, L, such that

K1(2) (I O
(9) e )= (g 7). (61)

with both matrices on the left unimodular.
We start with a simple lemma, generalizing a well known result for linear trans-
formations.

Lemma3.1l. Let P(z) € FP*"[z]. We considelP(z) as a multiplication map from
F™(z) into F”(z) which is clearlyF (z)-linear. ThenKer P(z) andIm P(z) are lin-
ear subspaces of ™ (z) and F?(z) respectively Both carry also a naturalF[z]
module structureMoreover

1. We have

m = dimKerP 4+ dimIm P. (62)
2. Given a nonsingular polynomial matrik € F™>*"|z], then

ImP(z) =ImP(z)R(2). (63)
Proof.

1. Follows from the fact that™ (z) is a finite dimensional vector space over the
field F(z) of rational functions and the multiplication operatd(z) is F(z)-
linear.

2. SinceR(z) is nonsingular, the corresponding multiplication operatoF#(z)
is invertible. O

Lemma 3.2. Given a pair of polynomial matricek2, L1. Then
1. There exists a doubly unimodular embedding if any onKpifis left prime L1
right prime and
KerK»(z) = Im L1(2). (64)
2. There exists a doubly unimodular embeddingKerand L1 if and only if there
exists a doubly unimodular embedding for

Kz(z) O L1(z)
( 0 I) and < 0 )
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3. Given polynomial matrices satisfying
NaoMy = MaNy, (65)
with M1, M> square and nonsingulahen a doubly unimodular embedding for

o ()

exists if and only if\f1, N1 are right coprime andf,, N> are left coprime

Proof.

1. If (61) is a doubly unimodular embedding, then cleakly is left prime and
L1 right prime. The equalityK2(z)L1(z) = 0 implies KerKz(z) D Im L1(z).
Moreover, the assumption that all matrices in (61) are unimodular implies

(L1 Lo) (%) =1

Assumingf € Ker K2, we have

Kaf
So KerKz(z) € Im Li(z) and (64) follows.
Conversely, assumk: is left prime, L1 right prime and (64) holds. L€t’, be a
polynomial right inverse okK> and K1 a polynomial left inverse of.1. Thus

(2) (L4 L’z)z(é ?)

We defineL, = L!, — L1 Q. For concreteness, assutbge Fr¥%i[z] e,

() 0= (5 2)

It remains to show that both matrices on the left are unimodular. Since the
multiplication map(Ly1 Lp) : F*11*2[z] — FH[z] has a left inverse, it is in-
jective and so are the multiplication maps given by, L. So rankImL; =

Ai. Note also that, sinc&K>Lo = I,, K2 : F*[z] — F*2[z] is surjective, so
rank ImK»> = A». Using now Lemma 3.1, we compute

f=(L1 L) (K1f> = L1(K1f) € Im L1(2).

u = rank KerK»> + rank ImK»
=rankImLq + rankImK>
= A1+ Ao.
This shows that the polynomial matrices; L») and(’g) are both square and

hence, by (66), necessarily unimodular.
2. Assume there exists a doubly unimodular embeddingforL1 of the form

(2) (Ly Lz):<é ?) (67)
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Then

Ki O I 00
K» 0 (Lol L02 ?) —[o 1 o (68)
0 I 0 0 I

which is clearly a doubly unimodular embedding for

Kziz) O L1(2)
( 0 1) and ( 0 )

Conversely, if a doubly unimodular embedding exists for

Ka(z) O L1(2)
(57 5) e (7).
it is necessarily of the form (68). Eliminating the third rows and columns, we
obtain (67).
3. Clearly, if a doubly unimodular embedding for N2 M>), (’1‘\4,11) exists, then
necessarily the coprimeness conditions hold.

To prove the converse, we note that (65) implies the coprime factorizations
NlMl‘l = M2‘1N2. From equality (65) we immediately obtain the inclusion

M
Im (Ni) cKer (—N2  My).

To prove the reverse inclusion, assu(ﬁz@ € Ker(—N2 Mb),i.e.Nof1 = M> fo.

From this it follows thatf, = M2_1N2f1 = NlMl_lfl. Defining g = Ml_lfl,
we have

(ﬁ) eKer (—N2 Mp) = (%i) gelm (%i) .
So
Ker(~N2 M) Clm <M1) cKer(=Nz My),
N1
and equality follows. [

Proposition 3.6. Let (Zg) be ap x k right prime polynomial matrixLet (N1 N2)
be a left prime polynomial matrix satisfying

Ker(N1(z)  Na(2) = Im (%zg) (69)
Then
1. There exist unimodular extensions of both matrices that satisfy
Vi) Va(2)) (Mi(x) Uix)\_ (I O (70)
Ni1(z) N2(2)) \M2(z) U2(2) 0o 1)’

We call such an extensiond®ubly unimodular extension
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2.

5.
6.
7.
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We have also
(Ml(Z) U1(Z)> <V1(z) Vz(Z)) _ <1 0) (71)
Ma(z) U2(z)) \N1(z)  N2(2) 0 1)’
(@) M1 is a left prime polynomial matrix if and only N, is.
(b) M3 is a left prime polynomial matrix if and only ¥, is.
(c) Viis aleft prime polynomial matrix if and only if; is.

(d) U, is a left prime polynomial matrix if and only s is.
We have

(1\211(1) ﬁ?z(z)) <‘21(z) ]Sll(Z)>:<I 0) (72)

Uiz)  U2(z)) \V2(z)  N2(2) 0 1

and

(?1@ 1?1<z>) (Ajh(z) z@z(z)>=<1 o) 73)
V2(z)  No(z)) \Ui(z) U2z) 0o 1)

We refer to the above as tldeial doubly unimodular extension

N1 has full column rank if and only i#7, has

N1 is nonsingular if and only if5 is.
N1 is a right prime polynomial matrix if and only #> is.

Proof.

1.

N

By the right primeness of

(M1(2)>
Ma(z))’
there exist appropriately sized polynomial matriégsV, such thatv1(z) M1(z)

+ V2(z)M2(z) = 1. Similarly, there exisU;, U} such thatV1(z)U; (z) + N2(z)
Ub(z) = 1. Let Vi(2)U; (z) + Va(2)Uj(z) = Q(z). Defining

U1\ _ (U1 _ (M1(2)
(Uz(z)> = (Ué(z)) (Mz(z)> 0@,
the factorization (70) follows.
That (71) follows from (70) is clear.

. AssumeM1 has full row rank. IfN> does not have full row rank, we can apply a

unimodular matrix on the left so that
_(N11 N1
U(N1 No)= (NZ:L 0 )
and this implies

Ni1 N2\ (M1 (O
No1 0 M) —\0J"
Now N21M1 = 0 together with the assumption théb has full row rank yield

N>1 = 0. This contradicts the assumption thiat; N») is left prime. So neces-
sarily N» has full row rank.
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Conversely, assumi, has full row rank. We apply the first part to the equality

(M2 Uy) (;22) ~0 (74)

that follows from (71). This implied/; has full row rank.
4. Assume thaM1(z) is left prime. Then there exists a polynomial matMSE such
thatMle = I. Computing
1

o () ()

MoM;
which leads tav, = —NzMsz. This in turn implies
(N1 N2) =N (—MzMit I) .

This shows thatV; is left prime.
Conversely, assume thab is left prime. Again, applying the first part to (74)
yields the left primeness d¥1(z).

5. Follows by transposing the equalities (70) and (71) respectively.

6. Follows from Part 3 using the duality provided by the dual doubly unimodular
extensions.

7. Follows from Part 3(a) using the duality provided by the dual doubly unimodular
extensions. [J

A special case of Proposition 3.6 has been proved by Kuijper [1992,1994], see
Lemma 3.24. Other results have been obtained independently by Bisiacco and Val-
cher [2001].

Proposition 3.7. Let P(z) € FP*™[z] be left prime ConsiderF?((z™1)) as a p-
dimensional vector space over the fi¢ld(z 1)) of truncated Laurent serietet 7"
be the subspace defined by

¥ =KerP(z) = {h e FP((z™h) | P(2)h = 0}. (75)
Let (51) be a unimodular completion with invers@1 Q). Then

7 =KerP(z) =ImQ(z) = Q) F"P(z7Y). (76)
Proof. SinceP(z)Q(z) = 0 we clearly have KeP(z) D Q(z) F"?((z™1)).
Conversely, let: € Ker P(z). We have

h=(01 0) (1’;1)/1 — Q1Ph + QPth = Q11 + Of.

Applying P to this equality we obtain, withy = Q1 f1,
O0=Ph=P0O1f1+PQOf2=PO1f1= fr.
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Soh=0Qf2€ QF" P ((z1). O

Remarks.

1. An analogous result holds true if the fielt{(z~1)) is replaced by the field of
rational functionsF'(z).

2. The polynomial matrixQ in the representation (76) is uniquely determined up to
a right unimodular factor. Thus without loss of generality, we can assDitwe
be column proper with column indicég > - - - > §,,—p.

4. Behavior homomor phisms

In this section we introduce and study the very natural concept of behavior homo-
morphism. It seems that, in most of the literature on behaviors, the biggest missing
item is indeed the study of these homomorphisms. At least as far as this author
is concerned, the principal insight that was needed to gain a better understand-
ing of behaviors is the fact that a behavior can be looked at as a generalization
of a rational model, introduced in Fuhrmann [1976] and reviewed in Section 2.
Given a nonsingular polynomial matr®, the rational modeK ” given by X? =
{h € z7YF"[[z~11|Dh € F™[z]} = Ker D(o). As we saw in Proposition 3.4, ratio-
nal models are identical to a subclass of behaviors, specifically to the subclass of
autonomous behaviors.

Now a rational modeX ? is isomorphic to the polynomial mod&lp, via a sim-
ple multiplication map (17). Thus the isomorphism of two polynomial models can
be translated into the isomorphism of the corresponding rational models. However,
the isomorphisms between polynomial models have been characterized in Fuhrmann
[1976] and are quoted in Theorem 2.4. These results are easily translated to the
setting of rational models. To this end, let us consider two nonsingular polynomi-
al matricesD, D. If Z: XP — XP is an F[z]-module homomorphism, the# :

Xp — X3, defined byZ f = DoZD f, with f € Xp is given byZ f = wp,N f
and the intertwining relatio’’ D = DN holds for some polynomial matriceé, N.
Now, forh € XP, we have

1

Zh =D ‘ZDh =D ‘nyNDh

—D *Dr_D *NDh = n_Nh
=N(o)h

or Zh = N(o)h, with ND = DN holding. Thus a homomorphiséh : Ker D(o) —
Ker D(o) is given by a Toeplitz map of the fori y = N (o) restricted toX? =
Ker D(o). The invertibility properties oZ are the same as fdf. Hence, using the
results of Fuhrmann [1976F, is injective if and only ifN, D are right coprime and
is surjective if and only iftV, D are left coprime.
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In view of this, it would not come as a great surprise if &ix]-homomorphism
Z : KerM(c) — KerM(o) turns out to be of the fornZ = V(o)|Ker M (o) for
some polynomial matri¥ (z), with an identity of the fornU (z)M (z) = M (z2)V (z)
holding. Indeed, this turns out to be the case and is the content of Theorem 4.5. We
proceed to study this problem via the use of the duality introduced in Section 2.

Applying duality considerations, it is easy to translate these results to the be-
havioral context. Given a behavid, it is natural to consider the map”? which
is defined as the restriction of the (backward) shifto the behavior. Given two
behaviors#;, i = 1, 2, a behavior homomorphism is defined to be a Aap%; —
%, satisfyingZo”1 = ¢”2Z. Thus behavior homomorphisms are intertwining maps
and their analysis relate to the celebrated commutant lifting theorem of Sarason and
Sz.-Nagy-Foias. Thus it is expected that the method presented in this paper will be
found to be applicable in other contexts, most notably in the setting of Hardy spaces.
Some of the relevant mathematics for this can be found in Fuhrmann [1981b] and
Fuhrmann [1994].

Let the backward shift operatst. : z 1F™[[z~1]] — z 1F™[[z~1]] be defined
by

S_h=och=mn_zh, hez *F"[[z7Y). (77)

Definition 4.1. Given a behavior, we define the corresponding restricted shift
operatorS” by

§7 = S_|5. (78)

If the behavior%p is given in AR form as#p = Ker P (o), then we will write also
SP for s7¢.

Next we introduce behavior homomorphisms.

Definition 4.2. Given two behaviorsg,, %#2. A map Z : #1 — %> is abehavior
homomorphisnif Z intertwinesS”t ands”2, i.e. if

Z5% = §727. (79)

Two behaviors arésomorphicor equivalentif there exists an invertible behavior
homomorphisn¥ : %1 — %o.

Clearly, behavior equivalence is an equivalence relation.

With applications to behavior theory in mind, we want to extend Theorems 2.4
and 2.5 concerning homomorphisms of polynomial and rational models and their
invertibility properties. Note that, for the case of a nonsingular polynomial matrix
D, the polynomial modek p, is isomorphic to the quotient module”[z]/D F™[z],
and this quotient module is a torsion module. Similarly, the rational madeis
a torsion submodule a2 ~1F™[[z~1]]. We generalize these results by dropping the
nonsingularity assumptions. AFi[z]-submodulel of F”[z] has a, not necessarily
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unigue, representation of the form= M F™[z], with M € FP>*"[z]. Given ap x
m polynomial matrixM (z) and f € F?[z], we shall denote byf ], the equivalence
class off in the quotient modulé'?[z]/M F™[z]. We denote byr;, the canonical
projection of FP[z] onto FP[z]/M F™[z],i.€e.7tm f = [f1m-

Before analyzing behavior homomorphisms, we study in some detail factor mod-
ules of F”[z]. We recall that an elemehin any F[z]-module.# is atorsion element
if there exists a polynomial & a € F|[z] for whichaf = 0. The set of all torsion
elements in# is clearly a submodulg™ which we call thetorsion submoduleThe
module./ is calledtorsion freeif 7 = {0}. It is well known, see Hilton and Wu
[1974, p. 174], that the factor modul# /7 is a free module. Moreover, any finitely
generated torsion free module ov€fz] is a freeF[z]-module.

Let M e FP**[z] be of full column rank. The quotient spaée[z]/M F¥[z] has
a naturalF[z]-module structure induced by the shift operaSgy : FP[z]/M F™[z]
— FP[z]/M F™|[z] defined by

Sulflm =z-1f1lm = 2f1m, (80)
i.e. for any polynomiak € F[z], we have
a-[flm=laflm. (81)

We proceed to study factor modules®f|[z].

Theorem 4.1. LetM e FP*¥[z] be of full column rankLet
M =ME (82)

be a factorization with\/ right prime and E nonsingular and nonunimoduldihen
1. The torsion submodule dt?[z]/M F¥[z] is given byM F¥[z]/M F*[z]. More-
over, we have the isomorphism

FPIZ]/MF 2] = (FP[z)/ M F*[z]) /(M F*[z]/ M F*[2]) (83)

with FP[z]/M F¥[z] free

The factor modulé”’[z]/MF" [z] is torsion free if and only if M is right prime

3. The factor modulé?[z]/M F¥[z] is a torsion module if and only i = k, i.e.
M is square and nonsingular

n

Proof.
1. The isomorphism (83) follows by standard arguments from the inclusions

FP[z] D MF¥[z] > MF¥[z].

Assume first that/ = ME is a factorization withM right prime andE non-
singular and nonunimodular. We proceed to show that all elemedsrifiz]/
M F¥[z] are torsion elements. To this end, l¢t],, € M F*[z]/M F¥[z] are tor-
sion elements. This is equivalent to the existenge ef F¥[z] such thatf = Mg
and[fly = [Mg]m. Lete = detE. Then, using the identitydetE) I = E adjE,
we compute
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elflm = leflm = [eMgly = [Meglu
=[ME(adjEg)ly = [M(adjEg)]y = 0.

So[ f]um is a nonzero torsion element.

Conversely, let# c FP[z] be the set of allf € FP[z] for which [f]y is a
torsion element o ?[z]/M F¥[z]. Clearly.# is a submodule of”[z] which
containsM F¥[z]. As a submodule, it has a representation of the forn=

MF![z] for somep x I polynomial matrix of full column rank. The inclu-
sion M F¥[z] € MF'[z], with M F¥[z] and M F'[z] free submodules of rank
and| respectively, impliek <[ as well as a factorizatioM = ME with E €

F™k[z]. The torsion submodule @t”[z]/M F*[z] is thereforeM F*[z]/ M F¥|z].
Moreover, an isomorphism result for modules implies the isomorphism

FPz]/MF'[z] = (FP[z]/ M F*[z])/ (M F'[2]/M F¥[2]). (84)
We show now that the right primenessMfimplies thatF?[z]/M F¥[z] is tor-
sion free. In fact iff 1) is a torsion element of ”[z]/M F*[z], then for some
nonzeroa € F[z] andg € F*[z], we haveaf = Mg. SinceM is right prime, it
has a polynomial left invers&®. Applying it to the equalityuf = Mg, we get
g = M%af) =aM*f. Soaf = Mg = M(aM*f) =a(M f) with f = M*f.
Sincea is nonzero, we havg = M f and hencd f1y = 0 contrary to our as-
sumption thaf f ] is a nonzero element. Thus we have the inclugibf*[z] >

M = MF'[z]. Since both modules are free, of rarksnd| respectively, we

must havek = /. The two factorizations/ = ME and M = ME imply now
that £ is also nonsingular anid and £ differ by at most a left unimodular factor.

So, without loss of generality, we can assufme- E andM = M.

Follows from Part 1.

3. AssumeM is nonsingular. In particular = p. In this caseV = I in the factor-
ization (82) and the torsion submodule is eqB&lz]/M FP[z].
Conversely, assume the factor mod#l&[z]/ M F¥[z] is a torsion module. This
implies F?[z] = M F¥[z]. Necessarily = p andM is unimodular, which with-
out loss of generality can assume tolb&oM, being square and of full column
rank, is necessarily nonsingular]

N

We proceed to study the module homomorphisms of polynomial factor modules.

Theorem4.2. LetM € FP*"[z] andM € FP*™[¢] be of full column rankThen
1. Z: FPlzl/M(2)F"[z] —> FPlz]/M(z) F"[z] is an F[z]-homomorphism if and
only if there exisU € FP*P[z] andU € F™*™[z] such that

UM = MU (85)
and
ZIf1m = U fly. (86)
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2. The map dual to Z is the magp* : Kerﬁ(a) — KerM (o) given by
7" =TU(o). (87)

Proof.
1. If Zis defined as above, then we have
ZSulflm = Zzf1lm = [UZf]ﬁ = [ZUf]M = SM[Uf]M =S7Z[f1m,
i.e.Zis anF[z]-homomorphism.

Define the mapZ; : FP[z] — FP[z]/M(z)F™[z] by Z1f = Z[f1u for f €
FP[z]. Clearly

Z1S+ f = Zilzflm = [Uzf b5 = [2U fli7 = SulU fli7 = SmZ1f,

i.e.
218+ = Sy Z1. (88)
Let e, ..., e, be the standard basis elementsFfi. Let Zie; = [u;]5; with

u; € F™[z]. Theu; are fixed but not uniquely determined. Létbe thep x m
polynomial matrix whose columns are thg It is easy to check that by defining
Z: FP[z] — FP[z]lviaZf = Uf for f € FP[z] we have obtained (86).

Finally, since we have&Zmy = nﬁz it follows that Z Kermy, C Kermy;, or
ZM(z) FP*™[z] C FP*™[z]. This, by a standard argument, implies the existence
of a polynomial matrixJ for which (85) holds.

2. Givenf e FP[z] andh € Ker M (o), we compute

(ZLf 1. k] = [[U £l h] = (U £, h] = Lf. Uh]
= [+ f,Uhl = f,7-Uhl = [, U(0)h]
= [[f1y. Z*R],

orZ* =U(s). O

We proceed to analyze the invertibility of the module homomorphisms character-
ized by Theorem 4.2.

Theorem 4.3. LetM e FP*"[z]andM € FP*™|z] be of full column rankLet Z :
FP[z]/M(2)F"[z] — FP[z]/M(z)F™[z] be an F[z]-homomorphism defined by
(86) with (85) holding for somd/ € FP*P[z] andU e F™*"[z]. Then

1. Zisinjective if and only itJ, M are right coprime and

— — . M(z)

Ker(-U(z) M(z)) =Im (U(Z)) : (89)

2. Zis surjective if and only it/, M are left coprime

3. Z as defined above is the zero map if and onlyaf some appropriately sized
polynomial matrixV (z), we have
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U(z) = M@V (2). (90)
4. Zisinvertible if and only if there exists a doubly unimodular embedding

(7 D 3)=67) o

of

— M
(-T) M) and <U((ZZ))>

5. If Zisinvertible then in terms of the doubly unimodular embeddi@g), z- 1.
FP[z]/M(2)F™[z] — FP[z]/M(z) F™[z] is given by

Z7gly = — Yl (92)

Proof.

1. AssumeU, M are right coprime and (63) holds. By Lemma 3.2, there exists a
doubly unimodular embedding (91). LEf1y € KerZ, i.e. [U fl;; = 0. This
implies the existence of a polynomial vectpsatisfying

Uf=Mg o (-U M) <§ ) o,
Since
<~§ ) cKer(-TU(z) M)

and (63) holds, there exists a rational functiofor which

(0)-(:)

We use now the Bezout equatid — YU = I to obtainh = X f — Y g, which
shows thah is actually a polynomial vector. From (93) we obtgin= M4 and
hencel /1y = 0, i.e.Zis injective.

Conversely, assume the mapdefined in (86) is injective. Clearly, as by as-
sumptionM has full column rank, so hag)). If (/) is not right prime, we can
write

M\ (M1
()= (1)
for some, nonsingular and nonunimodular, polynomial magitet 0+ g €
XRg,i.e.g = Rh for some strictly propeh. Let f = M1g. We show thaf /1y #
0. Indeed| f1y = O ifand only if f = Mg for some polynomial vectag. Thus
f = Mg = MRg = M1g = M1Rh = Mh

or M(g — h) = 0. NowM has full column rank and hence Kéf(z) = 0. This
impliesg = & = 0, contradicting our assumption that~ 0. Next we compute
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U fli7 = [UM1gly; = [UM1Rhl3; = [UMhlz;

= [MUhlz; = [MUrRh]3; = IM(U18) 137

=0,
i.e.Zis not injective.
Next we show the necessity of condition (63). The intertwining conditidn =
MU shows that

Ker (-U(z) M) > Im (%8)

Hence we have the constraift + k) — p > k. Note now that the homomor-
phismZ maps to torsion elements into torsion elements Met MoE andM =
ME be factorizations withE, E nonsingular and nonunimodular at, M
right prime. ThereforeZ induces an injective mag : FP[z]/MoF*[z] —
FP[z]/MoF¥[z] between the free modules. These modules have pank and
P — k respectively. Since IrZ is a free submodule af?[z]/MoF*[z], we have
p —k < p — k. The two constraints imply the equalify + k) — p = k and as
aresult (63) holds.

2. Assumel, M are left coprime. Thus there exist polynomial matriées’ for
which the Bezout equatioM X — UY = I is satisfied, Letg € FP[z]. Then
g=MXg—UYg and hencdgly; = [U(-Yg)l5 = [U flz7, with f = —Yg.
Thus the magZ is clearly surjective.

Conversely, we show thatdf, M are not left coprime, then the ma@gs not sur-
jective. Indeed, i/, M are not left coprime then there exists a nonsingular, non-
unimodular polynomial matriRsuch that—U (z) M(z))=R(-U1(z) M1(z)).
(Note that if(—U (z) M(z)) does not have full row rank, we can find suRlof
arbitrary degree). SincR is nonunimodularR F”[z] is a proper submodule of
FP[z]. Choose & € FP[z] but notinRFP[z]. We claim thatig];; ¢ Im Z. To
see this, assume the contrary, i.e. that there existsF”[z] for which

ZIfIm = U flzg = [RULf 137 = [8l37-
This means thag — RU1f € MF™[z] = RM1F™[z], or g € R(U1F™[z] +
M1F™[z]) C RFP[z], contrary to our choice daj.

3. If (90) holds, then for everyfly € FP[z]/M(z) F™[z] we haveZ[f]y =
(U flm =M(Vf)lu =0.

Conversely, ifZ[ f 1y = O for every[ f1y € FP[z]/M(z) F™[z], then for every
f € FP[z] we haveU f € M F™[z]. This implies the factorization (90).

4. Follows from Parts 1 and 2, as the two coprimeness conditions and (63) are
equivalent, by Lemma 3.2, to the existence of a doubly unimodular embedding
(91).

5. Let W: FP[z]/M(z)F™[z] — FP[z]/M(z)F™[z] be given by W(gly; =
—[Ygly. From the doubly unimodular embedding (91) we have two Bezout
equationsy X — YU = [ andM X — UY = I. Using the first equation, we com-
pute
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[fIv=MX = YU) flu = MX flu = YU flu = =(YU flu
=WIU flzz = WZI[f1m,
i.e. WZ = I. Similarly,
(gl = [(MX —UY)gls; = IMXgly; — [UYgly; = —[UYgly
=z[Ugly; = ZWIgly;
orZW=1Iandw =z"1 0O
The source of asymmetry in the first two statements of the theorem is the fact that
we are dealing with rectangular polynomial matrices. In the case of two nonsingular
polynomial matrices, condition (63) is an immediate consequence of the coprimeness
conditions. This was proved in Lemma 3.2. The following corollary was proved in
Fuhrmann [1976].
Corollary 4.1. LetTy € F"™*™[z], To» € FP*?[z] be nonsingular and let
N>Ty = ToN1. (94)
Then the magZ : F™[z]/T1F™[z] — FP[z]/T2FP[z] is invertible if and only if
N1, Ty are right coprime andV,, T» are left coprime

Proof. The necessity of the coprimeness conditions follows from Theorem 4.3. To
prove sufficiency, in view of the assumed coprimeness conditions, it suffices to show
that

T
Ker(N2(z) To(z)) = Im ( Nll(é))) .

Clearly, we have the inclusion

T
Im (—1%7(12()1)> CKer(N2(z)  T2(2)).

To prove the converse inclusion, assugheare rational vector functions with

(2) e Ker(Na(z)  T2(2)),

i.e. Naf1 + T2 f2 = 0. Noting that (94) implied, 1N, = N17; %, we compute
fo= T, 'Nofi = —N1T7 L 1.

Settingg = Tl_lfl, we havefs = Thg and f = —N1g, or

N\ _ (1@ T1(z)
(fz) - <N1(z)> gelm (—Nl(z)) - U
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As a corollary to Theorem 4.3, we get the structure theorem for finitely generated
modules overr[z].

Theorem 4.4. Every finitely generated module/ over F[z] is isomorphic to a
direct sum of cyclic modules and a finitely generated free module By i.e. we
have

M~ F[z]/d1F[2) @ - @ Flz)/dy Flz) @ FPPg], (95)
withd;, i =1, ..., k, nonzero polynomials satisfyinfj|d;_1 fori =2, ..., k.

Proof. Let.# be a finitely generated module ovE{z] and letey, ..., e, be a set
of generators for#. Define a maw : FP[z] — ./ by
Ji »
o | =D fie (96)
fp i=1

Clearly¢ is a surjectiveF'[z] homomorphism. Since Keris a submodule of ”[z],

it has a representation Kgr= M F¥[z] for somep x k polynomial matrixM of full
column rank. Thus we have the isomorphisth~ FP[z]Ker¢ = FP[z]/M F¥[z].
From Theorem 4.3 it follows that 8,V are appropriately sized unimodular matrices,
then FP[z]/M F¥[z] ~ FP[z]/ UMYV F¥[z]. Hence, without loss of generality, we
can assume thdl is in its Smith form, i.e.

mp1 O
0
0
— mg
M=1o ol
o .- . . 0
with m;, i = 1, ..., k, the invariant factors oM. From this the isomorphism (95)

follows withr = p —k. O

We note thatr = codimImP(z) with P(z) the multiplication operator from
F™(z) into F?(z).

Corollary 4.2. Given appropriately sized polynomial matrics, M, N, N with
M, M of full row rank Then there exists a doubly unimodular embedding for

x . (Y
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if and only if M, M have the same nontrivial invariant factors anddimM (z) =
codimM (z).

The composition of two invertiblé'[z]-homomorphisms is an invertiblE[z]-
homomorphism. The following proposition investigates the corresponding doubly
unimodular embedding.

Proposition 4.1. LetM; € FPi*™i[z], i =1, 2,3, be of full column rankLet Z1 :
FPz]/M1(2) F™[z] — FP2[z]/M2(z) F™2[z] be an invertible F[z]-homo-
morphism defined by

Zilflm, = WU2f1m, (97)
corresponding to the doubly unimodular embedding

Yl —71 My Y\ (I O
busy MZ Ui X) \0o 1)
My Yo X, —Y1 (1 O
Ui X2)\bup, M) \O I)°

and Z, : FP2[7]/M2(z) F2[z] — FP3[z]/M3(z) F"3[z] be an invertibleF[z]-ho-

momorphism defined by

Zolglm, = [Usglmy (99)
corresponding to the doubly unimodular embedding

X, =Y2\[(M> VY; (1 O
bus Mg, U, X3) \0 1)
Mo Y3 X, —Yo _ (1 O
Uz X3)\bus Mz) \0 1)’

ThenZ = ZyZ1 : FP[z]/M1(z) F™[z] — FP3[z]/M3(z) F™3[z] defined by

ZIf1my = [U3U2f s (101)

is also an invertibleF[z]-homomorphism and it corresponds to the doubly unimod-
ular embedding

X1 —Y1X2Uy Y1Y2 M1 —YoY3 (1 O
—U3U> M3 VoVi X3 —VoXoY3)  \0 1)’
M1 —YoY3 Yl — 7172U2 71?2 (1 0
VaVi X3 — VoXoY3 —U3U> M3z ) \0 I
Proof. From the identitie®/2M1 = MV, andUzM> = M3V>, we obtain(U3U2)

M1 = M3(V,V1). We also have
ZoZAl flmy = ZolU2f 1, = (U3U2f 1 pt.

(98)

(100)

(102)
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So, to complete the proof, we show, using Theorem 4.3, that

- M1
(—UsUz2 M3), (V2V1>
have a doubly unimodular embedding. The doubly unimodular embeddings (98) and

(100) yield 16 relations which we use in the rest of the proof. We begin by checking
the first Bezout equation

(—UsU2)(—Y2Y3) + M3(X3 — V2X2Y3)
= M3X3+ UsUzY2Y3 — M3V2X2Y3
= M3X3+ UsUY2Y3 — UsM>XoY3
= M3X3+ Us(U2Y2 — M2X?2)Y3
= M3X3— UsY3=1.

We proceed to check the other Bezout equation

(X1 —Y1XoU2) M1+ (Y1Y2)(VaVi)
= YlMl — 71Y2M2V1 + 71Y2V2V1
= X1M1—Y1(XoM2 — Y2 Vo) V1
=XM1 —Y1Vhi=1

Finally we calculate

(X1 — Y1X2U2)YoY3 — Y1Y2(X3 — VoX2Y3)
= X1Y2Y3 — Y1XoUoYoY3 — Y1Y X3+ Y1Y2VaXoY3
= 71X2Y3 — 7172U2Y2Y3 — ?1Y2Y3 + 71?2V2X2Y3
=Y1(X2 — XoUzY2 — X2+ Y2VoX2)Y3
=Y1(X2 — XoUsYo — X2 + (XoMp — I)X2)Y3
= Y1(—X2U2Y2 — Xo + XoM2X2)Y3
=Y1X2(—UY2 — I + M2X5)Y3 = 0.

The other relations in (102) are checked similarliz]

Given ap x m polynomial matrixM, then KerM (o) is a submodule of 1
F™[[z71]]. We define the restricted shift map¥ : KerM (o) — KerM (o) by
SMh =n_zh =oh. By a judicious use of duality we can state the analog of
Theorem 2.6.

Theorem 45. Let M € FP¥™[z] and M € FP*™[z] be of full row rank Then
Ker M (o) is an F[z]-submodule ot~F™[[z7]] and Ker M (o) is an F[z]-sub-
module of;~1F™[[z71]]. MoreoverZ : KerM (o) — KerM (o) is an F[z]-homo-
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morphismi.e. satisfiesZ §" = SMz_if and only if there exisU € FP*P[z] and U
in F™*™M[z] such that

U()M(z) = M(2)U(2) (103)
and
Zh=U(o)h, heKerM(o). (104)

Proof. Leth € KerM(o). ThenM(o)(ch) = o (M(o)h) =0,i.e.ch € KerM (o)
which shows that it is a submodule. Similarly for Kii(o).

Let Z be defined by (104), with (103) holding. Then, foe Ker M (o), M(c)Zh
= M(o)(U(o)h) = U(c)(M(c)h) =0, i.e. Zh € Ker M (o). Moreover, we com-
pute

ZSMp = U(o)oh = oU(o)h = SM Zh,

that isZ is an F[z]-homomorphism.

Conversely, assumé : Ker M (¢) — KerM (o) is an F[z]-homomorphism. For
a linear spac& and a subspacg” C X, we have the isomorphism™ ~ X*/7°+,
We note that

(KerM (o))t = M(2)FP[z),
and this leads to
(KerM(o))* = F™[z]/MFP|z]. (105)

The identity ZsM = sM7 leads toZ* == Sy Z*, thatisZ* is an F[z]-module
homomorphism. By Theorem 4.2, there exist polynomial matri¢es FP*? and
U e F™m satisfyingg M = MU, which is equivalent to (103), and for which

Z[f = [ f1-

We can easily check now that necessa#ly Ker M (o) — Ker M (o) is given by
(104). O

Note that we cannot expect a direct proof of this, as we have to use completeness
and the easiest, maybe the only way, to do this is by using duality, i.e. the fact that
(+V)+ = Vv asin Proposition 3.2 and Theorem 3.1.

Both Theorems 4.2 and 4.5 have an interpretation as lifing homomorphism re-
sults. Theorem 4.2 can be restated as follows.

Theorem 4.6. LetM € FP*™[z]andM € FP*™[z] have full row rank

Then anyF[z]-homomorphisnZ : FP[z]/M(z) F"[z] — FP[z]/M(z) F™[z] can
be lifted to anF[z]-homomorphisnZ : FP[z] — FP?[z] such that the following
diagram is commutative
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Z
P[] F7:)
Z J—
o[/ MP™[2) PP /I F2]

Herer,, is the canonical projection defined by
auf =1flm, [f€FPlzl. (106)

Proof. For the homomorphisnZ given by (104), we define f = Uf for f e
FPlz]. O

In much the same way, Theorem 4.5 can be restated as follows.

Theorem 4.7. LetM € FP*™[z]andM € FP*™[z] be nonsingularThen anyF [z]-
homomorphismZ : Ker M (o) — Ker M (o) can be lifted to anf”’[z]-homomorphism
Z 27 F"[[z74] — z7YF™[[z~1]] such that the following diagram is commuta-
tive:

7 —
27 LE™ 27 2 T[]
Z
Ker M (o) Ker M (o)

Hereiy andiy; are the natural embedding maps.
Proof. DefineZ = V(o). O

Next we discuss the invertibility properties of behavior homomorphisms.
Theorem 4.8. Given two full row rank polynomial matrice® € FP*™[z], M €

FP>"[z] describing the behavior® = Ker M (c) and % = Ker M (o) respectively
LetU, U be appropriately sized polynomial matrices satisfying

UM () = MU (2), (107)
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and letZ : KerM (o) — Ker M (o) be defined by
Zh=U(c)h=n_Uh, heKerM(o). (108)

Then
1. Zis injective if and only iff, U are right coprime
2. Z is surjective if and only i/, M are left coprime and

U(z)

3. Z as defined above is the zero map if and onlyaf some appropriately sized
polynomial matrixZ(z), we have

U(z) = L(z)M(2). (110)

4. Z defined in(108) is invertible if and only if there exists a doubly unimodular
embedding

G 0= 0 )67 e

of

(-U) M) and (M(Z)).

Ker(—U(z) M(z)) =Im (M (Z)> : (109)

U(z)
5. If Z is invertible, then in terms of the doubly unimodular embeddbt), its
inverseZ~1 : KerM(c) — Ker M (o) is given by

Z7l=_Y(0). (112)

Proof. ~ ~
1. Transposing (107), we hat&M = MU. The leftinvertibility ofZ is equivalent,

by Theorem 4.2, to the right invertibility of* : F™[z]/MFP[z] — F™[z]/
M FP[z] given by

21 =015, [fls € FP[1/MFP[2]. (113)

Applying Theorem 4.3, this in turn is equivalent to the left coprimeness, df,
hence to the right coprimenessf M.

1. Therightinvertibility ofZ is equivalent, again by Theorem 4.2, to the left invert-
ibility of Z* defined in (113). Applying Theorem 4.3, this in turn is equivalent
to the right coprimeness aff andU together with the condition

~ ~ ﬁ(z)
Ker(—U(z) M(z))=1Im (; ) .
( ) U(2)

The statement now follows.
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2. We use the fact that = 0 if and only if Z* = 0.
3. Follows from Parts 1 and 2 as in the proof of Theorem 4.3.
4. We use the factthaz*) 1 = (z~1H)*. O

Proposition 4.1 has a counterpart in the behavioral setting that follows from The-
orem 4.8. We state it without a proof as the proof can be obtained from Proposition
4.1 by duality considerations or directly using the same calculations on the doubly
unimodular embeddings.

Proposition 4.2. LetM; € FPi*™i[z], i =1, 2, 3, be of full column rankLet Z; :
Ker M1(o) — Ker M2(o) be an invertible behavior isomorphism defined by

Z1h = Vi(o)h, h € KerMq(o), (114)

corresponding to the doubly unimodular embedding
X1 Y1\ (M1 Y _ (1 O
U M Vi Xo) \0 1)’
M1 Yo X, -1 (1 O
Vi Xo)J\-U, M) \O I}’

Let Z, : KerM2(0) — Ker M3(o) be an invertible behavior isomorphism defined
by

(115)

Zoh = Va(o)h, h € KerMa(o), (116)

corresponding to the doubly unimodular embedding

X, -Y5\ (M Y3 (1 O
Uz Ms Vo Xs)  \O I)’

o o 117)
My Y3 X2 Y\ (I O
Vo X3 Uz Mz ) \0 1)
ThenZ = Z»Z1 : Ker M1(0) — Ker M3(o) defined by
Z2Z1h = Vo(o)Vi(o)h, h € KerMi(o), (118)

is also a behavior isomorphism that corresponds to the doubly unimodular embed-

ding
Yl — 71Y2U2 7172 M7 —YoY3 (1 O
—UaU> M3 VoVi X3 —VoXoY3) — \O 1)’

L - (119)
M, —Y,Y3 X1—-Y1XoU, YiYo\ (I O
VoVi X3 — VaXoYs —~U3U> Mz )] \0O 1)
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5. Representation of behaviors

Linear systems may have many different representations, and to each represen-
tation corresponds a permissible set of trajectories. The following definition names
the most notable ones. While we are using the term behavior, the fact that these
are indeed behaviors according to Willems’ definition will follow only when we
show that each system listed can be reduced to an AR representation. Since every
representation reduces to a NARMA representation, it suffices to show how NARMA
representations are reducible to AR ones. This will be taken up in Proposition 5.1. In
the following definition, although autoregressive or kernel representations have been
previously defined, they are included for completeness.

Definition 5.1.
1. Anautoregressivedenoted byAR, or kernel representationf a behavior is a
representation
Bp =KerP(o) = {w e z ' F"[[z7]]| P(o)w =0}, (120)

with P € FP>*"[z].
2. Anautoregressive moving avergge ARMA representation of a behavior is a
representation

#={we 'FT NI eI PlO)w = M(0)E}.  (121)
Thefull behavior %y is defined by

Brun = Ker(P (o) — M(0))

={w.&) ez 'FU NI x TP [z P(o)w = M(0)E}. (122)
Clearly, definingry (w, §) = w, we have
B = ww Biull - (123)

A is also referred to as thmanifest behavior
3. A behaviorZ has anormalized ARMA representatipar NARMA representa-
tion, if it satisfies

(?) w = @;EZ;) £ (124)

for M1 € F"™*™[z], M2 € F1*™[z]. Generally, we will assume thaf; has full
row rank andM, M» are right coprime.

4. AbehaviorZ has adriving variable polynomial matrix descriptioor DVPMD
description, if it satisfies

(5)) v <€ _Vé]> @) (125)

with T nonsingular and’, T right coprime.
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A moving average MArimage representatioaf a behavior is a representation
#=1mQ(o) (126)
for some polynomial matrix Q.

. A behavior# with split variablesw = (;) has gpolynomial matrix description

or PMD, if

T(0)s =U(o)u,
{y =V(o)§ + W(o)u. (127)
With (127) we associate the Rosenbrock polynomial system matrix
»_(T@ =U(@@
7= <V(z) W) ) ' (128)

. A behavior has pencil realization or P-representationif there exist constant

matricesG, F, H such that

{(OG - F)§ =0,

b e, (129)

. A behavior has aual pencil realizationor DP-representationif there exist

constant matricekX, L, M such that
oK&=LE+ Mw. (130)

. A behavior with split variables) = () has adescriptor representatioor D-

y
u

representationif

ocE& = A£ + Bu,

{y:CS—l—Du. (131)
A behavior with split variables hasstate space realizatioif

o& = A§ + Bu,

{y:Cé—i—Du. (132)

Anoutput nulling state space representatioor ONSTSPof a behavioZ is a
representation of the form

(133)

Ix € 2 LF 7Y, {” = Ax Bw’}

0=Cx+ Dw.
Anoutput nulling PMD representationor ONPMD, of a behavior# is a rep-
resentation of the form

# = BONSTSP= {w

B = BONPMD

- {w e 7 LFm Y ’ 3 e 2PN, {o = V()& + W(o)w

(134)

T (o) =U(o)w, }

with T e F*>*k[z], U € FF*P[z], V € FP>*k[z], W € FP*™[z] and T non-
singular.
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13. Anoutput nulling, left matrix fraction representatipor ONLMF, of a behavior
A is a representation of the form

B = BONLMF

_ {w e P |3 € LRI, {OQS;? d (“)“”} (135)

with Q € FP*P[z], P € FP*™[z] andQ nonsingular.

Remarks.

1. In Schumacher [1989], NARMA systems are denoted by AR/MA systems in
contradiction to ARMA systems. We prefer to distinguish between the two in a
stronger way.

2. We followed Weiland and Stoorvogel [1997] in making the definition of output
nulling representations.

We will single out the NARMA representation (124) of a behavior as the focal
point of our study. The reason is that essentially all other representations are easily
transformed into an NARMA representation. This is summed up in Table 1.

We have introduced a large number of possible representations of linear systems.
While in all cases it is clear that the set of trajectories is a linear shift invariant
subspace, it remains to show that they are also complete, i.e. that indeed they describe
behaviors. We do this by showing that all these system representations are reducible
to AR ones. However, as any of the listed system representations is reducible to the
NARMA representation, it suffices to show that the set of trajectories of a system in
NARMA form is a behavior.

Proposition 5.1. Let

a={o|(5) = ()¢}

ThenZ is a behavior

Proof. In view of Theorem 3.1, it suffices to show th#&tso defined has a kernel
representation. Assuming

<M1(Z))
M>(z)
is right prime and let
<M1(Z) Xl(Z))
Ma(z) X2(2)
be its embedding in a unimodular matrix having

(Yl(Z) Yz(z))
No(z) Na(z2)
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Table 1
System Representation NARMA representation
AR P()w=0 <(1)> w= (P(I")> £
ARMA P(o)w = M(0)E <?) w= <P(I") _"’(’)(”)) (2)
MA w = M(0)E
0\ _ (Mi(o)
NARMA <1) w = <M2(0))5
T(0)s1=U(0)é2 0 _(T(e) —U(0)) (&
DVPMD w = V() + W(0)E2 <1) w= <V<a) W(o) ) <sz>
0 0 T(o) —U(o)
T()s =U(o)u Y\ _ &1
et (2 )0 (0 )
0 0 oI—A —B
STATE SPACE of = Af + Bu I 0 <y> - ¢ D (51
y=C&+ Du o 1)\ 0 I &
0 0 cE—-A —-B
DESCRIPTOR oE§ = AS + Bu I 0 <}> -| ¢ D (51
y=C&+ Du o 1)\ 0 7 &
(6G — F)e =0 0\ (oG-F
g o (D)= (% ")
DP oKE = LE + Mw <(I))w: (”KI_L _é”> @)
ONLMF Q) = Pleyw 8 w= ng) _QI(U) <§1>
0=1¢ / / 0 &2
0 T) —Uo)
T(o)é =U(o)w &1
ONPMD 0= V()& + W(ew ((,J Y= VE)”) Wﬁ”) ) (sz)
0 oI—A —B
ONSTSP ox = Ax+ Buw olw=[ ¢ D <51>
0=Cx+ Dw p 0 ] &
as itsinverse, i.e.
Yi(z)  Yo@)\ (Mi(z) X1(2)

(Nl(Z)

N2 (2)

It

M>(z)

X2(2)

)

o 7)
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We will show that an AR representation #fis given by
% = Ker Nz (o), (136)

and hence% is indeed a behavior. To see this, lete Z, and hence
0
N2(o)w = (N1(o)  N2(0)) (1) w
_ Mi(o)\,.

i.e.% C KerNy(o).
To prove the converse, we use

(Ml(z> X1(Z)> <Yl<z> Yz(z))=<1 0)
Ma2(z)  Xa(z)) \N1(z)  N2(2) 0 I

and in particular the identity

M1(2) X1(2) _ (0
() vz + () vzt = (9)

Now, givenw € Ker N2(o), then

0\ = _ (Mi(o)
(1) = (e e

0 _ [ M1(o)
(7)w= (o))
with h = Y2(o)w. This impliesw € % and hence KeN2(o) C 4. O

It is important to provide a guide to the transformations between different
representations. The reader is advised to consult Schumacher [1988, 1989] and
Kuijper [1992,1994] for more on this. We will restrict ourselves to showing how
the shift realization, given by (32), can be used to pass from an AR representation
to a state space one. This is a slight variation on the construction in Kuijper and
Schumacher [1990] or Kuijper [1992,1994]. In this connection see also Rosenthal
and Schumacher [1997].

Theorem 5.1. Given a behavio# in minimal AR representation

B = Ker P(0), (137)

whereP(z) is a p x m, full row rank polynomial matrixThen a minimal P-repre-
sentation exists
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Proof. Assume first thatP (z) = (D(z) — N(z)) with D p x p nonsingular and
DN proper. Under these assumptions, it follows thiagt = X p = X(p() —n(2))-
We choose this space as the state spacePefegpresentation. Without loss of gener-
ality we can assume that the polynomial matPit:) is row proper with row degrees
v1 > >, >0 . Wesey ! v =n. Thus

f1
Xp = degfi < v
Ip
The standard basis fdfp is given by then vectors
711 1 0 0
0 0
. . 0 0
0 0 zr1 1

The corresponding standard basis matriXof is given by

M1 . . . 1 0 . . . 0 O

= O O OO

00 .- - . 0 zwl
(138)
Write now Do, = 74 D™IN, thenD(z)"1(N(z) — D(z) Dwo) is strictly proper and
hence there exists a uniquely determined (m — p) constant matri>B for which
N(z) — D(z) Do = D(2)B.
Next we consider the shift realization

Ap | N(2) = D(2) Do
Cp | D

with Cp, Ap defined by (32). Let, A be the respective matrix representations of
Cp, Ap with respect to the standard basis. Thus we get the state space representation
given by

ox = Ax + Bu,

y =Cx + Dxou, (139)

which can be written in th@-representation
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(60l —A —B) (z) =0,

(0-G 0)

Here¢ = (z) is the vector of latent variables, and the representation is with

(140)

0 I

In order to see that this is indeed a representation of the beh@yiare note that
C(zI — A)~1 = D(z)1d(z) and clearlyD, @ are left coprime. The previous equal-
ity can be rewritten a®(z)C = ®(z)(zI — A) and therefore

0=(-®() D)) <61C_ A)E = (~®() D)) (? —BD> <z>

= (D) —(9(©)B + D(0)Dx)) (i) = (D) -N(©) (i)

G=(1 0. F=(A B) H:(C D). (141)

Applying Proposition 5.1, we conclude that the behavior is indged Ker P (o).
O

6. Controllability

Controllability and observability are fundamental properties of linear systems that
relate to minimality of realizations. These properties were introduced by Kalman,
see Kalman et al. [1969] and the further references therein. These notions were
extended by Willems [1986] to the behavioral setting, and not surprisingly they relate
to the minimality of various representations of behaviors. This we proceed to discuss.
Here we modify the definition of controllability in order to consider also the cases
of controllability to zero and reachability in the behavioral context. Due to space
constraints, we will omit a discussion of observability.

Definition 6.1.
1. Let# be a behavior defined af, .
(a) Atrajectoryw € 4 isreachablef there exists & € Z ., a polynomial vec-
tor Y¥70 fiz' € F"[z] such that for allT € Z, there exists a € 4 for

which
0, 1< <T,
W =4 fron—, T+1<t<T+k, (142)

wi—t—k, T +k+1<1.

(b) The behavio#? is reachablef every trajectoryw € 4 is reachable.
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(c) The set of all reachable trajectories is a linear subspace and will be denoted
by 4.
2. (a) Let# be a behavior defined af.. A trajectoryw € % is controllable to
zeroif there exists & € Z,, a polynomial vectoEf‘;&fizl € F"[z] such
that for allT € Z, there exists @ € % for which

Wy, 1 < 1 < T,
W =4 frak, TH1<t<T+k, (143)
0, TH+k+1<1t.
(b) The behavio# is controllable to zerdf every trajectoryw € 4 is control-
lable to zero.

(c) The set of all controllable to zero trajectories is a linear subspace and will
be denoted bys,.
3. A system icontrollableif for every two trajectoriesv®, w? € # andT € Z,,
there exists @ € Z and a trajectoryw € % such that
u)f‘, 1 < t < Tv

W, = 144
et THk+1< (144)

Clearly, if a system is reachable then it is controllable to zero. The converse is
not true. To see this consider the autonomous beha#ierKero”. Obviously it is
controllable to zero but is not reachable. In fact, given any nonsingular polynomial
matrix D(z), then the autonomous behavi6P = Ker D(o) is nonreachable.

Proposition 6.1. A behavior4 is controllable if and only if it is reachable.

Proof. AssumeZ is controllable and lew”? e #. Takingw® to be the zero trajecto-
ry itis clear thatw? is reachable. Since it is arbitrary, it follows thatis a reachable
behavior.

Conversely, assumé is reachable. Lew®, w? e % be any pair of trajectories.
Clearly,c**Tw® € % and we have

k+T
@ w*y)y =wip, 21

We consider the trajectony” — o*+7w. By the assumption of reachability, there
exists a trajectory € 4 such that

0, 1<r<T,
Ur=,,8 «
Wk~ Wik T+k+1<zt.
By linearity, w = v + w® € 4. Clearly
wy, 1<t<T,
wy = B
wy, TH+k+1<zt.

Thus4 is controllable. O
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Lemma6.1. Let# = Ker P(c) and% = Ker P(o) be isomorphic behaviors. Then
4 is reachable if and only if% is reachable.

Proof. Since the behaviors are isomorphic, we apply Theorems 4.5 and 4.8 to con-
clude that there exist polynomial matric&s V satisfyingU P = PV, with U, P

left coprime andP, V right coprime, in terms of which the map(o) : # — %

is a behavior isomorphism. Assume dé@) =/ and let# be reachable. Leb €

4. Then there exists a unique € % such thaw = V (¢)w. By the assumption of
reachability there exists € 4 such that

Vp = Wy—j—, t>k+1.
Definev = V (o)v. A simple computation yields
ﬂt = (V(U)U)[ = w[_k, t > k.

Since behavior isomorphism is an equivalence relation, the converse implication
holds also. OJ

Lemma6.2. Let D(z) be ap x p nonsingular polynomial matrixThen the auton-
omous behaviok? = Ker D(o) is nonreachable

Proof. Letd(z) = detD(z) andn = degd. We show tha&? N z—"~1Fr[[z71]] =
{0}. Let h be any element in the above intersection. Wtite- z7*h’ with h’ €
z7YFP[[z71]]. Sincex? c x4/, we compute

h=nh=n_d n,dh =nh =n_d 7, dz7"h =0,

asdz " is proper. [

As a result of Proposition 6.1, the concepts of controllability and reachability for
behaviors coincide. The usefulness of using reachability rather than controllability is
due to the greater ease in using the former.

We proceed to characterize reachability in terms of various behavior representa-
tions.

Theorem 6.1. Given a behavio# c z=1F?[[z71]]. Then
1. Let # be given in the AR representation = Ker P (o), where P € FP*™[z]
has full row rank and leP(z) = E(z) P(z) be aninternal/external factorization
i.e. with E nonsingular and left prime Then
() 4, the set of all reachable trajectories i, is a linear subspace for which
we have

By = {w_hlh € Ker P(z) | F™((z" 1)} (145)
(b) We have
% = KerP(o). (146)
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In particular, %, is a subbehavior of3.
We havew € %4, ifand only if P(z)w € Xp N PF™[z].
(c) % isreachable if and only i?(z) is left prime
(d) AssumeP(z) = (T'(z) — U(z)) with T nonsingular and”~1U proper. Let

2 be the reachable subspace for the shift realization corresponding to the

matrix fraction7 ~U. Then(’~) € % ifand only ifTy_ — Uu_ € 2. We
have#, = #ifand only if# = X . The behavio# is reachable if and on-
ly if the shift realization(32) corresponding to the left matrix fractiagh~1U
is reachable henceZ is reachable if and only if’, U are left coprime

(e) Let Q(z) be any nonsingular polynomial matrix for whigh—1 P is proper
Then# is reachable if and only jfwith respect to the shift realizatio32)
corresponding to the matrix fractio@ 1 P, we havey ™ = %*.

The behavio# has an MA representation if and only if it is reachable

Let the behavio# be given in the NARMA representation

. 0 _ (M1(o)

-l ) - (e}
where we assume that the polynomial maf Zg) is right prime and that
M1(z) has full row rank Let

Mi(z) = E(2)M1(z) (148)

be an internal/external factorization @f,. Then
(a) %, the reachable sub-behavias given by the NARMA equation

0\  (Mi(o)
()= (e} oo

(b) 4 is reachable if and only iM1(z) is left prime

:@rz{w

. Given a system in ARMA form

P(o)w = M(0)é&, (150)

where we assume th&P(z) — M(z)) has full row rank andM (z) is right
prime. Let E be a g.c.l.d. of P and,Ne.

P(z) = E(2)P(2),

Y (151)
M(z) = E(z2)M(2),

with P, M left coprime Then
(8) The reachable subspacg has the ARMA representation
% =Ker(P(z) —M()). (152)

(b) % is reachable if and only iP, M are left coprime
(c) The full behavios, = Ker(P(o) — M (o)) is reachable if and only if the
(manifest behavior# = {w 3¢ € 7 1F™[[z71]], P(o)w = M(0)§} is.
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5. Let# be a behavior with split variables = (Zvl) given in the PMD representa-

ok Jo-6 e} e

where we assume th&t T are right coprime. Let E be a g.c.l.d. of T and LE.

T(z) = E(2)T1(2),

U(z) = E(2)U1(2), (154)

with Ty, U1 left coprime. Then
(a) The reachable subbehavigt, C % is given by the PMD form

S (6 R VA ] A

(b) LetT, V be defined via a left coprime factorization

T 'V=vrL (156)
The reachable subbehavigt, C 4 is given by
B =Ker(T(o) —(T(e)W(0)+ V(o)U(0))). (157)

(c) #isreachableifand only if7 — U) is left prime.
6. A behaviorZ with a pencil representation

0+~ )¢} o

where we assume that — F has full row rank anc(ZG};F) is right prime. Then
4 is reachable if and only ifG — F is left prime.
7. Let a behaviorz be given in a dual pencil representation

# = {w|(cK — L)§ = Mw}, (159)

#=u

where we assume without loss of generality th&t — L M) is of full row rank
andzK — L is right prime. ThenZ is reachable if and only ifzK — L M) if
left prime.

8. Let % be a behavior with split variables = (i) given in the state space rep-
resentation

oc& = A§ + Bu,
y = C& + Du,

which is assumed observablenen4 is reachable if and only ifz/ — A B) is
left prime.

(160)



356 P.A. Fuhrmann / Linear Algebra and its Applications 351-352 (2002) 303-380

Proof.

1. (a) Leth_ € %,. By the definition of reachability, there exists a polynomial
vectorh, such that for every time we haver_P(z)z " (h_— + hy) = 0.
Choosingr large enough so tha(z)z =" (h— + h) is strictly proper, it fol-
lows that necessarilyY (z)(h— + hy) =0, i.e.h_ € {m_h|h € Ker P(z) |
F™((z7h)}.

Conversely, ifP(z)(h— + hy) = 0,alsoP(z)z" " (h— + hy) = 0and in par-
ticular, fort > degh. it follows thath_ € %;.

(b) Assumew € Ker P(o), i.e. _Pw = 0 or for somef € F”[z], we have
P(z)w = f(z). SinceP is left prime, there exists a polynomial matrix
such thatP (z)Q(z) = I. Write f = PQg = —Pg with g = —Q f. It fol-
lows thatPw = —Pg or P(z)(w + f) = 0. So, withz = w + g we have
w=m_h and h € KerP(z). Since Kefp(z) = Ker P(z), it follows that
Kerp(z) C {m_h|h e KerP(z) | F"((z"1))}.

Conversely, assume € {m_h|h € Ker P(z) | F"™((z~1))}, i.e. there exists
anh € F™((z~1)) for whichw = 7_h and P(z)h = 0. Definingg = m.h,
it follows that P (z)h = P(z)(w + g) = 0. This clearly implies thaP (o)w
=0, and so{rr_h|h € Ker P(z)| F"((z~1))} C KerP(z) and the equality
(145) follows.

(c) AssumeP(z) is left prime andw € 4. Thusz_Pw =0, i.e. f(z) = P(2)
w(z) is a polynomial. LetD(z) be any rightinverse aP (z) and seg = Qf .
Thenf = Pg and Pg = Pw or equivalentlyP (g — w) = 0. If degg = k,
thenw = z 7 *1(g — w) € z71F"[[z~1]] and it clearly satisfies (142).

To prove the converse we show now thaPifs not left prime ther# is not
reachable. By an application of Lemma 6.1, we may assume without loss of
generality that

r1(z) o . .- -0
P(z) = . N
rpz) 0 - - -0
wherer; are the invariant factors dR with at least one nontrivial. This
implies

KerP(o)=[X"@® - ® X7 @z *F" P71

and, as pointed out before, no nonzero element in the autonomous behavior
[XT&®--- @ X'r]isreachable.

(d) Of course this follows from the first two parts of this statement. However,
we prove this directly and thus provide an independent proof of Part 1(c).
AssumeTy_ — Uu_ € %, i.e. for some polynomial vectorg,, y,, we
haveTy_ — Uu_ = n7Uuy = Uuy — Tyy. Write this asT (y— + y4+) =
U@w—+uy)or
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(T) -U@) <y‘ + y+> —0. (161)

U_ +uy

So we concludg’~) € %;.

Conversely, if(l{:) € %y, then by Part 1, there exist polynomial vectors
u., y+, for which (161) holds. From this we compute

Vo= (y— 4 y) =T - +uy) =T Wu_ +7_T0u,.

This in turn implies

(T -U®) <Z:) € R

Let E be the greatest common left divisor ®fand U. We write (T'(z) —
U(z)) = E(T(z) — U(z)) and note thal X7 C X7 is the reachable sub-
space of the shift realization. Clearly, the equality= % impliesZ = Xr.
Conversely, assumg = Xy. This means thaf’, U are left coprime. If
(2-) € #, then for some polynomial vectgt, we haveTy_ — Uu_ = f,.
SinceT, U are left coprime, there exist polynomial vectets, y for which
f+=—(Tyy —Uuy). This leads to (161) and hen¢¢") € %, and the
equality # = %, follows. This also shows tha® is reachable if and only
if T, U are left coprime.

(e) Assume tha#’ is reachable and hend®(z) is left prime. We know, from
Theorem 2.10, that, with respect to the shift realization corresponding to
0~ 1P, we have? ™ = Xp and #* = Xp N PF™[z]. Since P(z) is left
prime, thenP F™[z] = F?[z] and so

B =XpNPF"[zl=XpNF"z]=Xp =7""

Conversely, assume™ = #*. Given the factorizatio® = E P with E non-
singular andP left prime, then we know, see Fuhrmann [1981], thét/ #*
~ Xr. Hence the equality™ = %* is equivalent to the unimodularity &
and hence also to the left primenes$0504% is reachable.

2. AssumeZ has a MA representatio®d = Im Q(o), with Q(z) right prime. Ex-
tendQ(z) to a unimodular polynomial matri21(z) Q(z)) with inverse(}f(é))).
Then, by Proposition 5.1 = Ker P (o) and, sinceP(z) is left prime, it follows
that4 is reachable.

Conversely, assum# is reachable. The® = Ker P (o) with P(z) left prime.
Let (}’fl(?) be a unimodular extension with inver§@1(z) Q(z)). Clearly,
Im Q(o) is a behavior which, by the same result quoted above, is given by
Ker P(0), i.e. % has an image, or an MA, representation.
3. (a) Clearly the factorization (148) implies

a 0\  (Mi(o) p
oo Ci)e) o
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The right primeness ({%;8) implies the right primeness ‘(’%8) so there
exist unique, up to unimodular left factors, left prime polynomial matrices
(N1 N2) and(N1 N») such that

Ker(Ny N) =Im (%2%) (162)
and
Ker(Ny N2) = Im (]‘Aj;g;) (163)

By Proposition 5.1, the behavie# is given in the AR formz = Ker Nz(o)
whereas#’ = Ker No(o). By Proposition 3.6, we have thag is left prime,
i.e.#' is reachable. Now (162) implies

Mi(2)\ _
(ME - No) <M2(z)> =0

In turn this implies that for some polynomial matkx we have(N1E N2)

= K(N1 N2), or N = K N». However this is an internal/external factor-
ization and sa%, = Ker N2(o) which proves the statement.

Embed(}74(3)) in a doubly coprime extension (70). The result follows from
Proposition 3.6.3a.

4. (a) We rewrite the ARMA equation (150) in the NARMA form

(b)
(©)

()= <) ()

By Part 3, the reachable subbehavior is given by the NARMA equation

0 _ P M)\ (&
(@)= ) ()
which in turn is equivalent to the ARMA equation

P(o)w = M(0)E.

Follows from the previous part.
AssumeZiy = Ker(P(o) — M(o)),0r P(c)w = M(o)&. Let

U1(z)
v = (Uz(z)>
be unimodular with Ket/1(z) = Im M (z). Then, by Proposition 5.1, the
manifest behavior is given by the AR representation &g ) P (o). By
our assumption there exist polynomial matricésY such that the Bezout
identity PX — MY = I is satisfied. ApplyingU; to this we getU; PX —
UMY = U1PX = U;. Let U{ be a polynomial right inverse df1. Then
(U1P)(XUf) = I, which shows that/1 P is right unimodular.
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5. (&) This follows from Part 3.

(b) Using (155), it follows from an application of Proposition 5.1.
(c) Follows from Part 5(a).

Follows from Part 3.

7. Rewrite the equatiov K — L)§ = Mw in the NARMA form

(0~ )

and apply Part 3.
8. We rewrite Eq. (160) in the form

() ()= ("c")s
I —-DJ)\u C
and apply Part 5. Note that
(0 Bzl — A)
I —-D C

is left prime ifand only if(zI — A B)is. O

o

The definition of controllability in the behavioral setting as well as the charac-
terization of controllable AR representations is due to Willems [1986]. The charac-
terization of controllability in Part 5 of Theorem 6.1 and its connection to the shift
realization is due to Fuhrmann [1976,1977], see Section 2.3. The controllability test
given in Part 8 is known as thdautus testin this connection, see also Section 2.3.

We study next how the controllability property is preserved under behavior ho-
momorphisms. A preliminary result was given in Lemma 6.1.

Corollary 6.1. Let 4; = Ker P;(c) be two behaviors with?; of full row rank.

Then

1. If Z : #1 — %> is asurjective behavior homomorphisthen the controllability
of %1 implies the controllability of4>.

2. If Z . #1 — %> is aninjective behavior homomorphisthen the controllability
of %» implies the controllability of31.

3. If Z: #1 — %> is a behavior isomorphispthen#; is controllable if and only
if %, is.

Proof. By Theorem 4.5, there exit polynomial matridésV, satisfyingU (z) P1(z)

= P2(2)V(z) in terms of whichZ = V (¢). By the assumed surjectivity we have the
left coprimeness o/, P>. We apply Proposition 3.6 to get the result. It is easy to see
that, with a slight modification of the proof, the right coprimenesafV is not
necessary for the conclusion. The other statements are proved similarly.

In most parts of the definition we follow Kuijper [1992,1994] whose terminol-
ogy, in turn, follows Willems'’. In making the definition of output nulling repre-
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sentations we are motivated by Weiland and Stoorvogel [1997]. These behavior
representations open up the possibility of studying deeper underlying connections
between the behavioral theory and geometric control theory. Of particular interest is
using factorization theory as the unifying tool. This will be the subject of additional
publications.

To conclude this section we digress briefly on the question of stability and sta-
bilizability of behaviors. Up to now we have worked over an arbitrary field. In this
context it seems that the only meaningful way to introduce stability is to say that
a trajectoryw € z 1F™[[z~1]] is stableif it is eventually zero, i.e. there exists an
indexng such that, withw(z) = Y72 w;z~t, we havew; = 0 for i > ng. On the
other hand, if the field is the fiel@ of real numbers or the fiel@ of complex num-
bers, then we have alternative definitions. Again, we follow Weiland and Stoorvogel
[1997] in making the following definition.

Definition 6.2.

1. Atrajectoryw € 4 is stableif lim ,,_, o w, = 0.

2. An autonomous behavia# over R, C is stableif every trajectoryw € 4 is
stable.

3. AbehaviorZ is stabilizableif given any trajectoryw® e % and an integetg >

0, there exits a stable trajectony® < % satisfyingwﬁ.l) = w}z) for j < no.

We recall that a nonsingular polynomial matrixRi' <" [z] or C"*"[z] is stable
if det P(z) is a stable polynomial, i.e. has all its zeros in the interior of the unit
disk. The following proposition, which we give without proof, is a characterization
of stable and stabilizable behaviors.

Proposition 6.2. Given a real or complex behaviag = Ker P (o), with P(z) of

full row rank. Then

1. #is stable if and only iP(z) is a nonsingular and stable polynomial matrix

2. A s stabilizable if and only if there exists a factorizatiBiiz) = E(z) P(z) with
E(z) a nonsingular and stable polynomial matrix adz) left prime

3. The set#g; of all stabilizable trajectories % is a subbehaviorMoreover if

P(z) = Eas(2) Est(2) P (2) (165)
is a factorization withEa4(z) antistable andEgi(z) stable then
Bt = Ker Esi(0) P (o). (166)

If a behaviorZ is reachable then it is stabilizable.
. Given a behavioZ in the NARMA form

(?) w = <%£;> E. (167)

o
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Let M1 = Eas(z) Est(z)M1(z) be a factorization withEa(z) antistable and
Esi(z) stable. Then the stabilizable subbehavior is given by

By = {w ‘(?) w = (ESI(A“{;Z;(“)) ¢ } . (168)

The characterization in Proposition 6.2.2 is essentially the Hautus test for stability.

7. Equivalence of behavior representations

This section is devoted to the central theme of this paper, namely the unified
derivation of equivalence results for different classes of behavior representations.
More specifically, in terms of the system representation’s data, we want to estab-
lish necessary and sufficient conditions for the corresponding behaviors to coincide.
In a way this is a far reaching variation on the theme of equivalence and sim-
ilarity, that is the standard results that two matricésB are similar if and
only if the pencilszI — A, zI — B are equivalent. Other examples of results of
the same nature are the Kalman state space isomorphism theorem and the
analysis of strict system equivalence in the context of polynomial matrix
descriptions.

In fact, we begin our analysis of the problem for the class of behaviors given in
NARMA representation that was introduced in Section 5. We do this by extending
the authors’ version of strict system equivalence, referred to by Kailath [1980] and
Ozgiiler [1994] as Fuhrmann system equivalence (FSE) to distinguish it from Ro-
senbrock’s original definition, by introducing the concept of NARMA equivalence
of two systems given in NARMA representation. We show directly that NARMA
equivalence is indeed a bona fide equivalence relation. We proceed to show that FSE
turns out to be a special case of NARMA equivalence. The principal result, namely
Theorem 7.1, characterizes equivalence for different classes of behavior represen-
tations. First and foremost in importance is that of NARMA representations. This
provides the key for all other cases. To analyze NARMA equivalence, we bring to
bear all the machinery of behavior isomorphism which in turn is based on doubly
unimodular embeddings. It is worthwhile to note that, in the characterization of
similarity of behaviors, contrary to the case of rational models, coprimeness con-
ditions are necessary but, due to the use of rectangular polynomial matrices, are not
sufficient and have to be replaced by the stronger condition of the existence of doubly
unimodular embeddings.

One another thing to point out is that all equivalence results are derived under
conditions weaker than minimality. This is not surprising inasmuch as in the case of
strict system equivalence, no minimality constraints were imposed, see Fuhrmann
[1977].
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We introduce now the new concept of NARMA equivalence. This is related to
another concept of equivalence, namely that of strict system equivalence. For ease
of reference, we also recall the definition of Fuhrmann system equivalence.

Definition 7.1.
1. Given two NARMA representations
0 _ (Ma1(o)
()= (e ae
with the behavio&s, and
0\ _ (Mi(o)
(1) =) (7o)

with the behaviorZ, we say that the representations Bi®RMA equivalenif
there exists polynomial matricés, V, X of appropriate size such that

U(z) 0\ (Mi1(2)\ _ (Mi(z)
(—Y(Z) 1> (Mz(z)) B (M2(1)> V). (171)
U, M1 are left coprime andij}\%)), V right coprime and
7 - Mi(z)
U 0 M)\ _
Ker(j(z) I Mz(z>> =i (fl 5((?)) e

holds, i.e. there exists a doubly unimodular embedding of the polynomial matri-
ces

77 ¥V Mi1(z)
Ui O M1(Z)>
= = .| M) ). (173)
(—X(z) 1 M) (_V(Z))
2. Two polynomial system matrices
» — (L —U _
”l—<v,- Wi), i=12

are calledruhrmann system equivaleitr FSE if there exist polynomial matri-
cesM, N, X, Y, with M, T, left coprimeTy, N right coprime and for which

M 0\ (T U1\ (T —-U\(N Y
(—X 1> <V1 W1 ) - <V2 Wo ) (0 1> ) (174)
Remarks.

1. Note that the left coprimenessGfandM is equivalent to the left coprimeness
of

Uz O M1(z)
(—Y(z) 1) and (Mz(z)>'
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2. There are two variations on the definition of NARMA equivalence. We say the
two systems areveakly NARMA equivaleiift(171) is replaced by

Uiz) O Ml(z)) (Vl(z))
o == V(2), 175
(—X@ P) <M2(z) M) V@ (175)
with P a nonsingular constant matrix, i.e. we allow also a change of basis in
the spac@\. If P is restricted to a permutation matrix, we will say that the sys-

tems arepermutation NARMA equivalenh this special case of weak NARMA
equivalence, we are allowing only a reordering of the external variables.

Proposition 7.1.
1. NARMA equivalence is an equivalence relation.
2. FSE is an equivalence relation.

Proof. Both statements can be proved directly, however the computations are some-
what tedious and will be omitted. One can easily avoid them. In fact, that FSE is an
equivalence relation proved in Fuhrmann [1977], by showing that two polynomial
system matrices are FSE if and only if the associated shift realizations are similar.
Since system similarity is an equivalence relation, so is FSE. In the same way, one
can show that NARMA equivalence is indeed an equivalence relation by showing
that, under the assumed right primeness conditions, two NARMA systems are NAR-
MA equivalent if and only if they represent the same behavior. This is proved in
Theorem 7.1.3. [

Clearly if a NARMA system

0\  (Mi(o)
(1> Y= <ﬁz<o>)S

is obtained from

0 . M1(o)
(l> = <M2<g)>€

through

(ﬂl(Z)) _ < U(2) 0> <M1(z)> V@)

M3 (2) —X(@) 1) \M2(2)

with U(z), V (z) appropriately sized unimodular matrices, then the two systems are
NARMA equivalent. This easy observation is useful in the reduction of representa-
tions.

The following theorem is the central result for this section. It characterizes the
conditions, in terms of behavior representation, that two different representations
have the same behavior. The key result is that of NARMA representations and we
derive most other characterizations from this one. Thus we present a uniform deriva-
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tion for the problems of system equivalence. Part 1 is identical to Theorem 3.4.2 and

is included for completeness.

Theorem 7.1.
1. LetP, Q € FP*™[z] have full row rank Then
Ker P(o) = Ker Q(o) (176)

if and only if O(z) = U(z) P(z) for some unimodular polynomial matrix.
2. Two behaviors in MA representations
B =ImM;(c), =12, a77)
under the assumption thad; (z) are right prime are equal if and only iM2(z) =

Mi(z)V (z) for some unimodular V
3. Given two behaviorg? and % in the NARMA representations

(?) w= (%gg) ¢ (178)
and o
(?) w = <%§EZ;) £ (179)

respectively. We assume that both

Mi(o) Mi(o)
and (-
<M2(0)> (Mz(o))
are right prime. Ther# = 4 if and only if the two representations are NARMA

equivalent.
4. Given two behaviorg;, i = 1, 2in DVPMD form

(?) w = <‘T/ _ul/j ) (2) . i=12 (180)
under the assumption that the polynomial system matrices
(v )
Vi Wi
are right prime. Then the two behaviors coincide if and only if there exist

appropriately sized polynomial matrices\, X, N11, N12, No1, Nop  for
which

M O\ (T Ui\ _ (T —=Uz\ (N1 N1 (181)
-X I Vi W1 ) \W Wo N21 N2

and there exists a doubly unimodular embedding for

11 —-U;p
M 0 I -Up Vi W1
=X I V2 W)’ —Ni11 —Ni12

—N21 —N22
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. Given two behaviors;, i = 1, 2, with split variablesw = (?) in PMD form

0 O T, -U; ¢
I 0 (y ) =|lvi w (;) . i=12 (182)
o 1) \* 0o I 2

under the assumption that, V; are right coprime. Associate with such a system
a polynomial system matrix

o — (i Ui :
J’,_<Vi Wi)’ i=12
Then
(a) The associated behaviors are given by
B =Ker(T;i(o) — (Ti(0o)W;i(0)+ Vi(0)Ui(0))). (183)

(b) The two behaviors are equal if and only if the two polynomial system matri-
ces?; are Fuhrmann system equivalgiffSE).
. Given two behaviors in observable state space representations

0 0 ol — A,’ —B,’ S
I 0 (y) -| o D; (;), i=12 (184)
o 1) \* 0 I 2

Then the corresponding behaviors are equal if and only if the two systems are
isomorphic, i.e. there exists a constaimvertible matrixM, such that

M 0\ (zl—-A1 —-B1\ _(zl—-A2 —-B\(M O

(0 1)( C1 D1>_< Cr Dz)(O 1)' (185)

. Given two behaviors in DV state space representations

0 »— zZI—A =B\ (& 0 v — z2I—A =B\ (m

1)\ ¢ D)\&) \u)”""\ ¢ D)\n)
(186)

where we assume that the two polynomial matrices are right primeband are
both injective. Then the two behaviors coincide if and only if there exist constant
matricesU, P, K, with U, P invertible and a permutation matrik, such that

G CS D-C DY

i.e. the two state space systems are state feedback equivalent.
. Given two behaviorg# and 4 in pencil representations

(0~ (5"

and
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(0~ (%"):

respectively. We assume that

(&) G has full row rank.

(b) (%) has full column rank.

() (9, ") is right prime.

Then the two behaviors coincide if and only if there exist unique, nonsingular,
constant polynomial matrices S and T for which

S 0\ [(zG-F G — F
(0 (%) =(%")r as0

Proof.

1. See Theorem 3.4.2.

2. Assume first that I'M1(c) = Im M (o), i.e. the behaviors are equal. By as-
sumption, the polynomial matricég; (z) are right prime. By Proposition 3.5, we
have ImM; (o) = {Ker M;(z)}*, and hence the equality Kéf1(z) = Ker Mo(z).
Since theM; are left prime, it follows from Proposition 3.3.4 that, = V M>,
for some unimodula¥. ThusM, = M, V.

Conversely, itM2(z) = M1(z) V (z) with V unimodular, it follows that InM2(o)
C ImM; (o). Equality follows by symmetry.

3. Assume firstthat the representations are NARMA equivalentlgt) N2(z))

and(N1(z) N2(z)) be left prime polynomial matrices for which

Ml(Z)>

Ker(Ni(z) N2(z)) =Im (Mz(z)

El(@) _

Ker(Ni(z) N2(z)) =Im < Mae)

By Theorem 5.1, we hav& = Ker No(o) andZ = Ker N2(o'). We compute
= — Mi(2)
0=(N1(z) N2(2)) <M2 (Z)) 1%
= — U 0\ (Mi(z)
=(N1(2)  N2()) (_ X() ,) ( MZ(Z)>

=((N1(2U(z) = N2(2)X(2)) N2(2)) (%28)

i.e.
Ker((N1(z)U(z) — N2(2)X(2)) N2(z)) D Ker(Ni(z) N2(2)).
By Proposition 3.3, there exists a polynomial matfig) for which
(N1@)U () = N2(2)X(2) N2()) =L(x)(N1(z) N2()).
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This implies the equality KeN(c) D Ker N2(o) or Z D %. By Proposition

7.1, NARMA equivalence is an equivalence relation, and in particular a sym-
metric relation. The equalityg = 2 follows by symmetry.

Conversely, assume the behavigteind % are equal. Clearly we have

B = Mo(o)KerM1(c) = Ma(o)KerM(o).

The right coprimeness a#f1, M> implies thatM,(o)|Ker M1(c) is injective
and soM» (o) as a map from Keb1(o) onto 4 is bijective. Moreover, it is an
F[z]-homomorphism. In the same wa¥,(c)|KerM (o) : KerM1(o) — #is
a behavior isomorphism. We define now a m&p Ker M1(c) — KerM1(o)
by

Zh = M2(0) *Mo(o)h, h € KerMy(o). (191)
Clearly Z is an F[z]-isomorphism, i.e. satisfiego ™1 = ¢M1Z and is invert-
ible. SinceM1(z), M1(z) have both full row rank, we can apply Theorem 4.5
to conclude the existence of appropriately sized polynomial matticaad V
for which U, M1 are left coprime My, V are right coprime, they satisfy the
following equality:

V() (192)

in terms of whichZ = V (o). Note that the previous conditions are equivalent to
the existence of a doubly unimodular embedding of

(Ux) Mi(z), (%1((;)))

Thus we havé (o) IMa(c)h = V(o) for all h € KerM1(o). So
Ker(Ma(o) — Ma(o)V (o)) D Ker M1(o).

By Theorem 3.4, we conclude the existence of a polynomial matt such
that

M2(z) — M2(2)V (z) = X (2)M1(2). (193)
The equalities (192) and (193), taken together, imply

(Vg 0 o) i -(9)
0 I 0 V() 0

It remains to show that there exists a doubly unimodular embedding for

(U(z) 0 @@) )
-X@ 1 M) \ZP5)

First, we note that there exists a doubly unimodular embedding for

Ker(U(z) Mi(z) =Im <M1(Z))
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(S0

— M
(U(z) 0 M1(z)> %)(Z) _
0 I 0 V)
This follows from Lemma 3.2 and the fact that there exists a doubly unimodular
embedding of

(U Mi2)). (
We note that
1 0 _0 1 0 _0 I 0 O
—X@) I M2z Xz I —-Mxz)|=|0 1 O
0 0 1 0 0 1 0 0 I
with both matrices unimodular. Now

v — 1 0 0
Uz 0 Mi(2\_ (U 0 Mi@)|[ _ _
(—X(Z) I ﬁz(z)>_< 0o I 0 )( )B(Z) é le(z))

Mi(z)
V) )°

and, using Eq. (193), we have

I 0 0 Ma(2) Mi(z)
X(@) I —M22) 0 |=1X@M1(2)+ M2(2)V(2)
0 o I V(z) —V(2)

Mi1(z)
= | Maz) |,
V(2)

and (172) follows.

. This is a straight application of Part 3.

Note that the right coprimenessBf V; is equivalent to the right primeness of

T, U
Vi Wi |.
0 I

Assume first that the two polynomial system matrices are FSE. Let, for
1,2, Tl-_lVi be a left coprime factorization of; 7,~*. By Proposition 5.1, the
associated behaviors are given in AR representations by

B; =Ker(Ti(o) — (Ti(o)W;(0)+ Vi(0)Ui(0)). (194)

Since the two polynomial system matrices are assumed to be FSE, there exist
appropriately sized polynomial matricég, N, X, Y, with M, T» left coprime
T1, N right coprime and for which

M O0\/T, -U; > —-Ux\ (N Y
(S D0 W)= W)@ ) 199
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Note that, by Proposition 7.1, this is equivalent to the existence of a doubly
unimodular embedding. Eqg. (195) implies the four identities

MTy = TN,

MU = Uz — 1Y,
XTy — Vi =—VoN,
XU+ W1 = VoY + Wa.

(196)

Let, fori =1, 2, Ti_lV,- be a left coprime factorization dil’,-Tl._l. We compute
now, using (196),
Ty V=Wl = X+ VoNT L = Vol M

=X+ T, VoM =T, (ToX + Vo). (197)
ThUSTQTIl_Vl is a polynomial matrix. By the left coprimeness Bf, V1, it
follows that7T2 = ST for some, necessarily nonsingular, polynomial magix
Now, by Fuhrmann [1976], the equalitd Thn = T>N, taken together with the
assumed coprimeness conditions imply that the invariant factors, and hence also

the determinants, df, 7> are equal. This shows th&tis necessarily unimodu-
lar. We continue, using (197),

T, Vi =T, (T2X + VaoM)
or
SV1=T2X + VoM.
Since
ViUy + TaWi = T1T,  (T2X + VoM)Us + T1 W1,
we have
S(ViUr + T1Wi) = (T2X + VaM)Ur + T2 W1
=To(XUy+ W1) + VoMU
=To(VoY + Wp) + VoMU
=ToWy + TaVoY 4 Va(Uz — T2Y)
=ToWo+ ValUz+ (T2Va — VoTo)Y
= ToWo + VoUs.
So, withSunimodular, we have

S(2)(T1(z) — (T1(2)W1(2) + V1(2)U1(2)))
= (T2(2) = (T2(x)Wa(2) + V2(2)U2(2))- (198)

Applying Theorem 3.4.2, we have obtained
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Ker(T1(o) — (T1(6)Wi(o) + V1(0)U1(0)))
= Ker(T2(0) — (T2(0)Wa(o) + Va(0)U2(0))).

We conclude that the two behaviors are equal.

Conversely, assume the two behaviors are equal. Considering in a natural way
the behavior equations (182) to be NARMA representations. Then, noting that
Vi, T;, i =1, 2, are right coprime and applying Part 4, we conclude that there
exist appropriately sized polynomial matricés, X1, X2, N11, N12, N21, No2
satisfying

My 0 O Tm -U; . -Uz N N
-X; I O Vi Wi l=1W Wo <Nll le) , (199)
-Xx, 0 1/)\o I 0 I a2z
and for which there exists a doubly unimodular embedding of
T =U1

My 0 0 T» -U» Vi W1
-X1 I 0 W Wa |, 0 I
—-X2 0 I O 1 —N11  —N12

—N21  —N22

Using the unimodular matrices in

I 0 O O O 1 0O 0 0 O
0O I 0 0 O 0 I 0 0 O
Xo 0 I 0 -1 -X>, 0 I 0 I
0O 0 o1 O 0 0O 01 O
0O 0 0 o0 1 0 0O 0 0 1
I 0 0O O O
0O 7 0 0 O
=|0 0 I 0 O (200)
0O 0 01 O
0 0 0 0 1

it follows that there exists also a doubly unimodular embedding of

i -U1
My 0 O T» -U Vi W1
-X;1 I 0 Vo W), —XoT1 — N1 XoUr +1 — Nop
0 0O I O 0 —N11 —N12
—N21 —N22

However, from (199) it immediately follows that
No1 = —X0oT1,
Noo =1 + XoUs.
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So we get, applying Lemma 3.2.2, that there exists also a doubly unimodular
embedding of

i -1
(Ml 0 T» —U2> Vi W1
-X1 I V2 W)’ —N11 —Ni12
—N21 —N22

In particular, we get

My O\ (Th -U1\_ (T» -U> Ni11 N12 (201)

—-X1 1 Vi Wi ) \W Wo —XoTh I+ X2U1)’
which can be rewritten as

My —UzX> 0\ (T -U1\_ (T -Uz\(Nuu N1 (202)

—(X1—WoXo) I Vi W1 ) \W Wo 0 I )

By appropriately definingy, X, N, Y, Eq. (202) can be rewritten in the form
(195) and the unimodular embeddability condition still holds. Thus we proved
that the two polynomial system matrices are FSE.

. As shown in Fuhrmann [1977], the isomorphism of the two systems is equivalent
to the strict system equivalence of the associated polynomial system matrices

zI — A; —B;
C; D; -

By Part 5, this is equivalent to the coincidence of the behaviors.
Alternatively, we can argue as follows. We apply Part 5 and conclude that the
polynomial system matrices

zI — A,’ —B,‘
C; D;

are FSE. Thus there exist polynomial matriddsz), X (z), N(z), Y (z) with
M, T» left coprimeT1, N right coprime and for which

M(z) O\ (zl—-A1 —-B1\_(zI—A2 —B2\(N@ Y@
—X(@) I Cy D1 ) Co D> 0 1 ’
(203)

Decompose, in a unique way, the polynomial matri¢gs), N (z) in the form
M(iz) =M+ (z — Ap)M'(2),

N@) = N+ Nl — Ap). (204)
Substituting in (203), we have
M+ (z1 — Ap)M'(z) O\ (zI —A1 —B
—X(2) 1 C1 D1
(2l —Az2 —B; N+ N'(2)@zl — A1) Y(2)
_( Co Dz)( 0 1 )’ (205)
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i.e. we have the following equations:

M(zl — A1) + (21 — Ap)M'(z)(z] — Ap)
= (z] — A2)N + (zI — A2)N'(2)(z] — A1) — MB1 — (2 — A2)M'(2) By
=(zl —A2)Y () — B2— X))zl — A +C1
= CoN + CoN'(2)(zI — A1) — X(2)B1+ D1 = C2Y(z) + Dp.  (206)

Moreover,M, (zI — A») are left coprime andz! — A1), M are right coprime.
These coprimeness conditions imply the nonsingularitiyl of

From the first equation we obtaM’(z) = N'(z) andM (zI — A1) =(zI — AQ)N
which translates into

M =N,

MAL = AoM. (207)
The second equation giv&<z) = M’(z) B1 and

B, = MB. (208)
From the third equation we infé¥ (z) = —C2N’(z) and

C1= CoM. (209)

We compute now
—X(2)B1 = C2N'(z) By = C2M'(2) By = C2Y (2).
Using this in the last equality of (206), we have
D1 = D;. (210)

Putting (207)—(210) in matrix form, we obtain (185).
If such matrices exist, then by Lemma 3.2.3, we obtain the existence of a doubly
unimodular embedding for

zI—A —-B
U 0 zI-A -B C D
(o 1 Cc 5)’ -U 0
—-K —P

By Part 3, the two behaviors coincide.
To prove the converse we reduce it to the case of state space representations
treated in Part 6. we choose a basis in the signal sp&foe which

p— (H1 Ho D= Hi1 Hi
Hy1 Hx)’ Hy1 Hp)’

whereH»»,, H» are both nonsingular. With respect to this basis we have that the
systems in (186) are permutation NARMA equivalent respectively to
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0 O w zI—A —B
I 0 <w1) =| Hn Hiz |,
0 I 2 Hy H2)
_ (211)
0O O w zl-—A —B
I 0 <w;> =| Hu Hi
0 I Ho1 Hoo
Now
1 -1
Jd—A —-B / 0 2l — A+ BHy Hn —BHy,
Hi Hi» ( -1 —1) =| Hu— HioH Hy  HioHy,
H . H H. 22 22
Ho1 Hoo 22 121 22 0 I
zI—F -G
| H J (212)
0 1

and similarly for the other system. The new systems, now in observable state
space form, are still NARMA equivalent. Applying Part 6, there exists a constant
invertible matrixU satisfying

O R

Putting all this together, we have

U 0\(zl—-A -B I 0
0 I C D ) \Hy'Hn Hy'

U 0 O\ [zI-F -G 2—F -G U 0o
=10 I O H J | = H J <0 1)
0 0 I 0 I 0 I
ZIH— A %B ! 0 ) (U o) (zl _A —B)
= 11 12|\ -1 - = = -
Ao  Ha) \2flz Haz )0 ©c P

and so
U 0\ (zI-A -B
0 I C D
_(z21-A -B ! 0 U o) I 0
-\ C D J\HyHa Hy)\0 1)\-Hxn Hy

(zz Y _§> U 0
= — = || -1+ -1 g1 ‘
C D J\HyyHo1U — Hyy Hyy  Hyy Ha
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This proves the statement by definikgy = ﬁ;zlﬁzw - ﬁz_leZJ_ and P =
—1

8. Assuming nonsingular polynomial matriceandT exist for which (190) holds,
then applying Lemma 3.2.3, we obtain the existence of a doubly unimodular
embedding for

(s C-T). (ZG_‘TF).

By Lemma 3.2.2, so does

(s 0 za_f) ZGO—F
07 0 7

Using the identity

I 0 O\/I 0 0O I 0 O
o 7 H||lo 1 -H]=|0 1 o0
0 0 I 0 0 I 0 0 [

and the equalityd = HT that follows from (190), we infer the existence of a
doubly unimodular embedding for

(s 0 za_f) wor

0 I H r

By Part 3, the two behaviors coincide.

In order to prove the converse, we reduce it to Part 7. By our assumption that

G has full row rank, there exist nonsingular constant matrlde8V such that
UGW = (I 0). So

M 0\ [(zG—-F zI—A —B

(5 D% )r=("e" 5): @
Similarly, we have

M 0\ (zG—-F _(z21-A -B

(5 (- (" D

These transformations imply the injectivity &f, D and the right primeness of
the polynomial system matrices

z2I—A —B z2I—A —-B
C D)’ C D)

Thus the two DV state space systems

()= @) ()= )0
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satisfy the conditions of Part 7. Hence, there exists an invertible maticBs
and a matriX for which

U 0\(z[-A -B zZI—A —-B\[(U 0
(o 1)( c D>=< Cc 5)(1( P) (215)
holds. Using (213)—(215), we compute

U O0\/M 0\ /zG—-F
(6 DE D)

U O0\(zI—-A -B\. _

:(0 I)(ZC D)Wl
zZI—A —-B\(U 0\, _

( C 5)(1{ P)Wl

M 0\ (zG—F\/U O _
(o D% )G B

i.e.

(H_zUM ?> (Zc;I; F) _ (zE

|

)G Y

So definings = M ‘UM andT = (% 2) w-1, (187) follows. O
Remarks.
1. The equivalence notion given in Part 4 is not new and relates to the study of state

feedback in the context of polynomial matrix descriptions. This has been studied
in great detail in Pratzel-Wolters [1981]. The equivalence of two systems given
in PMD form, given in Theorem 7.1.5, is due to Hinrichsen and Préatzel-Wolters

[1980b].

. The assumption in Part 7 that in the DV representation (186) the niatisx

injective is equivalent to the fact that the matrix

zI - F -G
H J
0 1

in (212) is in column Kronecker—Hermite form. This, taken together with the
assumption of right primeness is equivalent to the minimality of the represen-
tation, see Schumacher [1989] and Kuijper [1992,1994]. In fact, the proof of
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Part 7 is adapted from Kuijper. Minimality will be discussed in the following
subsection.

3. The three assumptions in Part 8 are equivalent to the minimality af tfepre-
sentation (188), see Kuijper [1992,1994]. Assumptions (a) and (b) by themselves
again relate to the reduction to column Kronecker—Hermite form.

7.1. Minimality of representations

We end the paper with a brief discussion of minimality of representations. The
results are standard, see Kuijper [1992,1994], however the derivation seems to be
much more elementary as it is based mostly on operations done on polynomial
matrices.

Definition 7.2.

1. We say that a state space representation (184) of a bebawiath A : X — X
andB : U — X, is minimal if the dimension of the state spaces minimal.

2. We say that a DV-representation (186) of a behaddpwith A : X; — X3 and
B : X2 — X1, is minimal if both the dimensions of the spacés X, are mini-
mal.

3. We say that &-representation (188) of a behavi#t with G, F : Z — X and
H : Z — W, is minimal if both the dimensions of the spaces X, Z are minimal.

Note that Part 3 of the definition says that in the representation (188) we use the
minimal number of auxiliary variables (di@) and a minimal number of equations
(dim X). The other statements are special cases. The following gives the character-
ization of minimality for the first order systems under discussion.

Theorem 7.2.
1. Necessary and sufficient conditions for the minimality of a P-representation

0+~

are
(&) G has full row rank.
(b) (£) has full column rank.
(©) (*9;") is right prime.
2. A necessary and sufficient condition for the minimality of a DV-representation

o=t D
is that

(a) D has full column rank.
(b) (¥'z*)is right prime.
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3. A necessary and sufficient condition for the minimality of a state space repre-
sentation

0O O cl—A —-B
I 0 (y ) [ ¢ » (§1> (218)
o 1)\ 0 1) \%2

is that the pair(C, A) is observable.

Proof.

1. We begin by proving the necessity of conditions 1(a)—(dk i$ not of full row
rank, then, by applying constant elementary row operation@ba F, we can
assume without loss of generality that there exists a constant roW in F.

It cannot be a zero row as it contradicts minimality. If it is a nonzero row, say
(a1 --- o), we canassume without loss of generality that~ 0. This means
@181 + -+ + opéy = 0 and hence,, = —a;, (11 + - + am—18m—1). Thus

the number of variables could be reduced, contrary to minimality. This proves
the necessity of 1(a).

Applying an appropriate constant nonsingular matrix on the right, which clearly
does not change the behavior, we can assume without loss of generality that

(zG[; F> _ (z[c— A —DB>. (219)

Now (g) has full column rank if and only if

I 0

C D
has full column rank. ID fails to have full column rank, we can assume without
loss of generality that

zG—-F\ (z2I-A —-B1 -—-B
H - C D1 0

with D of full row rank. Now, if B, = 0 then clearly the number of auxiliary
variables can be reduced. B + 0, then by elementary column operations we
can eliminate the variables in at least one of therowgbt~ A — B1 — B»),
which contradicts the assumption of minimality. This proves the necessity of
1(b).
Since we have the equality (219), abdhas full column rank, the right primeness
of (%, F) is equivalent to the right primeness Gf*). If the last matrix is not

right prime, then the pai€, A is not observable, hence in some basis has the
representation
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(A1 As
A= ( 0 Az) ’
C = (Cl Cz) .
The behavior equations are now

0 ol — A1 —A3 —B1
Olw= 0 ol —A, —By|E&.
I C1 C2 D

The injectivity of D allows us to assume without loss of generality tigt= 0.
Since obviouslyzI — A1 has full row rank, we can apply Proposition 3.5 and
reduced the behavior equations to

0 ol —A> —B»>
(De=("e 5)e

which contradicts minimality. Thus the necessity of 1(c) is proved.
To prove the converse, let us assume that we havePtnepresentations of the
same behavior

(?) w = <(’G'; F) £ i=12 (220)

Let the firstP-representation be minimal whereas the secBndpresentation
satisfies assumptions 1(a)—(c). Since these conditions are necessary for mini-
mality, they are satisfied for both systems. Hence, by Theorem 7.1.8, they are
isomorphic, i.e. there exist nonsingular, constant polynomial matBaasd T

for which

S 0\ (sGi1—F1\ _(sG2— F>
(6 D)% ") =(%")r 21
In this cases = (I 0) if of full row rank and the result follows from Part 1.
In this case5 = (I 0) is of full row rank and

I 0
(Z): c D
0 1

has full column rank. Also the right primeness of

zI—A —B
C D
0 1

is equivalent to the right primeness(éfC‘A), i.e. to the observability of the pair
(C, A). So the result follows from Part 1.1
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