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Abstract

We consider the problem of embedding finite metrics with
slack: we seek to produce embeddings with small dimension
and distortion while allowing a (small) constant fraction of
all distances to be arbitrarily distorted. This definition is
motivated by recent research in the networking community,
which achieved striking empirical success at embedding In-
ternet latencies with low distortion into low-dimensional
Euclidean space, provided that some small slack is allowed.

Answering an open question of Kleinberg, Slivkins, and
Wexler [29], we show that provable guarantees of this type
can in fact be achieved in general: any finite metric can
be embedded, with constant slack and constant distortion,
into constant-dimensional Euclidean space. We then show
that there exist stronger embeddings into {1 which exhibit
gracefully degrading distortion: these is a single embed-
ding into {1 that achieves distortion at most O(log 1) on
all but at most an e fraction of distances, simultaneously
for all € > 0. We extend this with distortion O(log 1)1/?
to maps into general {,, p > 1 for several classes of met-
rics, including those with bounded doubling dimension and
those arising from the shortest-path metric of a graph with
an excluded minor. Finally, we show that many of our con-
structions are tight, and give a general technique to obtain
lower bounds for e-slack embeddings from lower bounds for
low-distortion embeddings.
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1 Introduction

Over the past decade, the field of metric embeddings has
gained much importance in algorithm design. The central
genre of problem in this area is the mapping of a given
metric space into a “simpler” one, in such a way that the
distances between points do not change too much. More
formally, an embedding of a finite metric space (V, d) into
a target metric space (V',d’') isamap ¢ : V' — V’. Recent
work on embeddings has used distortion as the fundamen-
tal measure of quality; the distortion of an embedding is
the worst multiplicative factor by which distances are in-
creased by the embedding!. The popularity of distortion
has been driven by its applicability to approximation algo-
rithms: if the embedding ¢ : V' — V' has a distortion of
D, then the cost of solutions to some optimization prob-
lems on (V,d) and on (p(V'),d’) can only differ by some
function of D; this idea has led to numerous approximation
algorithms [25].

In parallel with theoretical work on embeddings, there
has been a surge of interest in the networking community on
network embedding problems closely related to the frame-
work above (see e.g. [15, 36, 41]). This work is motivated
by different applications: one takes the point-to-point laten-
cies among nodes in a network such as the Internet, treats
this as a distance matrix,2 and embeds the nodes into a low-
dimensional space so as to approximately preserve the dis-
tances. In this way, each node is assigned a short sequence
of virtual “coordinates,” and distances between nodes can
be approximated simply by looking up their coordinates and
computing the distance, rather than having to interact with
the relevant nodes themselves. As location-aware applica-
tions in networks become increasingly prevalent — for ex-

'Formally, for an embedding ¢ : V — V', the distortion is the
smallest D so that 3o, 3 > 1 with o - 8 < D such that é d(z,y) <
d' (p(z),p(y)) < Bd(z,y) for all pairs z,y € V x V. Note that this
definition of distortion is slightly non-standard—since «, 3 > 1, it is no
longer invariant under arbitrary scaling; however, this is merely for nota-
tional convenience, and all our results can be cast in the usual definitions
of distortion.

2While the triangle inequality can be violated by network latencies, em-
pirical evidence suggests that these violations are small and/or infrequent
enough to make metric methods a useful approach.



ample, finding the nearest server in a distributed application
with replicated services, or finding the nearest copy of a file
or resource in a peer-to-peer system — having such distance
information in a compact and easily usable form is an issue
of growing importance (see e.g. the discussion in [15]).

In the context of these networking applications, how-
ever, distortion as defined above has turned out to be too
demanding an objective function — many metrics cannot
be embedded into Euclidean space with constant distortion;
many of those that can be so embedded require a very large
number of dimensions; and the algorithms to achieve these
guarantees require a type of centralized coordination (and
extensive measurement of distances) that is generally not
feasible in Internet settings. Instead, the recent networking
work has provided empirical guarantees of the following
form: if we allow a small fraction of all distances to be ar-
bitrarily distorted, we can embed the remainder with (ap-
parently) constant distortion in constant-dimensional Eu-
clidean space. Such guarantees are natural for the underly-
ing networking applications; essentially, a very small frac-
tion of the location-based lookups may yield poor perfor-
mance (due to the arbitrary distortion), but for the rest the
quality of the embedding will be very good.

These types of results form a suggestive contrast with
the theoretical work on embeddings. In particular, are the
strong empirical guarantees for Internet latencies the result
of fortuitous artifacts of this particular set of distances, or is
something more general going on? To address this, Klein-
berg, Slivkins, and Wexler [29] defined the notion of em-
beddings with slack: in addition to the metrics (V,d) and
(V',d") in the initial formulation above, we are also given
a slack parameter €, and we want to find a map ¢ whose
distortion is bounded by some quantity D(¢) on all but an
e fraction of the pairs of points in V' x V. (Note that we
allow the distortion on the remaining en? pairs of points to
be arbitrarily large.) This question can be viewed as a nat-
ural variant of metric Ramsey theory [10]. Roughly, Klein-
berg et. al. [29] showed that any metric of bounded dou-
bling dimension — in which every ball can be covered by
a constant number of balls of half the radius — can be em-
bedded with constant distortion into constant-dimensional
Euclidean space, allowing a constant slack e. Such met-
rics, which have been extensively studied in their own right,
have also been proposed on several occasions as candidates
for tractable abstractions of the set of Internet latencies (see
e.g. [19, 27, 36, 38]).

There were two main open questions posed in [29].

(1) There was no evidence that the main embedding result
of [29] needed to be restricted to metrics of bounded
doubling dimension. Could it be the case that for every
finite metric, and every € > 0, there is an embedding of
the metric with distortion f(¢) into Euclidean space?

(2) Rather than have the embedding depend on the given
slack parameter €, a much more flexible and powerful
alternative would be to have a single embedding of the
metric with the property that, for some (slowly grow-
ing) function D(-), it achieved distortion D(e) on all
but an € fraction of distance pairs, for all ¢ > 0. We
call such an embedding gracefully degrading [29], and
ask whether such an embedding (with a polylogarith-
mic function D(+)) could exist for all metrics.

In this paper, we resolve the first of these questions in
the affirmative, showing constant distortion with constant
slack for all metrics. Moreover, the embedding we design
to achieve this guarantee is beacon-based, requiring only
the measurement of distances involving a small set of dis-
tinguished “beacon nodes”; see Section 2. Approaches that
measure only a small number of distances are crucial in net-
working applications, where the full set of distances can be
enormous; see, e.g., [23, 20, 30, 36, 37, 42] for beacon-
based approaches and further discussions. We then resolve
the second question in the affirmative for metrics that ad-
mit an O(1)-padded decomposition (a notion from previ-
ous work on embeddings that we specify precisely in Sec-
tion 1.1); this includes several well-studied classes of met-
rics including those with bounded doubling dimension and
those arising from the shortest-path metric of a graph with
an excluded minor. We further show that gracefully degrad-
ing distortion can be achieved in the ¢; norm for all metrics.
The second question has been subsequently solved in full
in [1] (see also the bibliographic notes in the sequel), pro-
viding an embeddings with gracefully degrading distortion
for all metrics in £, for every p > 1. Finally, we show that
many of our constructions are tight, and give a general tech-
nique to obtain lower bounds for e-slack embeddings from
lower bounds for low-distortion embeddings.

Basic Definitions. Before we formally present our results,
let us present some of the notions that will be used through-
out the paper. We will assume that the metric (V, d) is also
represented as a graph on the nodes V, with the length of
edge wv being d(u,v) = dy,. We imagine this graph as
having n? edges, one for each pair u, v € V x V; this makes
the exposition cleaner and does not change the results in any
significant way. For a map ¢ : V' — V" let us define the no-
tion of the distortion of a set S of edges under embedding ¢
as the smallest D > 1 such that for some positive constant
K and all edges (u,v) € S we have

d(u,v) < d'(¢(u),¢(v))/K < D-d(u,v).
Note that the distortion of ¢ (as given in Footnote 1) is the

same as the distortion of the set of all edges.

Definition 1.1 (e-slack distortion) Given ¢, an embedding
¢ : V. — V' has distortion D with e-slack if a set of all but
an e-fraction of edges has distortion at most D under .



We will also consider a stronger notion of slack, for which
we need the following definition. Let p,,(¢) be the radius of
the smallest ball around u that contains at least en nodes.
Call an edge uv e-long if dy,, > min(p,(€), py(€)). Then
there are at least (1 — ¢) n? edges that are e-long. For any
such edge uv, at least one endpoint w is at least as far from
the other endpoint v as the (en)-th closest neighbor of v.

Definition 1.2 (c-uniform slack distortion) Given ¢, an
embedding ¢ : V. — V' has distortion D with e-uniform
slack if the set of all e-long edges has distortion at most D.

While the above notions of embeddings with slack allow the
map ¢ to depend on the slack e, the following notion asks
for a single map that is good for all € simultaneously.

Definition 1.3 (gracefully degrading distortion) An em-
bedding ¢ : V. — V' has a gracefully degrading distor-
tion D(e) if for each € > 0, the distortion of the set of all
e-long edges is at most D(e).

Our Results. We now make precise the main results de-
scribed above, and also describe some further results in the
paper. Our first result shows that if we are allowed con-
stant slack, we can indeed embed any metric into constant
dimensions with constant distortion.

Theorem 1.4 For any source metric (V, d), any target met-
ric £y, p > 1 and any parameter € > 0, we give the follow-
ing two O(log L)-distortion embeddings:

(a) with e-slack into O(log? 1) dimensions, and
(b) with e-uniform slack into O(log nlog 1) dimensions.

Both embeddings can be computed with high probability by
randomized beacon-based algorithms.

These results extend Bourgain’s theorem on embedding ar-
bitrary metrics into £,,, p > 1 with distortion O (log n) [11],
and are proved in a similar manner.

Note that the bounds on both the distortion as well as the
dimension in Theorem 1.4(a) are independent of the num-
ber of nodes n, which suggests that they could be extended
to infinite metrics; this is further discussed in Section 2. In
part (b), the dimension is proportional to logn; we show
that, for arbitrary metrics, this dependence on n is indeed in-
evitable. As an aside, let us mention that metrics of bounded
doubling dimension do not need such a dependence on n:
in Slivkins [42], these metrics are embedded into any ¢,
p > 1 with e-uniform slack, distortion O(log 1 loglog 1)
and dimension (log %)O(log 23

In section 3 we generalize these results by a theorem that
converts practically any classical embedding into ¢, into e-
slack embedding or e-uniform slack embedding, in the latter

case there is an inevitable increase of O (log n) factor in the
dimension. The following corollary gives some main exam-
ples:

Corollary 1.5 1. Any finite metric space has a e-slack
embedding into {,, withdistortion O (log ) and dimen-
sion O(log 1).

2. Any finite metric space has a e-slack embedding
into £, with distortion O([(log 1)/p]) and dimension
eOP) log L.

3. Any decomposable metric 3has a e-slack embedding
into €, with distortion O((log2)/?) and dimension

O(log® 1).

4. Any negative type metric (in particular 1y metrics)
has a e-slack embedding into (o with distortion

0] ( log L loglog %) and dimension O(log® 1).

5. Any tree metric has a e-slack embedding into ly with

distortion O (, /loglog %) and dimension O(log 1).

Where the improved dimension in the first two results
follows from a recent improvement of the dimension in
Bourgain’s theorem due to [8].

We then study embeddings into trees. We extend the
known results of probabilistic embedding into trees [5, 6,
17, 7] to obtain embeddings with slack. In particular, we
use the technique of Fakcharoenphol et al. [17] to obtain
the following two results:

Theorem 1.6 For any input metric (V, d) and any parame-
ter € > 0 there exists an embedding into a tree metric with
e-uniform slack and distortion O(Xlog 1).

In fact, the tree metric in Theorem 1.6 is induced by a
Hierarchically Separated Tree (HST) [5], which is a rooted
tree with edge-weights w, such that w, < w,/2 whenever
edge €’ is on the path from the root to edge e.

Theorem 1.7 For any input metric (V, d), the randomized
embedding of [17] into tree metrics has expected gracefully
degrading distortion D(e) = O(log 1).* Since tree metrics
are isometrically embeddable into L1, this immediately im-
plies that we can embed any metric into Ly with gracefully
degrading distortion D(€) = O(log 1).

3 A metric is called decomposable if it admits a 3-padded decomposi-
tion for some constant (3, see Section 1.1 for details.

4“More formally, we show that if an edge wv is e-long, then dy, <
Er[dr(u,v)] < O(log %) duv, Where d is the tree metric generated by
the randomized algorithm in [17].



However, the dimension of the above embedding into L
may be prohibitively large. To overcome this hurdle, and to
extend this embedding to ¢,, p > 1, we explore a different
approach:

Theorem 1.8 Consider a metric (V,d) which admits 3-
padded decompositions. Then it can be embedded into {,,
p > 1 with O(log® n) dimensions and gracefully degrading
distortion D(€) = O(3)(log 2)*/P.

For the reader unfamiliar with padded decompositions, let
us mention that § < O(dimy ), the doubling dimension
of the metric, which in turn is always bounded above by
O(logn). Moreover, doubling metrics, and metrics induced
by planar graphs have 5 = O(1); hence Theorem 1.8 im-
plies that such metrics admit embeddings into ¢,, p > 1
with gracefully degrading distortion O(log 1)!/7. Note that
for p > 1 this result can be seen as a strengthening of The-
orem 1.4(b) on embeddings with e-uniform slack.

The proof of Theorem 1.8 is technically the most in-
volved part of the paper; at a high level, we develop a set
of scale-based embeddings which are then combined to-
gether (as in most previous embeddings)—however, since
the existing ways to perform this do not seem to guarantee
gracefully degrading distortion, we construct new ways of
defining distance scales.

Finally, we prove lower bounds on embeddings with
slack: we give a very general theorem that allows us to con-
vert lower bounds on the distortion and dimension of em-
beddings that depend only on n = |V/| into lower bounds
in terms of the slack parameter e. This result works under
very mild conditions, and allows us to prove matching or
nearly matching lower bounds for all of our results on e-
slack embeddings. These lower bounds are summarized in
Corollary 6.5 of Section 6.

Related Work. This work is closely related to the large
body of work on metric embeddings in theoretical computer
science; see the surveys [25, 26] for a general overview of
the area. Our results build on much of the previous work on
embeddings into ¢, including [11, 33, 40, 34, 21, 31, 32],
and on embeddings of metrics into distributions of trees [2,
5, 6,22, 17, 7]. Among the special classes of metrics we
consider are doubling metrics [4, 21, 43, 35]; the book by
Heinonen [24] gives more background on the analysis of
metric spaces.

All of these papers consider low-distortion embeddings
without slack. Note that an embedding with (e = 1/2n?)-
slack or (¢ = 1/2n)-uniform-slack is the same as an em-
bedding with no slack; for many of our results, plugging in
these values of e gives us the best known slackless results—
hence our results can be viewed as extensions of these pre-
vious results.

The notion of embedding with slack can be viewed as a
natural variant of metric Ramsey theory. The first work on
metric Ramsey-type problems was by Bourgain, Figiel and
Milman [13] and a comprehensive study was more recently
developed by Bartal et. al. [9, 10]. In the original met-
ric Ramsey problem we seek a large subset of the points in
the metric space which admit a low distortion embedding,
whereas an embedding with slack provides low distortion
for a subset of the pairs of points.

Bibliographic note. The results in this paper have been ob-
tained independently by two groups: by I. Abraham, Y. Bar-
tal and O. Neiman (whom we will refer to as G1 below),
and by T-H.H. Chan, K. Dhamdhere, A. Gupta, J. Klein-
berg and A. Slivkins (referred to as G2). The present paper
combines the original write-ups of these two groups into a
single presentation; as part of this, we briefly discuss the
relation between the work of the two groups.

For embeddings with slack, Theorem 1.4 is due to (G2),
and Theorem 3.1 is due to (G1). The results on lower
bounds (Theorem 6.3) and embedding into distributions of
trees (Theorem 1.7) were proved independently and simi-
larly by both groups; the presentation in this paper of the
proof of Theorem 4.1 follows that of (G2) while the presen-
tation of the proof of Theorem 6.3 is a combination of the
approaches of the two groups. The presentation in Section 5
and the result presented here on embedding into a single tree
metric (Theorem 4.2) are due to (G2).

Abraham, Bartal, and Neiman (Gl) independently
proved several important extensions which will be pub-
lished as a separate paper [1]. In particular, they resolve
the second of the main open questions discussed above,
i.e., showing a gracefully degrading embedding of any met-
ric space into ¢, with O(log 1) distortion and dimension
O(logn). This result is based on a new type of metric de-
compositions developed in [8, 1]. They also observe that the
result implies a constant average distortion for embedding
any metric into £,. In their paper they study more general
notions of average distortion and in particular show this no-
tion is applicable - and under certain conditions they show
that Theorem 4.1 combined with their techniques yields
improved approximation algorithms for problems such as
sparsest cut, minimum linear arrangement, uncapacitated
quadratic assignment etc. Among other results, they show a
tight result of O(ﬁ) distortion for e-slack embedding into
a tree metric, and improve the distortion in Theorem 1.8 to

0] (min{ﬁlf% (log %)% ,log %})

1.1 Notation and Preliminaries

Throughout the paper (V, d) is the metric to be embed-
ded, and d,,,, = d(u, v) is the distance between nodes u, v €
V. Define the closed ball B, (1) = {v € V | duy < 7}



The distance between a node u and set S C V is denoted
d(u,S) = min,egs dyy, and hence d(u, V \ By, (r)) > 7.
We will assume that the smallest distance in the metric is 1,
and the largest distance (or the diameter) is ®.

A coordinate map f is a function from V to R; for an
edge uv define f(uv) = |f(u) — f(v)|. Call such map /-
Lipschitz if for every edge f(uv) < dy,. For k € N define
[k] as the set {0, 1,...,k — 1}.

Doubling. A metric (V, d) is s-doubling if every set S C V
of diameter A can be covered by s sets of diameter A/2;
the doubling dimension of such a metric is [log s] [24, 21].
A doubling metric is one whose doubling dimension is
bounded. A measure is s-doubling if the measure of any
ball B,(r) is at most s times larger than the measure of
B, (r/2). It is known that for any s-doubling metric there
exists an s-doubling measure; moreover, such measure can
be efficiently computed [24, 35].

Padded Decompositions. Let us recall the definition of
a padded decomposition (see e.g. [21, 31]). Given a fi-
nite metric space (V,d), a positive parameter A > 0 and
8V — R, a A-bounded -padded decomposition is a
distribution II over partitions of V' such that the following
conditions hold.

(a) For each partition P in the support of 11, the diameter
of every cluster in P is at most A.

(b) If P is sampled from II, then each ball B, ( ﬁ) is
partitioned by P with probability at most %

For simplicity, say that a metric admits 3-padded decompo-
sitions (where (3 is a number) if for every A > 0 it admits a
A-bounded B-padded decomposition. It is known that any
finite metric space admits O(logn)-padded decomposition
[5]. Moreover, metrics of doubling dimension dimy ad-
mit O(dimy )-padded decompositions [21]; furthermore, if
a graph G excludes a K,-minor (e.g., if it has treewidth
< r), then its shortest-path metric admits O(r?)-padded de-
compositions [28, 40, 18].

2 Embeddings with slack into /7,

In this section we show that for any € > 0 any metric can
be embedded into £, for p > 1 with e-slack and distortion
O(log %), thus resolving one of the two main questions left
open by [29].

Let us fix € > 0 and write p, = p,(€). Recall that an
edge wv is e-long if d,,, > min(py, py); call it e-good if
dyy > 4min(p,, p,). We partition all the e-long edges into
two groups, namely those which are e-good and those which
are not, and use a separate embedding (i.e. a separate block
of coordinates) to handle each of the groups. Specifically,
we handle e-good edges using a Bourgain-style embedding
from [29], and for the rest of the e-long edges we use an

auxiliary embedding such that for any edge uv the embed-
ded wv-distance is O(p, + po). The combined embedding
has dimension O(log” 1) and achieves distortion O(log 1)
on a set of all but an e-fraction of edges.

There are several ways in which this result can be re-
fined. Firstly, we can ask for low e-uniform-slack distor-
tion, and require distortion O(log 1) on the set of all e-long
edges; we can indeed get this, but have to boost the number
of dimensions to O(lognlogl). As Theorem 2.2 shows,
this increase is indeed required. We note that this logarith-
mic increase in the number of dimensions is not the case
for doubling metrics: Slivkins [42] shows how these met-
rics are embedded into any ¢,,, p > 1 with e-uniform slack,
distortion O(log £ loglog 1) and dimension (log %)O(log o)

Secondly, this embedding can be computed in a dis-
tributed beacon-based framework. Here a small number of
nodes are selected independently and uniformly at random,
and designated as beacons. Then the coordinates of each
node are computed as a (possibly randomized) function of
its distances to the beacons.

Thirdly, note that for the e-slack result, the target dimen-
sion is independent of n, which suggests that this result can
be extended to infinite metrics. To state such extension, let
us modify the notion of slack accordingly. Following [42],
let us assume that an infinite metric is equipped with a prob-
ability measure £ on nodes. This measure induces a product
measure |1 X | on edges. We say that a given embedding
¢ has distortion D with (e, j1)-slack if some set of edges of
product measure at least 1 — € incurs distortion at most D
under ¢. Note that in the finite case, e-slack coincides with
(e, u)-slack when p is the counting measure, i.e. when all
nodes are weighted equally.

In the embedding algorithm, instead of selecting beacons
uniformly at random (i.e. with respect to the counting mea-
sure) we select them with respect to measure p. The proof
carries over without much modification; we omit it from
this version of the paper.

Theorem 2.1 For any source metric (V, d), any target met-
ric £y, p > 1 and any parameter € > 0, we give the follow-
ing two O(log 1)-distortion embeddings:

(a) with e-slack into O(log® ) dimensions, and
(b) with e-uniform slack into O(log nlog 1) dimensions.

These embeddings can be computed with high probability
by randomized beacon-based algorithms that use, respec-
tively, only O(2 log ) and O(% logn) beacons.

Proof: Let§ > 0 be the desired total failure probability.
The embedding algorithm is essentially the same for both
parts, with one difference: we let k = O(log % + log %) for
part (a), and k = O(log 3 +logn) for part (b). We describe



a centralized algorithm first, and prove that it indeed con-
structs the desired embedding. Then we show how to make
this algorithm beacon-based.

We use two blocks of coordinates, of size kt and k, re-
spectively, where ¢t = [log %] The first block comes from
a Bourgain-style embedding without the smaller distance
scales. For each i € [t] choose k independent random sub-
sets of V of size 2° each, call them S,;, j € [k]. The first-
block coordinates of a given node u are

fij(w) = (kt)"YP d(u, Si;), wherei € [t], j € [k]. (1)

For every node u and every j € [k], choose a number 3,,; €
{—1,1} independently and uniformly at random. The
second-block coordinates of u are g;(u) = k=P p, Bujs
where j € [k]. This completes the embedding.

For an edge wv, let f(uv) and g(uv) denote the £,-
distance between u and v in the first and the second block
of coordinates, respectively. By construction, f(uv) < dy,
and g(uv) < p, + p,. Moreover,

for every e-good edge uv, f(uv) > Q(dy./t)
with failure probability at most ¢/ 282(k) 2)

Indeed, fix an e-good edge uv and let d = d,,. Let «; be
the minimum of the following three quantities: p,(27¢),
pp(27%) and d/2. The numbers «; are non-increasing;
ag = d/2. Moreover, since uv is e-good we have oy <
min(py, pv,d/2) < d/4. By a standard Bourgain-style ar-
gument it follows that for each ¢ the event

Z |d(u, Sij) — d(v, Sij)| = Qk) (i — ajy1)

happens with failure probability at most 1/ 222(k)  (We omit
the details from this version of the paper.) Therefore, with
failure probability at most ¢/ 22(k) " this event happens for
all ¢ € [t] simultaneously, in which case

> ld(u, Sij) = d(v, i) = D k) (0w — aiga)
i i€ [t]

= Q(k) (o — o) > Q(kd),

so f(uv) > Q(d/t) for the case p = 1. It is easy to extend
this to p > 1 using standard inequalities. This proves the
claim (2).

Furthermore, we claim that for each edge uv, g(uv) =
Q(pu + po) with failure probability at most 1/29*), In-
deed, let N; be the indicator random variable for the event
Buj # Puvj. Since N;’s are independent and their sum N
has expectation k/2, by Chernoff Bounds (Lemma A.la)
N > k/4 with the desired failure probability. This com-
pletes the proof of the claim.

Now fix an e-long edge uv and let d = d,,. Without
loss of generality assume p,, < p,; note that p,, < d. Since

B.(pu) C By(pu + d), the cardinality of the latter ball is at
least en. It follows that p,, < p,, +d, so g(uv) < py, +py <
3d. Since f(uv) < d, the embedded uv-distance is O(d).

To lower-bound the embedded uwv-distance, note that
with failure probability at most ¢/ 29(F) the following hap-
pens: if edge uv is e-good then this distance is 2(d/t) due
to f(uw); else it is 2(d) due to g(uv). For part (a) we use
Markov inequality to show that with failure probability at
most J this happens for all but an e-fraction of e-long edges.
For part (b) we take a Union Bound to show that with fail-
ure probability at most ¢ this happens for all e-long edges.
This completes the proof of correctness for the centralized
embedding.

It remains to provide the beacon-based version of the al-
gorithm. Let S be the union of all sets .S;;. The Bourgain-
style part of the algorithm depends only on distances to the
O(k/e€) nodes in S, so it can be seen as beacon-based, with
all nodes in S acting as beacons. To define the second block
of coordinates we need to know the p,,’s, which we do not.
However, we will estimate them using the same set .S of
beacons.

Fix a node u. Let B be the open ball around w of radius
pu, 1.€. the set of all nodes v such that d,, < p,. Let B’ be
the smallest ball around u that contains at least 4en nodes.
Note that S is a set of ck/e beacons chosen independently
and uniformly at random, for some constant c.

In expectation at most ck beacons land in B, and
at least 4ck beacons land in B’. By Chernoff Bounds
(Lemma A.lab) with failure probability at most 1/ 292(F) the
following event F/,, happens: at most 2ck beacons land in
B, and at least 2ck beacons land in B’. Rank the beacons
according to its distance from u, and let w be the (2ck)-th
closest beacon. Define our estimate of p, as p}, = dyw-
Note that if event F,, happens, then p/, lies between p,, and
Pu(4e).

Consider a 4e-good edge uv such that both £, and E,
happen. Then (as in the non-beacon-based proof) we can
upper-bound the embedded wwv-distance by O(d,,), and
lower-bound it by €2(d,,,,/t) with high probability. For part
(a) we use Markov inequality to show that with failure prob-
ability at most 0 event £, happens for all but an e-fraction
of nodes. For part (b) we take a Union Bound to show that
with failure probability at most ¢ this event happens for all
nodes. O

The following theorem lower-bounds the target dimen-
sion required for e-uniform slack, essentially showing that
in part (b) of the above theorem the dependence on log n is
indeed necessary.

Theorem 2.2 For any € < % there is a metric (V,d) such
that any e-uniform slack embedding into l,, p > 1 with
distortion D requires Q(log, n) dimensions.



Proof: Take a clique on en red and (1 — €)n blue nodes,
assign length two to each of the blue-blue edges, and assign
unit lengths to all the remaining edges. Consider the metric
generated by this graph. Now all the blue-blue edges are -
long, and thus any distortion- D e-uniform-slack embedding
must maintain all the distances between the blue vertices.
But this is just a uniform metric on (1 — €)n nodes, and the
lower bound follows by a simple volume argument. |

3 Embeddings with slack: a general theorem

In this section, we generalize the results of the previ-
ous section. We formulate and prove a general theorem
which takes a result on classic (distortion-minimizing) em-
beddings of finite metrics into ¢,, and converts it into re-
sults on embeddings with e-slack and embeddings with e-
uniform slack.

For embeddings with e-slack, the idea is to choose a
small set of nodes (beacons) uniformly at random, embed
the beacons using the result on classic embeddings, then
embed all the other points according to the nearest beacon,
and add some auxiliary coordinates. To obtain embeddings
with e-uniform slack, for each non-beacon node instead of
choosing the nearest beacon we choose the “best” beacon in
each coordinate. In both cases, we apply the result on clas-
sic embeddings to a subset of the original metric. Therefore
our results are only about families of metrics that are subset-
closed: a family X" of metrics is subset-closed if any metric
in X restricted to any subset of nodes is also in X. The
auxiliary coordinates are similar to those in Section 2.

For the e-uniform slack result we will need a technical re-
striction that the original classic embedding is strongly non-
expansive. An embedding f from (V, d) into é’; is strongly
non-expansive if it is a contraction and of the form

k
f=0nfr, .., mefr) and Y7 0P =1,

where for any two nodes u, v € V' and any coordinate 7 we
have | fi (u) — fi(v)] < d(u,v).

Note that the above requirement is not so restricting,
since almost every known embedding can be converted to
a strongly non-expansive one. In particular, it is easy to
check that any generalized Fréchet embedding (i.e., an em-
bedding where each coordinate ¢ is associated with a set .S;
such that f;(u) = d(S;,w)) is strongly non-expansive.

Theorem 3.1 Consider a fixed space £,, p > 1. Let X be
a subset-closed family of finite metric spaces such that for
any n > 1 and any n-point metric space X € X there
exists an embedding ¢x : X — {, with distortion a(n)
and dimension 3(n).

Then there exists a universal constant C > 0 such that
for any metric space X € X and any € > 0 we have

(a) an embedding into {, with e-slack, distortion
a($log L) and dimension 3(<log 1) 4+ Clog L.

(b) an embedding into £, with e-uniform slack, distortion

a(C/e) and dimension C'log(n) 5(C/¢).

In part (b) we need to assume that for allY € X the origi-
nal embedding ¢y is strongly non-expansive.

The most notable application of the above theorem is
for of arbitrary metrics into ¢,, p > 1. Using Bour-
gain’s embedding [11] of distortion O(logn) and dimen-
sion O(log®n), we obtain another proof of Theorem 2.1.
Using a recent result of Bartal [8] which improves of the
dimension in Bourgain’s theorem to O(logn) we obtain an
improved dimension in Thorem 2.1. Corollary 1.5 states
several additional applications of Theorem 3.1. The proof
follows from known upper bounds: (1) from [11], (2)
from [34], where the improved dimension of (1), (2) follow
from [8], (3) from [31], (4) from [3], (5) from [12].

Both embeddings in Theorem 3.1 can be cast in a dis-
tributed beacon-based framework which is similar to that in
Section 2. Specifically, we have two phases. In the first
phase, beacons measure distances to each other and com-
pute an embedding ¢ for the set of beacons. In the second
phase, each node computes its coordinates as a (possibly
randomized) function of ¢ and its distances to beacons. We
need O(21og 1) and O(Z logn) beacons for parts (a) and
(b), respectively. The necessary modifications are similar to
those in Section 2; we defer the details to the full version.

We prove part (a) here and defer part (b) to Appendix B.
Proof of Theorem 3.1(a): We will choose a constant set
of beacons, embed them, then embed all the other points
according to the nearest beacon, and add some auxiliary co-
ordinates.

Formally, consider some metric X = (V,d) € X, where
V is a set of n nodes. Given ¢ > 0 let é = €/20, and
t = 1001log (%) Let B be a uniformly distributed random
set of é points in V' (the beacons). Let g be a contracting
embedding from B into ¢, with distortion «(£) and dimen-
sion B(%). Let

{oj(u) [ueV,1<j<t}

be ii.d symmetric {0, 1}-valued Bernoulli random vari-
ables. Define the following functions:

hi(u) = oj(u) pu(e) 17
foralluw € V and j suchthat 1 < j5 <t.
fu) = g(b) forallueV,wherebe B

is the beacon that is closest to u.

The embedding will be ¢ = f & h, where h is the t-vector
with j-th coordinate equal to h;(u). Let E be the set of all



unordered node pairs, and let G’ = F'\ (Dy U D3), where
Dy = {(u,v) | d(u,v) < max{pu(€), pu(€)}}
Dy = {(u,v)|d(u,B) > pu(€) Vd(v,B) > py(€)}.
Observe that |D;| < én?. For any u € V we have
Pr(d(u, B) > pu(@)] < (1— t/(né)™ < e < &

so by Markov inequality | Do| < 2én? w.p. at least 1/2. We
begin with an upper bound on ¢ for all (u,v) € G:

lle(u) = ()l

1 (w) = )] + 305y 1y (w) =y (0)[”

< B3d(u,v)” + X5y [P max{pu(e), pu(&)} — O
< (3 +1)(d(u,0)”

We now partition G’ into two sets:
G1={(u,v) € G": max{pu(€), po(€)} = d(u,v)/4}

and Gy = G’ \ G1.

Consider an edge (u,v) € G;. Without loss of gener-
ality assume p,,(€) > p,(€). Let &;(u,v) be the event that
hj(v) = 0 and h;(u) = p,(€)t~1/P. This event happens
with probability §. Let A(u,v) = Y.°_; 1 (u.0). Then
E[A(u, v)] = t/4, so using Chernoff’s bound we can bound
the probability that A(u, v) is smaller than half it’s expecta-
tion:

Pr[A(u,v) <t/8] < e t/50 < e

Let D3 = {(u,v) € Gy | A(u,v) < t/8} so by Markov
inequality with probability at least 1/2, | D3| < 2én?.

Therefore, for any (u,v) € G1 \ D3 we lower bound the
contribution.

lle(u) = ()l

Y

Sy [hy(u) = hy(v)[?
£ (pu(®) - t71/7)" = & - (fd(u, )P
For any (u,v) € Gs let by, b, be the beacons such that
f(w) = g(by), f(v) = g(by). Due to the definition of Dy
and G2 and from the triangle inequality it follows that
d(by,b,) > d(u,v) —d(u,b,) —d(v,by)
> d(u,v) —d(u,v)/2 = d(u,v)/2.

Y

Therefore, we lower bound the contribution of (u, v) € Gb.

lo(u) =)l = 11 (w) = FOIIF = lg(bu) = g(bu)l5
1 d
> L dby) > )
a(t/é) 20e(t/€)
Finally note that Dy, D3 are independentand G = E\ (DU
Dy U Ds) is the set of edges suffering the desired distortion.
So with probability at least 1/4 we have

G| > (5) —5én? > (5) —en®/4 > (1—€)(3)

as required. O

4 Embeddings into Trees

Probabilistic embedding of finite metric space into trees
was introduced in [5]. Fakcharoenphol et al. [17] proved
that finite metric space embeds into a distribution of dom-
inating trees with distortion O(logn) (slightly improving
the result of[6], other proofs can be found in [7]). In this
section we exploit the technique of [17] to obtain embed-
dings with slack. First we show that it gives a probabilistic
embedding of arbitrary metrics into tree metrics with ex-
pected gracefully degrading distortion D(¢) = O(log1/e).
For technical convenience, we will treat n-point metrics as
functions from [n] x [n] to reals. Note that all metrics dr
generated by the algorithm in [17] are dominating, i.e. for
any edge uv we have d(u,v) < dr(u,v).

Theorem 4.1 For any input metric (V,d), let dr be the
dominating HST metric on V constructed by the random-
ized algorithm in Fakcharoenphol et al. [17]. Then the em-
bedding from (V,d) to (V,dr) has expected gracefully de-
grading distortion D(€) = O(log 1/¢). Specifically, for any
parameter € > 0 and any e-long edge uv we have

duy < Ey[dr(u,v)] < O(logl/e) dyy. 3)

Since tree metrics are isometrically embeddable into L1, it
follows that we can embed any metric into Ly with grace-
fully degrading distortion D(€) = O(log 1).

Proof: For simplicity let us assume that all distances in
(V,d) are distinct; otherwise we can perturb them a little
bit and make them distinct, without violating the triangle
inequality; see the full version of this paper for details. In
what follows we will assume a working knowledge of the
decomposition scheme in [17].

Let us fix the parameter € > 0 and an e-long edge uv, and
let d = d(u,v). Let us assume without loss of generality
that p, (€) < py(€). Then p,(€) < d, so |B,(d)| < en.

Run the randomized algorithm of [17] to build a tree
T and the associated tree metric dp. The decomposi-
tion scheme will separate u and v at some distance scale
2¢ > d/2. Let A be the maximum distance in the input met-
ric. Under the distribution over tree metrics dr that is in-
duced by the algorithm, the expected distance E[dr(u,v)]
between v and v in tree 7' is equal to the sum

Zi‘fﬁg g1 42" x Pr{(u,v) first separated at level 27].

Look at the sum for i such that d/2 < 2! < 4d: this is at
most 48d. By the analysis of [17], the rest of the sum, i.e.
the sum for ¢ > log 4d, is at most

log A i 2d |B.,2")]
Zi210g4d4 -2 21 log B.,2-2)]



Since the above sum telescopes, it is at most
8- 2log (n/|B.(d)]) < O(dlog1/e),

which proves the second inequality in (3). The first inequal-
ity in (3) holds trivially because all metrics dr generated by
the algorithm in [17] are dominating. |

The above embedding into ¢; can be made algorithmic
by sampling from the distribution and embedding each sam-
pled tree into ¢; using a fresh set of coordinates; however,
the number of trees now needed to give a small distortion
may be as large as (nlogn). We will see how to obtain
gracefully degrading distortion with a smaller number of di-
mensions in the next section.

A slightly modified analysis yields an embedding into a
single tree; we omit the details from this version.

Theorem 4.2 For any source metric (V,d) and any param-
eter € > ( there exists an embedding into a dominating HST
metric with e-uniform slack and distortion O(%log ).

5 Low-dimensional Embeddings
with Gracefully Degrading Distortion

In this section we prove our result on embeddings into
¢y, p > 1 with gracefully degrading distortion:

Theorem 5.1 Consider a metric (V,d) which admits 3-
padded decompositions. Then it can be embedded into {,,,
p > 1 with O(log® n) dimensions and gracefully degrad-
ing distortion O(3)(log 1)1/P. The embedding procedure is
given as a randomized algorithm which succeeds with high
probability.

The proof of this theorem builds on the well-known em-
bedding algorithms of Bourgain [11] and Linial et al. [33],
and combines ideas given in [40, 21, 29, 42, 31] with some
novel ones. To the best of our understanding, the embed-
dings given in the previous papers do not directly give us
gracefully degrading distortion, and hence the additional
machinery indeed seems to be required.

Let us fix k = O(logn), where the constant will be spec-
ified later. We will construct an embedding ¢ : V' — £,
with 7k? dimensions; the coordinates of ¢ will be indexed
by triples (i, 7, 1) € [k] x [k] x [7].

We will show how to construct the map ¢ in rest of this
section, which has the following conceptual steps. We first
define a concrete notion of “distance scales” in Section 5.1,
in terms of which we can cast many previous embeddings,
and specify the desired properties for the distance scales in
our embedding. We then show how to construct the distance
scales as well as the claimed embedding ¢ in Section 5.2,
and show that it has gracefully degrading distortion in Sec-
tion 5.3.

5.1 Distance Scales and Scale Bundles

Our algorithm, just like the algorithms in [11, 33, 40,
21, 29, 31, 32], operates on distance scales that start around
the diameter of the metric, and go all the way down to the
smallest distance in the metric. Informally, the embedding
 has block of coordinates for each distance scale, such that
if the true uv-distance for some edge v is within this scale,
then the uv-distance in these coordinates of ¢ is roughly
equal to the true distance. These blocks of coordinates are
then combined into an embedding that works for all scales
simultaneously.

Different embeddings use very different notions of dis-
tance scales; in cases like the Rao-style embeddings, there
are clear coordinates for each distance that is a power of
2—but in Bourgain-style embeddings, this is not the case.
To be able to give a unified picture, let us formally define
a distance scale f to be a coordinate map f : V — R. A
scale bundle { f;;} is then a collection of coordinate maps
fij» such that for every fixed index j and node u, the values
fij(u) are decreasing with 1.

We can now cast and interpret previous embeddings in
this language: in the Bourgain-style embeddings [11, 33],
fij(w) is the radius of the smallest ball around u containing
2"~ nodes, and hence the cardinality of B,,(f;;(u)) halves
as we increase 7. In the Rao-style embeddings [40, 21], the
scales are f;;(u) = diameter(V')/2%, and hence the distance
scales halve as we increase ¢. The measured descent embed-
ding in [31] essentially ensures a judicious mixture of the
above two properties: as we increase i, the ball B,,(fi;(u))
either halves in radius, or halves in cardinality, whichever
comes first.

For our embedding, we need both the radius and the
cardinality of B,,(f;;(«)) to halve—and hence have to de-
fine the scale-bundles accordingly. This would be easy to
achieve by itself; however, to give good upper bounds on
the embedded distance, we also need each distance scale to
be sufficiently smooth, by which we mean that all the dis-
tance scales f;; must themselves be 1-Lipschitz. In other
words, we want that | f;;(u) — fi;(v)| < d(u,v). The con-
struction of the scale bundle { f;;} with both halving and
smoothness properties turns out to be a bit non-trivial, the
details of which are given in the next section.

5.2 The Embedding Algorithm

Let us construct the embedding for Theorem 5.1. We
have not attempted to optimize the multiplicative constant
for distortion, having chosen the constants for ease of expo-
sition whilst ensuring that the proofs work.

First we will construct a scale bundle { f;; : i,j € [k|}.
For a fixed j, the maps f;; are constructed by an indepen-
dent random process, inductively from¢ = 0to¢ =k — 1.



We start with f(o ;)(-) equal to the diameter ®, of the met-
ric. Given f;;, we construct f(;;1 ;) as follows. Let Uy
be a random set such that each node w is included indepen-
dently with probability 1/|B,,(4f;;(u))|. Claim 5.8.) De-
fine f(;41,)(u) as the minimum of d(u, U;;) and f;;(u)/2.
This completes the construction of the scale bundle.

To proceed, let us state a lemma that captures, for our
purposes, the structure of the metric.

Lemma 5.2 Consider a source metric (V, d) which admits
B-padded decompositions. Then for any I-Lipschitz coor-
dinate map f there is a randomized embedding g into {,,
p > 1 witht = 6 dimensions so that

(a) each coordinate of g is 1-Lipschitz and upper-bounded
by f; and

(b) if f(u)/duy € [3;4] for some edge uv then, with prob-
ability Q1) () — g(0)llp > Aduut17/5).

Section 5.4 and Appendix C contain two different proofs
of this lemma; the first one uses padded decomposition
techniques from [21, 31], and the other uses some Bourgain-
style ideas [11, 33] which we believe are novel and possibly
of independent interest.’

Fix a pair 4,5 € [k]. Apply Lemma 5.2 to the map
fi; and obtain a 6-dimensional embedding; denote these
6 coordinates as g(; j 1), 1 < I < 6. Let W;; be a ran-
dom set such that each node w is included independently
with probability 1/|B(fij(u)/2)|. Define g(;, j 0)(u) as
the minimum of f;;(u) and d(u, W;;). Finally, we set
g0 =k g6,

Lemma 5.3 The maps fij, gi; and @(; ;1) are 1-Lipschitz.

Proof:  Indeed, f(o ) is 1-Lipschitz by definition, and
the inductive step follows since the min of two 1-Lipschitz
maps is 1-Lipschitz. For the same reason, the maps g(; ;1)
are 1-Lipschitz as well, and therefore so are the maps

P, 4,1)- a

Since k = O(log n), it immediately follows that the em-
bedded distance is at most O(logn) times the true distance.
In the next section, we will prove a sharper upper bound
of O(dyy)(log 2)/P for any e-long edge uv, and a lower
bound Q(d,., /) for any edge.

5.3 Analysis
In this section, we complete the proof of Theorem 5.1 by

giving bounds on the stretch and contraction of the embed-
ding . The following definition will be useful: for a node

5More precisely, the second proof is for the important special case when
[ is the doubling dimension. In this proof the target dimension becomes
t = O(Blog B), which results in target dimension O(log? n)(8log 3) in
Theorem 5.1.

u, an interval [a, b] is u-broad if a or b is equal to d,,, for
some v, a < b/4and |B,(a)| < 35/Bu(b)].

Let us state two lemmas that capture the useful properties
of the maps f;; and g(;, ; 0, respectively: note that these
properties are independent of the doubling dimension. The
proofs are deferred to Section 5.5.)

Lemma 5.4 With high probability it is the case that:

(a) for any I1-Lipschitz maps f{g < fij and any e-long
edge uv Zij 1 (uv) < O(kdyylog %)

(b) foreach node u, each u-broad interval contains values

fij for Q(k) different j’s.

Lemma 5.5 Fix edge uv andindicesij; let R = f;;(u) and
d = dyy. Giventhat R > 4d and |B,(d/4)| = ¢|Bu(R)|,
the event g; j oy(uv) > Q(d) happens with conditional
probability Q(c).

Proof of Theorem 5.1: Fix an e-long edge uv and let
d = dyy. Since g(;, ;1) < fi; for each [, by Lemma 5.4a
the embedded uv-distance is upper-bounded by O(dlog 1)
for p = 1; the same argument gives an upper bound of
O(d)(log 1)1/7 for p > 1.

It remains to lower-bound the embedded uv-distance by
O(d/B), where [ is the parameter in Theorem 5.1 and
Lemma 5.2. Denote by g;;(uv) the total £,-distance be-
tween v and v in the coordinates g(;, ;,1), | > 1. Denote by
&;j the event that g(; ; oy(uv) or g;;(uv) is at least 2(d/3).
It suffices to prove that with high probability events &;; hap-
pen for at least Q(k) (7, j)-pairs. We consider two cases,
depending on whether p,, (e/32) > d/4.

Case (a). If p,(¢/32) > d/4 then the interval I =
[d/4; d] is u-broad, so by Lemma 5.4b there are (2(k) differ-
ent j’s such that f;;(u) € I for some i. By Lemma 5.2 and
Chernoff bounds (Lemma A.la) for (k) of these 7j pairs
we have g;;(uv) > Q(d/3), case (a) complete.

Case (b). Assume p, (¢/32) < d/4; consider the interval
I = [d; max[4d, p,(32¢)]]. We claim that

Pr (& fij(u) € I] > Q(1), foreach (3, j)-pair.  (4)

Indeed, fix ij and suppose f = fi;(u) € I. There are
two cases, f € [d; 4d] and f € (4d; p,(32¢)]. In the first
case by Lemma 5.2 g;;(uv) > €Q(d/B3) with conditional
probability at least {2(1). In the second case

IB.(d/4)| > en/32 > 2719(32en) > 2710 |B,(f)],

so by Lemma 5.5 g(;, ; 0)(uv) > €(d) with conditional
probability ©(1). This proves (4). Since the interval I is
u-broad, by Lemma 5.4b there are (k) different j’s such
that f;;(u) € I for some i. Since for different j’s the events
in (4) are independent, case (b) follows by Chernoff bounds
(Lemma A.la). O



5.4 Analysis: proof of Lemma 5.2

In this section we use padded decomposition techniques
from [21, 31] to prove Lemma 5.2. Let us recall the defini-
tions of a padded decomposition and a decomposition bun-

dle [21, 31].

Definition 5.6 Given a finite metric space (V, d), a positive
parameter A > 0 and 3 :V — R, a A-bounded [3-padded
decomposition is a distribution 11 over partitions of V' such
that the following conditions hold.

(a) For each partition P in the support of 11, the diameter
of every cluster in P is at most A.

(b) If P is sampled from 11, then each ball Bm(ﬁ) is

partitioned by P with probability at most %

Given a function 3 : V x Z — R, a 3-padded decom-
position bundle on V' is a set of padded decompositions
{n(i) : i € Z} such that each 1(i) is a 2'-bounded (-, )-
padded decomposition of V.

If a metric admits a (-padded decomposition bundle
such that 3 is constant, we simply say that this metric ad-
mits [3-padded decompositions.

The randomized construction. Let 7 be a $-padded de-
composition bundle. For each u € Z, let the decomposition
P, be chosen according to the distribution 7(u). We denote
P, (z) to be the unique cluster in P, containing z.

Moreover, for u € Z, let {c,(C) : C C V} be iid.
unbiased {0, 1}-random variables. Let T' = {0,1,...,5}.
Let u(z) := [log, f(x)]. For each ¢t € T, we define a
(random) subset

W'={z €V : 0y —t(Pu@)—+(x)) =0},  (5)

from which we obtain g;(-) = min{d(-, W?), f()}.

Bounding the contraction of the embedding. We fix
vertices z,y € V and let d = d(z,y). Consider the embed-
ded distance between them. The aim is to show that under
some condition, there exists ¢ such that |g:(z) — g:(y)| > pd
happens with constant probability, where p depends on the
(-padded decomposition bundle.

Lemma 5.7 Suppose f(x) € [4,4d] and t € T is the inte-
ger such that i := u(z) — t satisfies 2% € [d/8,d/4). Let
J:={-1,0,1}andp := min{m cu € U+J}. Then
the event |gi(x) — g+(y)| > pd happens with probability at
least 1/64.

Proof: Consider the random process that determine the
coordinate g;. We like to show that the union of the follow-
ing two disjoint events happens with constant probability,
which implies our goal. There are two cases:

Case 1 The set W contains x but is disjoint with By (pd).

Case 2 The set W' contains no points from B, (2pd) but at
least one point from By (pd).

Let us define the following auxiliary events.

e Event &; occurs when z is contained in W?.
e Event & occurs when W' is disjoint with By, (pd).

e Event & occurs when for all z € B,(2pd) and u €
@+ J, z and z are in the same cluster in 7)(u).

e Event & occurs if forall u € 4+ J, 0, (Pyu(z)) = 1.

Observe that the event £1NE, implies the event in Case 1.
Note that given a decomposition 7(1), the point x lies in
a cluster different from those intersecting B, (pd), because
2% < % < (1 — p)d. Hence the events £; and &; are condi-
tionally independent, given 7(%); this in turn implies that

PriEcn&ln@] = Prigd o] Prigsln(a)
— SPrigsln).

Since this fact holds for all decompositions 7(#), it follows
that PT[gl n 52] = %PT[EQ]

Observe that the event E5 N E4 N E, implies the event in
Case 2. This follows from the fact that |u(x) — u(z)| € J.
Since f(z) > 4, fis 1-Lipschitz and d(z, z) < 2pd < ¢, it
follows f(x) and f(z) are within a multiplicative factor of
2 from each other. Hence w(x) and u(z) differ by at most
one. Again, given the decompositions 7(u), u € @ + J, the

event &, is independent of the event €3 N . Hence,

Pr [53 NEs OE_Q] = Prl&4 Pr [53 OE_Q]
Finally, it follows that the union of the events in cases 1
and 2 happens with probability at least
%PT[EQ] + %PT[(‘:g n 5_2]

> %PT[(‘:g N 52] + %PT[(‘:g n 5_2] e %PT[(‘:g]

In order to show that &3 happens with constant probability,
we make use of the properties of 3-padded decomposition
bundle. Since for all u € @ + J we have

2pd < 2/326(x,u) - d < 2%/B(x,u),

it follows that £ happens with probability at least 1/8.
Therefore, it follows the desired event happens with proba-
bility at least 1/64. O



5.5 Analysis: maps f;; and g ; o)

Here we prove Lemma 5.4 and Lemma 5.5. First we
prove part (a) of Lemma 5.4, which is essentially the upper
bound on the embedded distance for the case p = 1. We
start with a local smoothness property of the sets U;;.

Claim 5.8 Fix i,j € [k] and an edge wv. Condition on the
map fij, i.e. pause our embedding algorithm right after f;;
is constructed; let r = f;;(u). If dyy < /4 then

Priv € U;;] <1/|By(r)| < Pr [v € U(i+37j)] .

Proof: Let B = B, (r). For the RHS inequality, letting
" = f(it3,5)(v) we have

4" < fi;(v)/2 < (r + duy)/2 < 17r/32,

S0 dyy + 47" < r. It follows that B, (') C B, sov €
U(i+3,;) with probability 1/|B, (4r")| > |B].
For the LHS inequality, letting 7’ = f;;(v) we have

Ar' > A(r — dyy) > 7 + dyw,

so B C B,(4r'). Therefore v € U,; with probability
1/|By(4r)| < 1/|B|. O

Fix a node w; for simplicity assume k = 4ky + 1. Let
B,; = B, (fij) and let X;; be the indicator random variable
for the event that | B(4; 44, | < |Bi,;)|/2. Note that for
a fixed j, the random variables X;; are not independent.
However, we can show that given all previous history, the
1j-th event happens with at least a constant probability.

Claim 5.9 For eachi € [ko]

J € [klandq=1-e"1we
have Pr[X;; = 1| fi;,1 <i] > q.

Proof:  Indeed, fix ij, let f = f4;;)(u) and [ =
J(ai+4,j)(u), and let B = B, () be the smallest ball around
u that contains at least | B(4;, j)|/2 nodes. Clearly, X;; = 1
if and only if f/ < r. By definition of f;;’s we have
f' < f/16, so we are done if » > f/16. Else by Claim 5.8
any node v € B included into the set U(4; 43 ;) with proba-
bility at least 1/2|B|, so the probability of including at least
one node in B into this set (in which case f' < r) is at least

1—(1-1/2|B)B > q. O

For a random variable X define the distribution function
Fx(t) = Pr[X < t]. For two random variables X and
Y, say Y stochastically dominates X (written as ¥ > X,
or X = Y)if Fy(t) < Fx(t) forall t € R. Note that
if X > Y then X > Y. Consider a sequence of i.i.d.
Bernoulli random variables {Y;} with success probability
g. By Claim 5.9 and Lemma A.3 (proved in Section A) we
have the following:

t

t
ZX”— = ZY“ for any ¢ € [ko] and each j € [k]. (6)
i=0 i=0

We’ll use (6) to prove the following crucial claim:

Claim 5.10 Fix € > 0; for each j let T} be the smallest i
such that f;;(u) < py(€), or k if no such i exists. Then
>.;Tj = O(klog L) with high probability.

Proof: Let a = [log1]. Let L; be the smallest ¢ such

that Z:ZO Xij > a,or kg if such ¢ does not exist; note that
T; < 4L;. For the sequence {Y;}, let Z, be the number of
trials between the (r — 1)-th success and the r-th success.

jo ko
Let A; = fﬂ:(jfl)aﬂ Zyand Z =%, Z,. By (6) for
any integer ¢ € [kq]
Pr[L; >t] = Pr [Z::O Xij < a} < Pr [Z::O Y, <a
= Pr[>0 Z >t] =Pr[A > {] @)

Since {A;} are i.i.d., by (7) and Lemma A .2 it follows that
>.;Lj = > ;Aj = Z. Therefore by Lemma A.4

IN

Pr [Z T > 8ka/q} Pr [Z L;> 2ka/q}

Pr[Z > 2ka/q] < (0.782)"

IN

which is at most 1/n® when k = O(logn) with large
enough constant. O

Now we have all tools to prove Lemma 5.4a.

Proof of Lemma 5.4a: Use T; = T (u) from Claim 5.10.
Fix some e-long edge uv and let d = dy,. Lett; =
max(Tj(u), T;(v)). Then since by the 1-Lipschitz property

! g (uv) < d for all i5; moreover, for any ¢j such that i > ¢;
both fi;(u) and fij(v) are at most d/2'~*. Then f];(uv)
is at most twice that much (since f] ; < [ij), so taking the
sum of the geometric series we see that

S fitw) < %, (a4, d/27Y)
ij
< >;0(dt;)=0 (kdlog?),
where the last inequality follows by Claim 5.10. O

To prove part (b) Lemma 5.4, let us recall the definition
of a u-broad interval: for a node u, an interval [a, b] is u-
broad if a or b is equal to d, for some v, a < b/4 and
B, ()] < L[B.(b)]

Proof of Lemma 5.4b: It suffices to consider the u-broad
intervals [a, b] such that one of the endpoints is equal to d.,,,
for some v, and the other is the largest b or the smallest a,
respectively, such that the interval is u-broad. Call these
intervals u-interesting; note that there are at most 2n such
intervals for each wu.



Fix node u and a w-broad interval I = [a, b], fix j and
let r; = f;;(w). It suffices to show that with constant prob-
ability some 7; lands in /. Indeed, then we can use Cher-
noff bounds (Lemma A.1a), and then we can take the Union
Bound over all nodes u and all u-interesting intervals.

Denote by &; the event that r; > b and ;11 < a; note
that these events are disjoint. Since some 7; lands in [ if
and only if none of the &;’s happen, we need to bound the
probability of UE; away from 1.

For each integer [ > 0 define the interval

I = [pu (e 21) , Pu (€ 2”1)) , where en = |B, (D).

For each a € {0,1,2,3} let N(; o) be the number of i’s
such that 74,y € I;. We claim that E[N(; )] < 1/q.

Consider the case @ = 0; other cases are similar. Let
N; = N(,«) and suppose N; > 1. Let ip be the smallest 7
such that r4; < I;. Then IV; > ¢ implies X;; = 0 for each
i € [ig; 10+t — 2]. Recall that the construction of the maps
fij starts with f(q ;). Given the specific map f = f, )
the construction of the maps f;;, i > g is equivalent to a
similarly defined construction that starts with f(;, ;) = f.
Therefore, by (6) (applied to this modified construction) we
have

Pr[N; >t] < Pr [ZZ;% X(io+8,5) = 0]
< Pr [ZZLQO Y = 0} =(l-qh
EIN] = Y PrNM>t] <2 (1-q)f " =

claim proved. For simplicity assume k = 4kq+1; it follows
that

S Prlri € 1] S o S Prlraita € 1]

= Yoo B [Now] <4/a  ®

By Claim 5.8 if r; € I; then r;11 < a with conditional
probability at most |B.,(a)|/|Bu(r.)| < 27!/32. There-
fore, Pr[&; | r; € I;] < 27'/32. By (8) it follows that

PrUg] = SFAPrf&] = SF X, Prir € I and &]
< N SR Prlri€ L] x 2732
e <] — k—1
= 02 Y Prrie )]
<

I T R |
8g 202 =15 <1,
so some 7; lands in I with at least a constant probability. O

It remains to prove Lemma 5.5 about the maps g;_ ;. o)-

Proof of Lemma 5.5: Let’s pause our embedding al-
gorithm right after the map f;; is chosen, and consider

the probability space induced by the forthcoming random
choices. Let X, = fi;(w). First we claim that

Pr (g j0(u) <r|r < X/8] >QB), )

where 3, = |By(r)|/|Bw(X)|. Indeed, suppose r < X/8,
let B = B, (r) and consider any w € B. Then by (12):

1/|Buw(Xw/2)|

Pr[w S Wij]

> 1/|Bu(X)| = 5,|B|
Pr [g(i,j,())(u) < T] = Pr[W;; hits B]

> 1-(1- 5B

> 1- eiﬁr > Q(BT)a

proving (9). Now let B = B,(X,/8); then by (12) any
w € B is included into the set W;; with probability at most
1/B, so

Pr g4, j,0)(v) > X, /8] = Pr[W;; misses B]
>(1-1/|B)F > 1/4. (10)

Finally, let’s combine (9) and (10) to prove the claim. Let
r = d/4 and suppose X > 4d. Since X, > X —d,, > 3d,
by (10) event g(;, ;, 0)(v) > 3d/8 happens with probability
at least 1/4. This event and the one in (9) are indepen-
dent since they depend only on what happens in the balls
B.(d/4) and B, (3d/8), respectively, which are disjoint.
Therefore with probability at least {2(3,.) both events hap-
pen, in which case g; j 0)(uv) > d/8. O

6 Lower Bounds on Embeddings with Slack

In this section, we describe a general technique to derive
lower bounds for e-slack embeddings from lower bounds
for ordinary embeddings. The bounds obtained by this tech-
nique are given in Corollary 6.5, the most notable of which
is the lower bound of 2 (log(%)/p) for embedding any met-
ric into £,,.

We make use of the following definitions from [10]

Definition 6.1 Let H be a metric space, assume we have a
collection of disjoint metric spaces Cy, associated with the
elements x of H, and let C = {Cy}rcu. The B-composition
of H and C, for 3 > %, denoted H = CglH], is a metric
space on the disjoint union UICI. Distances in C are de-
fined as follows: let v,y € H andu € C,,v € Cy, then:

v de, (u, v)
maxge g diam(Cy)

Wher.e 7T ming yen da(z.y)’
metric space.

=1y

dﬁ(u,v)—{ vy

guarantees that H is indeed a



Definition 6.2 Given a family H of metric spaces, we con-
sider compg(H), its closure under (3-composition.

‘H is called nearly closed under composition if for every
d > 0 there exists some 3 > 1/2, such that for every
M € compg(H) there is M € H and an embedding of
M into M with distortion at most 1 + 0.

Remark Among the families nearly closed under com-
position we can find the following [10]: Trees, planar
graphs, minor-excluded graphs, normed spaces. In the spe-
cial case that each of the composed metrics C,, is of equal
size, also doubling metrics are closed under composition.

Theorem 6.3 Let X be a family of target metric spaces.
Suppose 'H is a family of metrics nearly closed under com-
position such that for each k, Hy, € 'H has k points and any
embedding of Hy, into X has distortion at least D(k). Then
for arbitrarily small € > 0, there exists H' € H such that
the embedding of H' into X has e-slack distortion at least

AD(517)).

Remark We can take X to be a family of metrics in
¢, with limited dimension, thus obtaining e-slack lower
bounds on the dimension in terms of € as well.

Note that this result can be used to translate, e.g., the
Brinkman and Charikar [14] lower bound for dimension-
ality reduction in ¢; into the realm of e-slack as well.

Let us now prove Theorem 6.3, first we show how to con-
struct a family of metric spaces with the desired properties.
Suppose H € H is a metric such that |[H| = k. Moreover,
H embeds into X with distortion at least D. For any n that
is a multiple of 3%k, we can define a metric H with n points
in the following way.

Let C = {Cy}sen where each C, € H is in size 7, and
let H = Cg[H] be its B-composition for 5 > D satisfying
that H can be embedded into  with distortion 2.

We now proceed to the proof; indeed, the following
lemma implies Theorem 6.3.

Lemma 6.4 Let H be the metric defined as above. Let € :=
1/9k2. Then, H embeds into X with e-slack distortion at
least D /4.

Remark. If we wanted to obtain lower bounds for e-
uniform slack embeddings instead of just for e-slack embed-
dings, we would set € = 1/3k, since the number of ignored
edges incident on any node is at most en by the very defini-
tion; the rest of the proof remains essentially unchanged.
Proof: Suppose, on the contrary, ¢ is an embedding of H
into X' with e-slack distortion R < D /4 that ignores the set
E of edges. Then consider a subset 7' C H containing all
v € H such that v intersects at most Ven edges in F, by a
simple counting argument |T'| > (1 — \/€)n.

For each x € H, the set C, contains % = 34/en points
and hence there exists some point in 7" N C,,, which we call
Ug.

Let z,y € H. Since v, and v, are in T, each of them
has at most /en neighbors. Observing that |Cyy| = 3+/en,
it follows that there exists a point t € C), such that neither
{vz, t} nor {v,,t} is contained in E. We can assume that

for {U’a ’U} g E7 df[(ua U) < ||<P(u) - <P(v)|| < Rdﬁ[(ua ’U).
Hence, it follows that

le(ve) — p(vy)ll <llo(va) — @(E)]| + [lo(t) — @(vy)|l
<R(dg(ve,t) +dg(t,vy))

=R (5dH(x,y) + M)

< (Bdnta.y) + min du.0))
<2RBdu(x,y) = 2Rd 5 (ve, vy)
(t,vy)

. do . ..
since ———= < miny ven dp (u,v). Similarly,

lo(ve) = (vy)ll Zlle(ve) = L) = llo(t) = e(vy)]]
Zdﬁ(vm, t) — Rdﬁ(f, ’Uy)
dcy(t,vy)
Y

>y () ~ | min dyg(u0)

0 1
ZidH('ra y) = §df[(vma 'Uy)
using R < D/4 < [3/4. Notice that the metric induced on
the set {v, }zcq is isomorphic (up to scaling) to H, there-
fore p embeds H into X’ with distortion at most 4R < D,
and we obtain the desired contradiction. d

To finish the proof of Theorem 6.3 it remains to notice
that H 2-embeds into some H’ € H, therefore H' embeds

into X’ with e-slack distortion at least D/8 = Q(D( 3\1/2))

Contracting Embeddings with Slack. Let us mention that
allowing arbitrary expansions is crucial to our results: if we
insisted that none of the pairwise distances should increase,
the lower bound of Q(% logn) distortion [34] for embed-
dings into £, holds even with e-slack; the simple details are
deferred to the full version of this paper.

Corollary 6.5 Forany 1/n <e <1

og( L
1. Q (#) distortion for e-slack embedding into £,,.

2. Any e-slack embedding with distortion o into £, re-
quires dimension Q(log,, 1).

3. Q(ﬁ) distortion for e-slack embedding into trees.



4. Q(L) distortion for uniform e-slack embedding into
trees.

5.0 (10g (%)) distortion in randomized e-slack embed-
ding into distribution of trees.

6. Q(y/log(1/€)) distortion for e-slack embedding of
doubling metrics into lo.

7. Q(+/log(1/¢)) distortion for e-slack embedding of 1
into lo.
8. Q(y/loglog(1/e)) distortion for e-slack embedding of

trees into ls.

This follows from known lower bounds: (1) from [34], (2)
from equilateral dimension considerations, (3) and (4) from
[39], (5) from [5], (6) from [21], (7) from [16] and (8) from
[12].

7 Extensions and Further Directions

The main question left open by this work is whether
every metric admits a low-dimensional embedding into
¢y, p > 1 with gracefully degrading distortion D(e).
This has been answered affirmatively in Abraham, Bartal
and Neiman [1], with D(e) = O(logl) and dimension
O(logn), using a new type of more advanced metric de-
compositions.

For specific families of metrics it is still interesting to
provide embeddings into £, with gracefully degrading dis-
tortion D(e) = o(log 1); recall that Theorem 5.1 gives
such embedding for decomposable metrics. In particular,
we would like to ask this question for embedding arbitrary
subsets of ¢ into /.
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A Tools from Probability Theory

Here we state some tools from Probability Theory that
we used in Section 5. We prove some of these results in the
full version.

Lemma A.1 (Chernoff Bounds) Consider the sum X of n
independent random variables on [0, A].

(a) forany i < E(X) and any € € (0,1) we have
Pr[X < (1 —e)u] < exp(—€2u/2A).

(b) forany p > E(X) and any 3 > 1 we have
Pr[X > fu] < [L(e/B)"]"%.

Lemma A.2 Consider two sequences of independent ran-
dom variables, { X;} and {Y;}, such that all X; and Y; have
finite domains and X; ='Y; for each i. Then for each k we

have Zf:l Xi = Zf:l Y.

Lemma A.3 Consider two sequences of Bernoulli random
variables, {X;} and {Y;}, such that variables {Y;} are in-
dependent andPr[X =1 | X;,j <1 > PrlY; = 1] for
each i. Then Zi:l X; = Zi:l Y; for each k.

Lemma A.4 Consider a sequence of i.i.d. Bernoulli ran-
dom variables {Y;} with success probability q. Let Z, be
the number of trials between the (r — 1)-th success and the

r-th success. Then Pr [Z Z, > 2k/q| < (0.782)%.

B Proofs from Section 3

Proof of Theorem 3.1(b): The idea of the proof is to
choose a constant set of beacons and embed them, then for
all the other points, choose the “best” beacon in each coor-
dinate, and then add some auxiliary coordinates. Formally,
let 7 = [100logn]| anddenote T = {t e N| 1 < ¢t < 7}.
Let m = [1]. Foreach t € T, let B; be a uniformly dis-
tributed random set of m points in X.

Foreach t € T let §*) = (n(t)ggt), ey ng()m)gg()m)) be
a strongly non-expansive embedding from B; into £, with
distortion «v(m) and dimension 3(m). Let I = {i € N |
1 < i < B(m)}. When clear from the context we omit
the §(*) superscript and simply write §. Again, let {oy(u) |
u € X,t € T} be i.id symmetric {0, 1}-valued Bernoulli
random variables. Define the following functions:

o1 () pu€)
forallu € X andt e T.
) min{d(u, b) +9 )}

foralue X,ie I,teT.

Let f* = (fi,. ..,fé(m)), f=0Y .., f),and h =
(ht,..., A7), the final embedding will be ¢ = f @ h. Let
D= {(u,v) | d(u,v) < min{p,(¢€), p,(€)}} and by defini-
tion G = ( )\ D.

We begin by an upper bound for all (u,v) € G. Fix
t € T,i € I, and wlo.g. assume f!(u) > fl(v) and
let b! € B, be the beacon that minimizes f}(v). Hence,
| minye g, {d(u, b) + g: (b)} — mime p, {d(0,B) + ()} <
d(u, b) + g (bl) — d(w,b) — g:(0) < d(u, ).

Also notice that max{p,(€), pv(€)} < 2dx(u,v) since
B(u, py(€) + dx(u,v)) contains at least en points.

I’Lt (’LL)

i ()

lp(w) — )15 = I1f (u) -
< e Sier 1 FH ) -
< Yrer Sier I (minge s, {d(u, ) + gi(b)}

— min{d(v,b) + gu(0)})|” + 7(2d(u,v))”

< ZteT Zie[ |77§t)

FO)G + [[h(w) = h(v)[5

d(u,v)|? + 7(2d(u, v))?

[P+ 3 er max{pu(e), pu(€)}



< 37d(u,v)?.

(Recall that )., 77 = 1)
We now partition G into two sets G1 = {(u,v) € G |

max {py(€), pp(€)} > 1%(;‘(’;))} and G5 = G \ G1. For any
(u,v) € G1,t € T, assume w.l.o.g that p;(u) > pe(v), and

let £ (u, v) be the event
E4(u,0) = {h'(u) = pu () A h(v) = 0}

Then Pr [€;(u, v)] = 1. Let A(u,v) = 3, o1 e, (u,0), then
E[A(u,v)] = 7/4, using Chernoff’s bound we can bound
the probability that A(u, v) is smaller than half it’s expecta-
tion:

Pr[A(u,v) < 7/8] < e /%0 < 1/n?

Therefore with probability greater than 1/2, for any
(u,v) € Gy, A(u,v) > 7/8. In such a case we can lower
bound the contribution for any (u,v) € Gy :

() ~ @) > Soer [hw) — ()]
> (r/8) (pe(w))” > 5 ()’

For any (u,v) € Ga,t € T let b, b, € B, the nearest
beacons to u, v respectively. Let

Fi(u,v) = {bu € B(u, pu(€)) ANby € B(v, pu(€))}

Then Pr[Fi(u,v)] > 1 — 2/e > 1/4, since for any
u € X, Prd(u, By) > pu(e)] = (1 —&)Y/¢ < el Let
h(u,v) = > ,cr 17, (u,0). then E[h(u,v)] > 7/4, using
Chernoff’s bound we can bound the probability that A (u, v)
is smaller than half its expectation:

Pr[h(u,v) < 7/8] < e /%% < 1/n?

Therefore with probability greater than 1/2 for any (u, v) €
Ga, h(u,v) > 7/8.
For any ¢ € T such that F;(u, v) happened we have

max{d(u, bu),d(v,by) } < ldﬁ(s(;))

In such a case let b; € B; be the beacon minimizing f! (u);
since for every i € I, g;(by) — gi(b;) < d(by, b;) we get

Ji(u) = d(u, bi) + gi(bs)
> d(u,b;) + gi(bu) —
> gi(bu) — d(u, by);

d(by, b;)

moreover
fi(v) < d(v,by) + gi(bo)

ClaimB.1 Let J = {i € I | |gi(by) — gs(by)| > 2uvly

Proof: Assume by contradiction that it is not the case, then
[1G(bu) = G(0u)II7 Dics i 19i(bu) — gi(bv) [P
+2igs M 19i(bu) — gi(bo)[P
d(u,v d(u,v
[4((1(771))] + 21¢J ; [4((1(771))]

2[fe]? < [Het) ]

IN

The last inequality follows since d(b,,b,) > d(u,v) —

2 1%(;‘(;)) 7d(u v). This contradicts the fact that g has
distortion «(m) on By. O

Finally, we can now bound the distortion of the map f*.

£ (u) = FH G = Xies w1 £ (w) = £ ()P

(u
= Dies M lgib u)— d(u, by) — d(v,by) = gi(by)|”
> Z’LEJTI’L’LQ'L u ( )|
—2max{d(u, by,), d(v, b,) }’p
2 Zieﬂflfgi(b (bv)’_2%’gi(bu)_gi(bv)“p
> (843)

Since F; (u, v) happened for at least 7/8 indexes from T" we
have the lower bound

lo(w) —p@)5 > Xierllff(w) = )5
> /s ()’

C Bourgain-style proof of Lemma 5.2
for the special case of doubling metrics.

In this section we use the ideas of [11, 33] to derive an
alternative proof of Lemma 5.2 for the important special
case when 3 is the doubling dimension.® Let us note that
in the well-known embedding algorithms of Bourgain [11]
and Linial et al. [33] any two nodes are sampled with the
same probability, i.e. with respect to the counting measure.
Here use a non-trivial extension of the Bourgain’s technique
where we sample with respect to a doubling measure trans-
formed with respect to a given 1-Lipschitz map.

We state our result as follows:

Lemma C.1 Consider a finite metric (V,d) equipped with
a non-degenerate measure |, and a 1-Lipschitz coordinate
map f; write f,, = f(u). For every node u let

Bu(u) = 2u[Bu(fu)] / p[Bu(fu/16)].

Then for any k,t € N there is a randomized embedding g
into £y, p > 1 with dimension kt so that:

4a(m)
Then 35 7 |gi(bu) — gi(bo)|? > [§54:3]".

®In this proof the target dimension becomes t = O(Blog 3), which
results in target dimension O(log? n) (3 log 3) in Theorem 5.1.



(a) each coordinate map of g is I-Lipschitz and upper-
bounded by f; and

(b) ||g(u) — g()|lp > Q(duw/t) (kt)Y/P with failure prob-
ability at most t/29(k)f0r any edge uv such that

f(w)/duy € [1/4; 4] and rer?{ax }ﬂﬂ(w) <2t
| (1

To prove Lemma 5.2 for a metric of doubling dimension
(3, recall that for any such metric there exists a 2°-doubling
measure /. Plug this measure in Lemma C.1, with ¢ = 45+
1 and k = O(log 3); note that 3, (u) < 2* for every node
u. We get the embedding in ¢, with O(3log 3) dimensions
that satisfies the conditions in Lemma 5.2.

We’ll need the following simple fact:

If dyy < f(u)/8 for some edge uv, then
B.(f(u)/8) C By(f(v)/2) C Bu(f(u)) (12)

Indeed, letting f,, = f(u) the first inclusion follows since
fo/2 > (fu — duv)/2 > fu/8 + duv, and the second one
holds since dyy + fo/2 < dup + (fu + dun)/2 < fu.

Proof of Lemma C.1: Define the transformation of pu
with respect to f as pr(u) = p(u)/2p(B), where B =
B.(f./2). Fix k = clogn where ¢ is an absolute con-
stants to be specified later. The coordinates are indexed
by ij, where i € [t] and j € [k]. For each (i,7)-
pair construct a random set U;; by selecting [2°u s (V)]
nodes independently according to the probability distribu-
tion p1f(-)/ps(V). Let us define the 4j-th coordinate of u
as gij(u) = min (fu, d(u, Uy;)).

Note that each map g;; is 1-Lipschitz as the minimum
of two 1-Lipschitz maps. Therefore part (a) holds trivially.
The hard part is part (b). Fix an edge uv; let d = dy,.
For any node w let v, (€) be the smallest radius r such that
wr[Buw(r)] > €, and let

pi = max[th,(277),1,(27%)], where
Yu(€) = minfay(€),d/2, fu].

Claim C.2 For each i > 1 and each j € [k] with probabil-
ity (1) we have gij(wv) := |gij(u) — gi; (V)| =2 pi — pis1.

Then by Chernoff bounds (Lemma A.1(a)) w.h.p. we have

t
> gii(ww) > k) (pi—pit1) = k) (p1—pr). (13)
ij i=1

Proof of Claim C.2: Fix ¢ > 1 and j, and note that if
pi+1 = d/2 then p; = d/2, in which case the claim is triv-
ial. So let’s assume p;11 < d/2 and without loss of gener-
ality suppose 1, (27%) > 1),,(27%). Consider the open ball
B of radius p; around u. Since p; = 1, (27%) < a,(27Y),
it follows that y¢(B) < 27°. Now there are two cases:

o If p;11 = f, then the desired event g;;(uv) > p; —
pi+1 happens whenever U;; misses B, which happens
with at least a constant probability since i ¢(B) < 27,

e If p;11 < f, then the desired event happens when-
ever U;; misses B and hits B’ = B, (p;+1). This hap-
pens with at least a constant probability by Claim C.4
since piy1 > ¥, (1/271) > «,(1/2171) and there-
fore puyp(B') > 1/2+1 and the two balls B and B’ are
disjoint.

This completes the proof of the claim. |

Claim C.3 For any node w we have o, (%) > f./8 and
aw(1/Bu(w)) < fu/16.

Proof: Let B = B,,(fw/8). By (12) forany w’ € B
p(w) /20[Bu(fu)] < pr(w') < p(w)/2u(B),
0 7 (B) < 3 and s [Bu(fu/16)] > 1/fu(w). O

Suppose that (11) holds; let x = max(f,, f»). Then
using Claim C.3 and the definitions of p; and 1),, we have:

o> rr%ax}min(fw/S,d/Z)Zmin(:c/&d/2),
WELU,V
< w27 < w (1
pr < wg}{iﬁ}a( )_wg}{%{;}a (1/Bu(w))
<  max f,/16 <z/16.
we{u,v}

By (13) for p = 1 it remains to show that p; — p; > Q(d).
There are two cases:

o if f, < 4dthen p; > x/8,s0 p1 —pr > /16 > Q(d).
o if f, > 4d then p; > d/2 and (since f is 1-Lipschitz)
pe < fo)16 < (fu+d)/16 < 5d/16,
s0 p1 — pr > 3d/16.

This completes the proof for the case p = 1. To extend it to
p > 1, note that the embedded uwv-distance is

(Zij gij(uv)p) 1/p _ (kt)l/p (ﬁ Zij gij(uv)p) v
> (kM (3 Sy g(w0) = 0d/0) (k)7

This completes the proof of the Lemma. |

In the above proof we used the following claim which
is implicit in [33] and also stated in [29]; for the sake of
completeness, we prove this claim in the full version.

Claim C.4 Let p1 be a probability measure on a finite set
V. Consider disjoint events E, E' C V such that u(E) >
q and p(E'") < 2q < 1/2 for some number ¢ > 0. Let
S be a set of [1/q]| points sampled independently from V
according to p. Then S hits E and misses E' with at least
a constant probability.



