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Abstract

We study several embeddings of doubling metrics into low dimensional normed spaces, in particular
into `2 and `∞. Doubling metrics are a robust class of metric spaces that have low intrinsic dimension,
and often occur in applications. Understanding the dimension required for a concise representation of
such metrics is a fundamental open problem in the area of metric embedding. Here we show that the
n-vertex Laakso graph can be embedded into constant dimensional `2 with the best possible distortion,
which has implications for possible approaches to the above problem.

Since arbitrary doubling metrics require high distortion for embedding into `2 and even into `1,
we turn to the `∞ space that enables us to obtain arbitrarily small distortion. We show embeddings
of doubling metrics and their ”snowflakes” into low dimensional `∞ space that simplify and extend
previous results.

1 Introduction
In this paper we study embeddings of doubling metric spaces into low dimension normed spaces. A
metric space (X, d) has doubling constant λ if any ball can be covered by λ balls of half its radius.
A family of metrics is called doubling if the doubling constant of every member is bounded by some
universal constant. The past decade has seen a surge of interest in doubling metrics, mainly because
numerous algorithmic tasks are (approximately) tractable in such metrics, e.g. routing in networks, low
stretch spanners, nearest neighbor search, approximate distance oracles, traveling salesperson problem
[HPM06, CGMZ05, GR08, GK11, BGK12].

Embedding into normed spaces is a very useful paradigm for representing and analyzing data. Since
the cost of many data processing tasks depend exponentially on the dimension (the ”curse of dimension-
ality”), it is often crucial to obtain a low dimension in the host space. The doubling constant of the metric
captures in some sense the intrinsic dimension of the metric, and the logarithm of the doubling constant
is known as the doubling dimension [GKL03]. Indeed, there are numerous results on low dimensional
embedding of doubling metrics, and in what follows we review some of them. Recall that an embedding
of a metric space (X, d) into `Dp is a map f : X → RD, and the distortion of f is defined as

max
x6=y∈X

{
‖f(x)− f(y)‖p

d(x, y)

}
· max
x 6=y∈X

{
d(x, y)

‖f(x)− f(y)‖p

}
.

Several results only hold for a ”snowflake” version of the metric: The 1 − α snowflake of (X, d) is the
metric (X, d1−α) with 0 < α < 1 (that is, every distance is raised to power 1− α).
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Euclidean Embeddings: Assouad [Ass83] showed that if (X, d) is λ-doubling then (X, d1−α) can
be embedded into constant dimensional Euclidean space with constant distortion, where the constants
depend only on λ and on α. He conjectured that such a result is possible also when α = 0 (i.e. the origi-
nal metric), but this was disproved by Semmes [Sem96]. In the computer science community, [GKL03]
gave a comprehensive study on embedding doubling metrics. Among other results, they showed that
n-point doubling metric spaces can be embedded with tight distortion O(

√
log n) into Euclidean space

(in contrast with arbitrary metrics that may require Ω(log n) distortion [LLR95]). [KLMN05] showed an
embedding with optimal dependence on the doubling constant (the lower bound was given by [JLM09]).
The ”price” paid for obtaining optimal distortion is that the dimension of all these embeddings is at least
Ω(log n). Following the intuition that the doubling dimension should be related to the dimension of the
host space, [ABN08] showed that for any ε > 0, λ-doubling metrics can be embedded into O((log λ)/ε)
dimensional Euclidean space with distortion O(log1+ε n). Both [ABN08, CGT10] exhibited a tradeoff
between distortion and dimension: as the dimension ranges fromO(log log n) toO(log n), the distortion
ranges from O(log n) to O(

√
log n). However, the following is still open:

Question 1. Does every doubling metric on n points embeds into O(1) dimensional `2 space with
distortion O(

√
log n)?

Here we (arguably) show some evidence for a positive answer to this question, by providing an
embedding of the metric induced by an n-vertex Laakso graph into constant dimensional Euclidean space
with distortionO(

√
log n). The Laakso graphGk is a series-parallel graph with 6k edges, Θ(6k) vertices,

and its doubling constant is at most 6 (see Section 3 for a definition of the Laakso graph), it was first
introduced by [Laa02]. This graph seems difficult for `2 embedding and low dimensional embeddings. In
particular, it is known that the metric induced by the n-vertex Laakso graph requires nΩ(1/β2) dimensions
for a β distortion embedding into `1 [LMN05] (following the results of [BC05, LN04]). Also, this metric
requires distortion at least Ω(

√
log n) for any embedding into `2 [GKL03]. So it seems surprising that

allowing distortion O(
√

log n) the embedding only requires 3 dimensions1.

Theorem 1. For any positive integer m, there exists an embedding of the metric induced by Gm into 3
dimensional `2 space with distortion O(

√
m).

The proof of Theorem 1 appears in Section 3.

Embedding into `∞: The distortion of the above results is often undesirably high, in particular
for application areas, where it is useful to have arbitrarily low distortion. Obtaining low distortion
was shown to be impossible for `2 by [Sem96, Laa02, GKL03], and for `1 by [CK10, CKN09, LS11],
where for the former the lower bound is a tight Ω(

√
log n) and for the latter Ω(

√
log n/ log log n).

Another natural candidate space is the `∞ space. In [GKL03] it was shown that for any ε > 0, any
doubling metric space (X, d) on n points embeds into `O(logn)

∞ with distortion 1 + ε. While the explicit
proof and the dependence on the parameters ε and λ was not specified there, the proof was based on
a variation of Bourgain’s embedding and an application of the Lovász Local Lemma. In this paper we
give a very simple proof of this result that does not require the Local Lemma, and has the best possible
dependence on ε and the doubling constant λ, up to a constant in the exponent. Another advantage is that
our construction only requires building nets, which can be implemented efficiently in near linear time
[HPM06]. The result is in fact a simple adaptation of the methods introduced by [HPM06].

Theorem 2. For any 0 < ε ≤ 1, any finite metric space (X, d) on n points with doubling constant λ
embeds into `D∞ with distortion 1 + ε where D = λlog(1/ε)+O(1) log n.

The proof of Theorem 2 appears in Section 4.

1It is quite conceivable that 2 dimensions suffice, we used 3 to simplify the analysis.
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Snowflake embeddings: Following the result of Assouad, there were several extensions for the
snowflakes of doubling metrics. [GKL03] provided an improved dependence of the distortion and
the dimension on the doubling constant λ in Assouad’s result. The dependence on α in the dimen-
sion was further improved in [ABN08], and finally was completely removed in [NN12] (in the range
0 < α < 1/2). [HPM06], among other algorithmic results on doubling metrics, showed an embedding
of (X, d1/2) into `∞ of dimension λO(log(1/ε)), which is then used for distance labeling. More recently,
[GK11] showed a dimension reduction result for a snowflake of Euclidean subsets that are doubling,
and [BRS11] obtained similar result. For the `∞ host, they showed a 1 + ε distortion embedding for a
1 − α snowflake with λO(log(1/ε)+log log λ)/(α(1 − α)) dimensions. The proof of [GK11] ingeniously
combined many ”hammers” such as the Johnson-Lindenstrauss dimension reduction, padded decompo-
sitions, a Gaussian transform and smoothing techniques. In this work we improve slightly the result of
[GK11] for embedding doubling snowflakes into `∞, and generalize the embedding result of [HPM06]
to arbitrary snowflaking parameter α. Perhaps more importantly, the construction and analysis given
here are arguably simpler that those of [GK11], and admit an efficient implementation.

Theorem 3. For any 0 < ε ≤ 1/20, 0 < α < 1, and any finite metric space (X, d) on n points with
doubling constant λ, there exists an embedding of the snowflake (X, d1−α) into `D∞ with distortion 1 + ε
where D = λlog(1/ε)+O(1)/(α(1− α)).

The proof of Theorem 3 appears in Section 5.

Dimension Reduction for Doubling Subsets: Assouad’s result (embedding doubling snowflakes
into constant dimensional Euclidean space with constant distortion) cannot be extended to arbitrary
doubling metrics as mentioned above. One of the major open problems in the area of metric embedding
is whether his result can be extended to doubling subsets of Euclidean space. That is,

Question 2. Does every doubling subset of `2 embeds into constant dimensional `2 space with constant
distortion?

This question was raised by [LP01, GKL03], and also referred to in other works such as [ABN08,
CGT10, GK11, NN12]. A possible approach for finding a counterexample, mentioned in [NN12], is to
use the image under Euclidean embedding of a known ”difficult” doubling metric. If it can be shown
that a certain n-point doubling metric has the following properties: 1) It has an `2 embedding with
distortion O(

√
log n) in which its image is doubling, and 2) Any embedding of this metric into constant

dimensional `2 requires ω(
√

log n) distortion, then it would provide a negative answer to the above
question.

A natural candidate for such a doubling metric, used in [CK10, CKN09] to prove non-embeddability
in `1 of negative type metrics, is the Heisenberg group H equipped with the Carnot-Carathéodory metric.
It was shown in [NN12] that it satisfies the first property. Another possible ”difficult” metric is the
Laakso graph, however the result stated in Theorem 1 rules out this example. In fact, a positive answer
to Question 1 would rule out this approach entirely.

2 Preliminaries
Let (X, d) be a finite metric space, with |X| = n. We shall assume w.l.o.g that d(x, y) ≥ 1 for all
x, y ∈ X . The diameter of (X, d) is diam(X) = maxx,y∈X{d(x, y)}. A ball around x ∈ X with
radius r ≥ 0 is defined as B(x, r) = {z ∈ X | d(x, z) ≤ r}. The doubling constant of (X, d) is the
minimal integer λ such that for all x ∈ X and r > 0, the ball B(x, 2r) can be covered by λ balls of
radius r. The doubling dimension of (X, d) is defined as dim(X) = log2 λ. A family of metric spaces
is called doubling if there is a constant K such that every metric in the family has doubling constant at
most K. An r-net of (X, d) is a set of points N ⊆ X satisfying: 1) For all u, v ∈ N , d(u, v) > r, and
2)
⋃
u∈N B(u, r) = X . It is well known that a simple greedy algorithm can provide an r-net.
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Figure 1: Naming vertices and edges of Laakso graph

3 Low dimensional Embedding of the Laakso Graph
In this section we prove Theorem 1. For integer k ≥ 0 let Gk be the k-th level Laakso graph, defined
as follows: G0 consist of a single edge, Gk is defined by replacing every edge of Gk−1 with the graph
on six edges and six vertices depicted in Figure 1, such that the vertices a, b correspond to the original
endpoints of the edge. The edge lengths in Gk are 4−k for all edges. For a pair of vertices that were
edges in Gi, we abuse notation and call them level i edges. A level i edge e is a child of a level i − 1
edge e′ if it is one of the six edges that replaced e′. This defines an (partial) inheritance relation on the
edges of different levels. Note that any edge at level k > i has a unique level i ancestor.

We label the edges of Gk by a sequence l ∈ Lk, where L = {0, 1,−1, 2,−2, 3}, such that for
1 ≤ i ≤ k, li is the position of the level i ancestor of the edge, depicted in Figure 1. The vertices created
in level k are labeled by a string in Lk−1 × {s, t, u, v}. In particular, each edge of level k − 1 creates 4
new vertices, if the label of the edge was l ∈ Lk−1, then the new vertices will be labeled by l ◦ s, l ◦ t,
l ◦ u, and l ◦ v (where for strings w,w′, w ◦ w′ denotes their concatenation).

We write ‖ · ‖ for the standard Euclidean norm.

3.1 Construction of the Embedding
Consider the graph Gn, with shortest path metric d, and fix D = 1/

√
n. First define an embedding

g : V (Gn) → R by g(x) = d(x, a), where a is the left vertex of G0. We define the embedding
f : V (Gn)→ R2 recursively as follows. In the case k = 0 where a, b are the two endpoints of the single
edge of level 0, define f(a) = (0, 0), f(b) = (1, 0). Fix some integer 1 ≤ k ≤ n. Now, let {a, b} be any
level k− 1 edge, let s, t, u, v be the new four vertices created from it in level k. Inductively, f is already
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defined on both a and b, so let z = f(b)− f(a). Finally let z̄ be one of the two unit vectors orthogonal
to z in R2 (chosen arbitrarily). Define

f(s) = f(a) + z/4

f(t) = f(a) + 3z/4

f(u) = f(a) + z/2 +D4−k · z̄
f(v) = f(a) + z/2−D4−k · z̄ .

In some sense the embedding g is just a projection of the graph into the line, and its sole purpose is to
provide contribution for the edges. The difficulty in embedding the Laakso graph comes from handling
the diagonals (each diagonal is composed of the two vertices whose labels are p ◦ u and p ◦ v for some
k ≥ 0 and p ∈ Lk). The map f provides sufficient contribution for the diagonals, the price is that we
expand slightly the four inner edges (e.g. {p◦s, p◦u}). Intuitively, since f provides only 1/

√
n fraction

of the distance between the diagonals, and uses an orthogonal vector to the parent edge’s vector, we get
that the distance between the images of the edge’s endpoints is increased only by a factor of 1/n. Thus
even n levels of recursion will not generate a large expansion.

3.2 Analysis of the Embedding
The first step is to bound the distortion of the edges (of all levels), which yields an upper bound on the
expansion of the embedding.

Claim 1. For any integer 0 ≤ k ≤ n and any level k edge {x, y} ∈ E(Gk),

d(x, y) ≤ ‖f(x)− f(y)‖ ≤ 2d(x, y) .

Proof. We prove by induction on k that if {x, y} is level k edge, then

4−k ≤ ‖f(x)− f(y)‖ ≤
√

1 + kD2 · 4−k . (1)

The base case k = 0 is true by definition. For the inductive step, let {a, b} be a level k − 1 edge with
d(a, b) = 4−(k−1), and let z = f(b)− f(a). By the induction hypothesis

4−(k−1) ≤ ‖z‖ ≤
√

1 + (k − 1)D2 · 4−(k−1) . (2)

Consider the six edges created from {a, b} in level k that are depicted in Figure 1. First observe that for
the edge {a, s}, by definition ‖f(s) − f(a)‖ = ‖z‖/4 so it satisfies (1). The same holds for the edge
{b, t}. Consider now the edge {s, u}, using that z, z̄ are orthogonal suggests the following bound,

‖f(u)− f(s)‖2 = ‖z/4 +D4−k · z̄‖2

= ‖z/4‖2 + ‖D4−k · z̄‖2

= ‖z‖2/16 + (D4−k)2

Using (2) it holds that ‖z‖ ≥ 4−(k−1) and thus ‖f(u) − f(s)‖ ≥ ‖z‖/4 ≥ 4−k. For the upper bound,
note that by (2)

‖f(u)− f(s)‖2 ≤ (1 + (k − 1)D2) · 4−2(k−1)/16 +D24−2k = (1 + kD2) · 4−2k .

The same calculation holds for the edges {s, v}, {u, t} and {v, t}. This concludes the proof of (1). Using
that k ≤ n, we see that

√
1 + kD2 ≤

√
1 + 1 < 2, proving the claim.

Lemma 2. For any x, y ∈ V (Gn),

‖(f ⊕ g)(x)− (f ⊕ g)(y)‖ ≤ 3d(x, y) .
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Proof. Let x = u0, u1, . . . , ut = y be a shortest path inGn connecting x to y. By the triangle inequality
and Claim 1,

‖f(x)− f(y)‖ ≤
t∑
i=1

‖f(ui)− f(ui−1)‖ ≤ 2

t∑
i=1

d(ui, ui−1) = 2d(x, y) . (3)

Using the triangle inequality it follows that

|g(x)− g(y)| = |d(x, a)− d(y, a)| ≤ d(x, y) .

The main effort will be showing that the contraction of f ⊕ g is bounded by O(1/D). Observe that
the vertices u, v of any basic structures in any level already suffer contraction of Θ(1/D). If we consider
two vertices x, y of distance d(x, y) ≈ 4−j , then in level j they have different ancestor edges, and at
least intuitively they should get a contribution of D · 4−j from the embedding of level j. However, in
their final embedding, x, y may ”get closer” to each other because we use few dimensions. We first focus
on the case where g(x) = g(y), and so the contribution must entirely come from the f embedding. The
following lemma shows there is indeed sufficient contribution from the critical level, and the main issue
is showing that this contribution does not completely cancel out.

Lemma 3. Let x, y ∈ V (Gn) be such that g(x) = g(y), then

‖f(x)− f(y)‖ ≥ D · d(x, y)/32 .

Proof. First observe that since x, y have the same g value they must have been created in the same level,
and denote this level by m. Abusing notation, denote by x, y ∈ Lm−1 × {s, t, u, v} the labels of the
vertices. For any 1 ≤ i ≤ m let pi = x1 ◦ · · · ◦ xi−1 be the label of the level i − 1 ancestor edge of x.
Observe that since g(x) = g(y) it must be for every i ∈ [m− 1] that |xi| = |yi|. First consider the case
that xi = yi for all i ∈ [m], then in fact x, y are the u, v vertices created from the edge labeled pm, and
by definition of f , ‖f(x)− f(y)‖ = 2D · 4−m = D · d(x, y).

Now assume that there is an index i ∈ [m − 1] such that xi 6= yi, and let j be the minimal such
index. We shall assume w.l.o.g that xj = 1, yj = −1 (the case xj = 2 and yj = −2 is symmetric). Let
s′ = pj ◦ s and t′ = pj ◦ t. Let k be the smallest integer satisfying j < k < m and such that at least one
of xk, yk is different from 0 (or different from 3 if it was the case that xj = 2, yj = −2). If no such k
exists put k = m. Assume w.l.o.g that xk 6= 0. Roughly speaking, j is the index of the scale in which
x, y are separated into different recursive components, however since in the scales i from j + 1 to k− 1,
xi = yi = 0, both are still close to s′ and thus to each other. The final distance between x, y is about
4−k. To see this, note that d(x, y) = d(x, s′) + d(y, s′), and thus d(x, y) ≥ d(x, s′) ≥ 4−k. On the
other hand, since for j < i < k, xi = yi = 0, then d(x, s′) ≤ d(pk−1 ◦ s, s′) = 4−(k−1) and similarly
for d(y, s′), so d(x, y) < 4−(k−2). It remains to show that ‖f(x)− f(y)‖ ≥ D · 4−k/2.

Let ` be the line passing through the endpoints of pj . We will prove that f(x) is at least D · 4−k/2
away from any point on the line `. To this end, we prove by induction on m that the Euclidean distance
of f(x) from the line ` is at least

D · (4−k −
m∑

i=k+1

4−i) , (4)

furthermore, f(x) is on the same side of ` as f(u′) where u′ = pj ◦ u.
The base case is whenm = k. As xj = 1, the end points of the level j ancestor of x are s′ = pj◦s and

u′ = pj◦u. By definition f(s′) lies right on the line ` connecting the images of the endpoints of pj , and u′

is at distanceD·4−j from ` (since we use an orthogonal vector to `). Let z′ = f(u′)−f(s′). By definition
of f , for all i > j we have that f(pi◦s) = f(s′)+z′/4i−j , in particular f(pk−1◦s) = f(s′)+z′/4k−1−j ,
which suggests that the distance of f(pk−1 ◦ s) from the line ` is equal to D · 4−j/4k−1−j = D/4k−1.
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As x is one of the four vertices created from the edge pk whose end points are s′ and pk−1 ◦ s, it can
be verified by the definition of the embedding f that its distance to ` is at least 1/4 of the distance of
pk−1 ◦ s to `, that is at least D/4k, as required.

Next we prove the inductive step. Let q, r be the level m − 1 vertices which are the end points
of the edge labeled pm, and let `′ denote the line passing through f(q) and f(r). By the induction
hypothesis the distance of both f(q) and f(r) from ` is at least D · (4−k −

∑m−1
i=k+1 4−i) and both are

on the same side of `. This suggests that every point on `′, in particular pm ◦ s and pm ◦ t, is at least
D · (4−k −

∑m−1
i=k+1 4−i) away from `. It remains to argue about pm ◦ u and pm ◦ v, which by definition

are embedded by f at distance D/4m from `′, which means their distance to ` can be closer than that of
f(q), f(r) by at most D/4m, which concludes the proof of (4).

Since
∑m
i=k+1 4−i ≤ 4k/2 we have that f(x) is at least D · 4−k/2 away from `. If j < k(y) < m

is the minimal such that yk(y) 6= 0 (and k(y) = m if there is no such value), then a analogous argument
will show that f(y) is at least D · 4−k(y)/2 away from ` on the side of f(v′) where v′ = pj ◦ v. In
particular, this suggests that ‖f(x)− f(y)‖ ≥ D · 4−k/2, as required.

It remains to bound the contraction for an arbitrary pair x, y.

Lemma 4. For any x, y ∈ V (Gn),

‖(f ⊕ g)(x)− (f ⊕ g)(y)‖ ≥ D · d(x, y)/128 . (5)

Proof. First consider the case that |g(x) − g(y)| ≥ D · d(x, y)/128, then clearly (5) holds. Otherwise,
|g(x)− g(y)| < D · d(x, y)/128, and w.l.o.g assume that g(x) < g(y). In this case, let y′ ∈ Gn be any
point on a shortest path connecting y to a such that g(x) = g(y′). Then

d(y, y′) = g(y)− g(y′) = g(y)− g(x) ≤ D · d(x, y)/128, (6)

thus also
d(x, y′) ≥ d(x, y)− d(y, y′) ≥ 3d(x, y)/4 . (7)

Using Lemma 3 on x, y′ it follows that,

‖f(x)− f(y)‖ ≥ ‖f(x)− f(y′)‖ − ‖f(y′)− f(y)‖
(3)
≥ D · d(x, y′)/32− 2d(y′, y)

(6)∧(7)
≥ 3D · d(x, y)/128−D · d(x, y)/64

= D · d(x, y)/128 .

The proof of Theorem 1 follows from Lemma 2 and Lemma 4

4 Embedding Doubling Metrics to Low Dimensional `∞
In this section we prove Theorem 2. Let us first remark that the dependence of the dimension D on the
parameters is essentially tight (up to a constant in the exponent), that is D ≥ λ+ (1/ε)Ω(1) + Ω(log n):
First, the log n term cannot be improved, because [GKL03] showed an Ω(

√
log n) lower bound on the

distortion when embedding doubling metrics into `2. Under the `2 norm our embedding has distortion
at most (1 + ε)

√
D, so when ε and λ are constants it must be that D = Ω(log n). Second, a linear

dependence on λ in the dimension is necessary, because for ε = 1, say, the dimension of a normed space
in which any n-point metric embeds with distortion 2 must be Ω(n) = Ω(λ) [Mat02]. In the full version
we show that there must be a polynomial dependence on 1/ε as well.
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4.1 Construction
For simplicity of presentation we first handle the case in which the spread (or aspect ratio) of the metric
is at most n, that is, diam(X) < n, the general case is deferred to Appendix A. For each 0 ≤ i < log n
take a ri-netNi, where ri = ε ·2i−2. Fix some netNi, and for an integer k > 0 define a spread-partition
Pi(k) as a partition of Ni into k clusters Ni0, Ni1, . . . , Ni(k−1), such that each cluster is well spread.
Formally, for all 0 ≤ j ≤ k − 1, if u, v ∈ Nij then

d(u, v) ≥ 5 · 2i . (8)

Note that Nij is not necessarily a net of Ni, as it may not satisfy the covering property of nets.

Claim 5. Fix k = λ6+log(1/ε). For all 0 ≤ i < log n there exists a spread-partition Pi(k).

Proof. To construct Pi(k), first greedily choose a maximal Ni0 ⊆ Ni that satisfy (8). For any 0 < j ≤
k − 1, after choosing Ni0, ..., Ni(j−1), greedily choose a maximal Nij ⊆ Ni \ (Ni0 ∪ ... ∪ Ni(j−1))
that satisfy (8). We claim that after k iterations Ni must be exhausted. Seeking contradiction, assume
that u ∈ Ni was not covered by any Nij , and consider B = B(u, 5 · 2i). By using the doubling
property iteratively, the ball B can be covered by λlog(5·2i/(ri/2)) balls of radius ri/2, each of these
small balls can contain at most one point from Ni. As λlog(5·2i/(ri/2)) < k, we conclude that for some
0 ≤ j ≤ k− 1, Nij does not contain any point from B, but then by maximality it should have contained
u, a contradiction.

Next we define the embedding f : X → RD with D = k log n, where k is defined as in Claim 5.
Let fij(x) = d(x,Nij), and

f(x) =

logn⊕
i=1

k−1⊕
j=0

fij(x) .

(We use the convention that if Nij = ∅ then d(x,Nij) = 0).

4.2 Proof
Fix some x, y ∈ X . By the triangle inequality we have that for anyNij , d(x,Nij)−d(y,Nij) ≤ d(x, y),
so that for any 1 ≤ i ≤ log n and 0 ≤ j ≤ k − 1, fij(x) − fij(y) ≤ d(x, y). By symmetry of x, y this
suggests that

|fij(x)− fij(y)| ≤ d(x, y) . (9)

Next we show that there are i, j such that fij(x) − fij(y) ≥ d(x, y)(1 − ε). Let 1 ≤ i ≤ log n be
such that 2i−1 ≤ d(x, y) < 2i, and let 0 ≤ j ≤ k − 1 be such that d(x,Nij) ≤ ri (such a j must exist
because Ni is an ri-net). Denote by u ∈ Nij the point satisfying d(x,Nij) = d(x, u).

We claim that d(y,Nij) = d(y, u). To see this, first observe that d(y, u) ≤ d(y, x) + d(x, u) ≤
2i + ri < (5/4) · 2i. Consider any other v ∈ Nij , by the construction of Nij , d(v, u) ≥ 5 · 2i,
so d(y, v) ≥ d(u, v) − d(y, u) > 5 · 2i − (5/4) · 2i > (5/4) · 2i > d(y, u). Thus it follows that
d(y,Nij) = d(y, u) ≥ d(y, x)− d(x, u) ≥ d(x, y)− ri. We conclude that

fij(y)− fij(x) ≥ (d(x, y)− ri)− ri = d(x, y)− ε · 2i−1 ≥ d(x, y)(1− ε) . (10)

The proof of Theorem 2 follows directly from (9) and (10).
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5 Embedding Doubling Snowflakes
This section is devoted to the proof of Theorem 3. Recall that the snowflake of a metric (X, d) is the
metric (X, d1−α) where 0 < α < 1. In the extremes, taking α = 0 gives the original metric and when
α = 1 this is a uniform metric (all distances are 1). Observe that when α = ε/(log n) we have that
d1−α ≈ d (up to a factor of (1− ε)), which suggest that Theorem 3 is in fact an extension of Theorem 2.
First we briefly mention why the dependence on α in the dimension D is tight. For 0 < α ≤ 1/2 this
can be seen by a result of [LMN05], who showed that the 1 − α snowflake of the Laakso graph (for
which λ = 6), must suffer Ω(

√
1/α) distortion when embedded into Euclidean space. Now, when ε is a

constant our embedding has distortion O(
√
D) under the `2 norm, so it must be that D = Ω(1/α) (the

term 1/(1 − α) is just a constant in this case). In the other case 1/2 < α ≤ 1, as α approaches 1 the
metric becomes more uniform. In particular, when α = 1− γ/ log n all distances raised to power α are
between 1 and 2γ . A simple volume argument suggests that metrics on n points with aspect ratio 2γ ,
require Ω((log n)/γ) = Ω(1/(1 − α)) dimensions for constant distortion embedding into `∞ (the term
1/α is just a constant in this case).

5.1 Construction
Here too we shall assume first that diam(X) ≤ n (the general case is similar to the construction given
in Appendix A and is deferred to the full version). We will also assume w.l.o.g that 1/(4α) and α log n
are integers. For each 0 ≤ i < log n, construct the nets Ni and spread partitions Pi(k) exactly as in
the previous section (recall that ri = ε · 2i−2 and k = λ6+log(1/ε)). Next we define the embedding,
fix D = 2k log(1/ε)/(α(1 − α)) where k is defined as in Claim 5 (assume that D is integer), and let
{e0, . . . , eD−1} be the standard orthonormal basis for RD, extended to an infinite sequence {ej}j∈N
(that is, ej = ej(mod D) for all j ∈ N). For any 0 ≤ i < log n and 0 ≤ j ≤ k − 1 let

gij(x) =
min{2i, d(x,Nij)}

2αi

(we use the convention that if Nij = ∅ then d(x,Nij) = 0). Define the embedding f : X → RD by

f(x) =

logn∑
i=0

k−1∑
j=0

gij(x) · eik+j .

Consider the h-th coordinate of the embedding fh, with 0 ≤ h ≤ D − 1. Observe that there is a
unique value of 0 ≤ j ≤ k− 1 such that ik+ j = h(mod D) could hold for some i, and let j(h) be that
value. Letting I(h) = {i : ik + j(h) = h(mod D)} we have that

fh(x)− fh(y) =
∑
i∈I(h)

gij(x)− gij(y) . (11)

We may enumerate I(h) = . . . , i−1, i0, i1, . . . such that i0 ∈ I(h) is some fixed scale, and is =
i0 + 2s log(1/ε)/(α(1− α)) for all s ∈ Z. In what follows we show that f has distortion 1 +O(ε).

5.2 Expansion Bound
Here we show that the embedding f under the `∞ norm does not expand distances by more than a factor
of 1 + 3ε. Fix a pair x, y ∈ X , and observe that by the triangle inequality we have that

gij(x)− gij(y) ≤ d(x, y) · 2−iα , (12)

and also
gij(x)− gij(y) ≤ 2i(1−α) , (13)
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for all 0 ≤ i < log n and 0 ≤ j ≤ k − 1. Consider the h-th coordinate of the embedding fh, with
0 ≤ h ≤ D − 1, and fix j = j(h). Let i0 ∈ I(h) be the maximal scale in I(h) such that 2i0 ≤ d(x, y).
First we bound the small distance scales appearing in I(h),

∑
i∈I(h) : i<i0

gij(x)− gij(y) ≤
−1∑

s=−∞
gisj(x)− gisj(y)

(13)
≤

∞∑
s=1

2i−s(1−α)

=

∞∑
s=1

2(1−α)(i0−2s log(1/ε)/(α(1−α)))

≤ 2i0(1−α)
∞∑
s=1

ε2s/α

= 2i0(1−α) ε2/α

1− ε2/α
. (14)

Next we bound the contribution from the high distance scales,

∑
i∈I(h) : i>i0

gij(x)− gij(y) ≤
∞∑
s=1

gisj(x)− gisj(y)

(12)
≤

∞∑
s=1

d(x, y) · 2−isα

= d(x, y)

∞∑
s=1

2−i0α−2s log(1/ε)/(1−α)

= d(x, y) · 2−i0α
∞∑
s=1

ε2s/(1−α)

≤ d(x, y) · 2−i0α ε2/(1−α)

1− ε2/(1−α)
. (15)

For the critical scale i0 we have by (13) that

gi0j(x)− gi0j(y) ≤ 2i0(1−α) . (16)

Combining the bounds of (14), (15) and (16), we get

fh(x)− fh(y) ≤ 2i0(1−α)

(
1 +

ε2/α

1− ε2/α

)
+ d(x, y) · 2−i0α ε2/(1−α)

1− ε2/(1−α)
(17)

It remains to show that the RHS of (17) is bounded by d(x, y)1−α(1 + 3ε). We verify this using a simple
case analysis, and write the calculations for completeness. Note that by maximality of i0 we have that
ε2/(α(1−α)) · d(x, y) ≤ 2i0 ≤ d(x, y). If it is the case that d(x, y) · ε1/(α(1−α)) ≤ 2i0 ≤ d(x, y),
then intuitively, the dominant term is the one coming from (16), whereas the terms in (14) and (15) will
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contributes only an ε-fraction of that. Formally, we bound the RHS of (17) by

2i0(1−α)

(
1 +

ε2/α

1− ε2/α

)
+ d(x, y) · 2−i0α ε2/(1−α)

1− ε2/(1−α)

≤ d(x, y)1−α
(

1 +
ε2/α

1− ε2/α

)
+
d(x, y)1−α

ε1/(1−α)
· ε2/(1−α)

1− ε2/(1−α)

≤ d(x, y)1−α (1 + ε) + d(x, y)1−α · ε1/(1−α)

1− ε2/(1−α)

≤ d(x, y)1−α(1 + 3ε) .

The last inequalities are using that ε < 1/2 so that ε2/(1−α)

1−ε2/(1−α) ≤ ε2(1 + ε2) ≤ ε and ε1/(1−α)

1−ε2/(1−α) ≤
ε(1 + ε) ≤ 2ε. The second case where d(x, y) · ε2/(α(1−α)) ≤ 2i0 < d(x, y) · ε1/(α(1−α)) is similar, here
the dominant term will come from (15):

2i0(1−α)

(
1 +

ε2/α

1− ε2/α

)
+ d(x, y) · 2−i0α ε2/(1−α)

1− ε2/(1−α)

≤ d(x, y)1−α · ε1/α ·
(

1 +
ε2/α

1− ε2/α

)
+
d(x, y)1−α

ε2/(1−α)
· ε2/(1−α)

1− ε2/(1−α)

≤ d(x, y)1−α · ε(1 + ε) + d(x, y)1−α · ε
≤ d(x, y)1−α(1 + 3ε) .

We have shown that fh(x)−fh(y) is bounded, by symmetry of x, y also |fh(x)−fh(y)| ≤ d(x, y)1−α ·
(1 + 3ε) as well, which concludes the expansion bound.

5.3 Contraction Bound
Finally we bound the contraction of the embedding. Fix a pair x, y ∈ X . We will show that there exist a
single coordinate 0 ≤ h ≤ D− 1 such that |fh(x)− fh(y)| ≥ d(x, y)1−α · (1− 5ε). Let 0 ≤ i0 ≤ log n
be such that 2i0−1 < d(x, y) ≤ 2i0 , and let 0 ≤ j ≤ k − 1 be such that d(x,Ni0j) ≤ ri0 . Let u ∈ Ni0j
be the point satisfying d(x, u) = d(x,Ni0j), and the same calculation as in Section 4.2 shows that
d(y,Ni0j) ≥ d(x, y)− ri, thus

gi0j(y)− gi0j(x) ≥ d(x, y)(1− ε) . (18)

Let 0 ≤ h ≤ D − 1 be such that h = i0k + j(mod D), for the values of i0, j fixed above. The scale
i0 is the critical scale which by (18) provides sufficient contribution for x, y, and it remains to show that
the other scales participating in coordinate h do not cancel out this contribution. By (14) we have that

∑
i∈I(h) : i<i0

gij(x)− gij(y) ≤ 2i0(1−α) ε2/α

1− ε2/α

≤ (2d(x, y))1−αε(1 + ε)

≤ d(x, y)1−α · 3ε . (19)

By (15) we have that

∑
i∈I(h) : i>i0

gij(x)− gij(y) ≤ d(x, y) · 2−i0α ε2/(1−α)

1− ε2/(1−α)

≤ d(x, y)1−α · ε . (20)
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Combining (19) and (20) with the contribution of the critical scales i0 in (18) we obtain that

|fh(x)− fh(y)| ≥ |gi0j(x)− gi0j(y)| −

∣∣∣∣∣∣
∑

i∈I(h) : i 6=i0

gij(x)− gij(y)

∣∣∣∣∣∣
≥ (1− 5ε)d(x, y)1−α .
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A Proof of Theorem 2 for Metrics with Arbitrary Diameter
Here we complete the proof of Theorem 2, without the restriction on the diameter of the metric. The
technique is quite standard and appeared before. The idea is to allocate only O(log n) coordinates, and
re-use the same coordinates every O(log n) scales.

A.1 Construction
Let ∆ = diam(X) and for all 0 ≤ i ≤ log ∆ let (X, di) be the metric induced by contracting distances
smaller than 2i/n2. Formally, consider the complete graph on verticesX with edge {u, v} having weight
d(u, v). Replace all weights smaller than 2i/n2 by 0, and let di be the shortest path metric on this graph.
It can be checked that d(x, y)− 2i/n ≤ di(x, y) ≤ d(x, y) for all x, y ∈ X .

For each 0 ≤ i ≤ log ∆ take a ri-net Ni with respect to (X, di), where ri = ε · 2i−2. Create
a spread-partition Pi(k) = {Ni0, Ni1, . . . , Ni(k−1)} (recall that k = λ6+log(1/ε)). Next we define
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the embedding, fix D = 4k log n, and let {e0, . . . , eD−1} be the standard orthonormal basis for RD,
extended to an infinite sequence {ej}j∈N (that is, ej = ej (modD) for all j ∈ N). For any 0 ≤ i ≤ log ∆
and 0 ≤ j ≤ k − 1 let

gij(x) = min{2i+1, di(x,Nij)} .

Define the embedding f : X → RD by

f(x) =

log ∆∑
i=0

k−1∑
j=0

gij(x) · eik+j .

A.2 Expansion Bound
Now we show that the embedding f under the `∞ norm does not expand distances by more than a
factor of 1 + 1/n. Fix a pair x, y ∈ X , and consider the h-th coordinate of the embedding fh, with
0 ≤ h ≤ D−1. We have that fh(x)−fh(y) =

∑
i,j : h=ik+j(mod D) gij(x)−gij(y). Let 0 ≤ i′ ≤ log ∆

be such that 2i
′−1 ≤ d(x, y) < 2i

′
, then for all i > i′ + 2 log n it holds that d(x, y) < 2i/n2 and thus

di(x, y) = 0, in particular, gij(x) = gij(y) and so there is no contribution at all from such scales. By
the triangle inequality we also have that gij(x)− gij(y) ≤ di(x, y) and also gij(x)− gij(y) ≤ 2i+1 for
all 0 ≤ i ≤ log ∆.

fh(x)− fh(y) ≤
∑

i,j : i≤i′+2 logn,h=ik+j(mod D)

gij(x)− gij(y)

≤
∑

i,j : i′−2 logn<i≤i′+2 logn,h=ik+j(mod D)

gij(x)− gij(y)

+
∑

i≤i′−2 logn

2i+1

≤ di(x, y) + 2i
′+2/n2

≤ d(x, y)(1 + 1/n) .

The third inequality holds as there is at most one value of i with i′ − 2 log n < i < i′ + 2 log n such that
h = ik + j.

A.3 Contraction Bound
Finally we bound the contraction of the embedding. Fix a pair x, y ∈ X . We will show that there exist
a single coordinate 0 ≤ h ≤ D − 1 such that |fh(x) − fh(y)| ≥ (1 − ε)d(x, y). Let 0 ≤ i ≤ log ∆
such that 2i ≤ d(x, y) < 2i+1, and let 0 ≤ j ≤ k − 1 be such that di(x,Nij) ≤ ri (such a j must exist
because Ni is an ri-net). Denote by u ∈ Nij the point satisfying di(x,Nij) = di(x, u), then since ε < 1
also gij(x) ≤ ri.

We claim that di(y,Nij) = di(y, u). To see this, first observe that di(y, u) ≤ di(y, x) + di(x, u) ≤
2i+1 + ri < (5/4) · 2i+1. Consider any other v ∈ Nij , by the construction of Nij , di(v, u) ≥ 5 · 2i, so
di(y, v) ≥ di(u, v)− di(y, u) > (5/2) · 2i+1 − (5/4) · 2i+1 = (5/4) · 2i+1 > di(y, u). Thus it follows
that gij(y) ≥ di(y, u) ≥ di(y, x)− di(x, u) ≥ di(x, y)− ri. We conclude that

gij(y)− gij(x) ≥ (di(x, y)− ri)− ri = di(x, y)− ε · 2i−1 ≥ d(x, y)(1− ε/2− 1/n) .

Let 0 ≤ h ≤ D − 1 be such that h = ik + j(modD), for the values of i, j fixed above. Then we
claim that any other pair i′, j such that h = i′k + j(modD) has either 0 or very small contribution to
the h coordinate. If i′ > i then it must be that i′ ≥ 4 log n · i so that d(x, y) ≤ 2i+1 < 2i

′
/n2, thus as
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before gi′j(x) = gi′j(y). For values of i′ such that i′ < i then i′ ≤ i− 4 log n thus∑
i′<i,j : h=i′k+j(mod D)

|gi′j(x)− gi′j(y)| ≤
∑

i′≤i−4 logn

2i
′+1

≤ 2i/n2

≤ d(x, y)/n2 .

Finally,

‖f(x)− f(y)‖∞ ≥ |fh(x)− fh(y)|
≥ |gij(y)− gij(x)| −

∑
i′<i,j : h=i′k+j(mod D)

|gi′j(x)− gi′j(y)|

≥ d(x, y)(1− ε/2− 2/n) .

If 10/n ≤ ε ≤ 1/4 then the distortion is indeed (1 + 1/n)/(1− ε/2− 2/n) ≤ 1 + ε.
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