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Abstract

We study the problem of embedding metric spaces into
low dimensional `p spaces while faithfully preserving
distances from each point to its k nearest neighbors.
We show that any metric space can be embedded into
`
O(ep log2 k)
p with k-local distortion of O((log k)/p). We

also show that any ultrametric can be embedded into
`
O(log k)/ε3

p with k-local distortion 1 + ε.
Our embedding results have immediate applications

to local Distance Oracles. We show how to preprocess
a graph in polynomial time to obtain a data structure
of O(nk1/t log2 k) bits, such that distance queries from
any node to its k nearest neighbors can be answered
with stretch O(t).

1 Introduction

In [2], we initiated the study of local embeddings, em-
beddings that preserve the local structure of the orig-
inal space. Indeed in many important applications of
embedding, preserving the distances of nearby points is
much more important than preserving all distances. An
embedding with k-local distortion of α is a map from a
metric space to a host metric space such that the dis-
tances from each point to its k nearest neighbors are
faithfully preserved in the host space with distortion
≤ α. For k-local embedding into a normed space, say
`2, the challenge is to obtain an embedding whose dis-
tortion and dimension depend solely on k. Examining
the metric of constant degree expander graphs shows
that the best one can hope for is a k-local distortion
of Ω(log k) using Ω(log k) dimensions. A partial answer
to the problem was provided in [2] (see Theorem 8), it
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was shown that under a constant weak growth bound1

assumption on the metric, such embeddings exist. Un-
fortunately, even metrics arising from simple graphs like
an un-weighted star do not have constant growth bound.
In fact even a one dimensional subset of `2 can have an
unbound growth rate.

Many models and measurements for the Internet
network (for example, “power law” models) predict that
the Internet network has a very high, non-constant,
growth rate. Moreover, it seems that the growth bound
assumption was essential for the type of embedding in
[2], since the Local Lemma argument had to depend on
events which are slightly farther away than the k nearest
neighbor.

In this paper we show that no matter how large the
metric is, if one is interested in constant distortion for
the distances of the nearest neighbors of each point then
the metric can be “folded” into a constant dimensional
space. We show that any metric space can be embedded
into `p with k-local distortion O((log k)/p) and dimen-
sion that depends only on p and k.

Theorem 1. For any n point metric space (X, d)
and parameters k ≤ n, p ≤ log k there exists an
embedding into `p with k-local distortion O((log k)/p)
and dimension O(ep log2 k).

The celebrated Johnson Lindenstrauss dimension
reduction Lemma [10] states that for any n points in `n2
and any ε > 0 there exists an embedding into `O(logn/ε2)

2

with distortion 1 + ε. This result has numerous appli-
cations in many practical areas like Learning, Artificial
Intelligence and Databases. In [2] it was asked if simi-
lar k local dimension reduction results exist where the
dimension is O(log k) and the k-local distortion is con-
stant. On the negative side, Adi Shraibman and Gideon
Schechtman [14] recently showed that obtaining such
embedding with 1 + ε distortion for all metric spaces is
impossible. In fact they show the nearly tight bound
known for the general case, of Ω((log n)/(ε2 log(1/ε)))

1a metric X, d has a χ > 1 weak growth bound if

|B(u, log |B(u, r)|r)| ≤ |B(u, r)|χ for all u, r > 0 such that
|B(u, r)| > 1



on the number of dimensions required to embed n point
subset of `2 with 2-local distortion 1 + ε. On the pos-
itive side, we study k local dimension reduction em-
beddings for the family of ultrametrics. Bartal and
Mendel [5] show that an ultrametric (X, d) can be em-
bedded with distortion 1 + ε into `2 with dimension
O(log |X| log(1/ε)ε−2). We give a local analogue of this
result:

Theorem 2. Let (X, d) be an ultrametric, then for any
p ≥ 1, ε > 0 and k ≤ |X| there is an embedding of
X into `p with k-local distortion 1 + ε and dimension
O((log k)/ε3).

The main new ingredient in the proof is Lemma 12
which states that any m-bounded out-degree HST
can be embedded with 1 + ε distortion using only
O((logm)/ε3) dimensions.

1.1 Local Distance Oracles Consider the follow-
ing well known problem. Given a description of a large
network, such as the Internet, or a large road network,
such as the US road network. We wish to preprocess
the network, so that subsequent distance queries could
be answered quickly and accurately. Solutions to this
problem are known as distance oracles (see Peleg [12],
Thorup and Zwick [15]). For an n node network, a
well known asymptotically tight trade off obtains dis-
tance oracles with Θ̃(n1+1/t) bits that answers distance
queries with Θ(t) stretch. i.e. if the distance between
u and v is d(u, v) then the distance oracle returns an
approximation h(u, v) such that d(u, v) ≤ h(u, v) ≤
t · d(u, v).

In this paper we show that better trade offs exists if
one is mainly interested in local distances. For example,
suppose that we are interested in obtaining approximate
distances on a large road network, but we are mainly
interested to give distance queries between endpoints
whose distance can be driven by vehicle in one day,
or suppose we are interested in approximating Internet
latencies, but we are only interested in distances within
our local network neighborhood. Following [2], a k
local distance oracle, is a data structure that faithfully
preserves the distances between each node and its k
nearest neighbors. For k local distance oracle with
stretch 1, the obvious solution is to store a table with k·n
entries, each containing the required distance. Our main
results give k local distance oracles, for any parameter
t ≤ log k, using only O(nk1/t log2 k) bits and answers
distance queries with O(t) stretch.

Distance oracles and metric embeddings are closely
related. Theorem 1 immediately translates into the
following distance oracle result.

Corollary 1. Given an undirected graph with non-
negative edge weights on n nodes, and parameters 1 ≤
k ≤ n, 1 ≤ t ≤ log k. The graph can be prepro-
cessed in polynomial time to produce a data structure
of O(nk1/t log2 k) bits, such that distance queries from
any node to its k nearest neighbors can be answered with
stretch O(t).

This follows by choosing p = ln k
t , and for every point

storing its O(k1/t log2 k) coordinates. Notice that for
any fixed k, the data structure size is linear in n.

1.2 Local embeddings Given a metric space (X, d),
let B(u, r) = {v | d(u, v) ≤ r}. For any point x let <x
be an order relation on the points in X \ {x} such that
for any u, v ∈ X \ {x} if d(u, x) ≤ d(v, x) then u <x v
(breaking ties arbitrarily). For any k ∈ N let Nk(x) be
the set of first k elements of X \ {x} according to <x,
i.e., Nk(x) is the set of k nearest neighbors of x. Let
rk(x) be minimal radius such that Nk(x) ⊆ B(x, rk(x)).
For any x ∈ X let N̄k(x) = {y | y ∈ Nk(x)∧x ∈ Nk(y)}.

Definition 2. Let (X, dX) be a metric space on n
points, (Y, dY ) a target metric space and k ∈ N, let
f : X → Y be an embedding.

• f is non-expansive if for any u, v ∈ X,
dY (f(u), f(v)) ≤ dX(u, v).

• f is an embedding with k-local distortion α if f
is non-expansive and for any u, v ∈ X such that
v ∈ Nk(u),

dY (f(u), f(v)) ≥ dX(u, v)
α

.

2 Local Embedding into `p with Low Dimension

Theorem 1. For any n point metric space (X, d)
and parameters k ≤ n, p ≤ log k there exists an
embedding into `p with k-local distortion O((log k)/p)
and dimension O(ep log2 k).

Let s = ep, and let c and C be universal constants
to be determined later. The proof of this theorem will
require a composition of two functions f : X → `Dp and
g : X → `D

′

p with the following properties:

1. Both f and g embed into D = cs ln2 k dimensions.

2. The functions f , g are non-expansive, i.e. for all
x, y ∈ X

‖f(x)− f(y)‖p ≤ d(x, y) , ‖g(x)− g(y)‖p ≤ d(x, y)



3. For any pair x, y ∈ X such that y ∈ Nk(x) and
d(x, y) < rk(x)/24,

‖f(x)− f(y)‖p > Cp · d(x, y)/ log k

4. For any pair x, y ∈ X such that y ∈ Nk(x) and
rk(x)/24 ≤ d(x, y) ≤ rk(x),

‖g(x)− g(y)‖p > Cp · d(x, y)/ log k

The embedding is defined as f⊕g, and it follows di-
rectly from property 1 that the dimension is O(ep log2 k)
and from properties 2, 3, 4 that the k-local distortion is
O((log k)/p).

The map f is a simplification of the map of [2]
Theorem 8. While f gives a lower bound on the
contraction of pairs for which d(x, y) < rk(x)/24, we
could not extend the Local Lemma argument to work
for arbitrary metrics (non-growth bounded) for the case
rk(x)/24 ≤ d(x, y) ≤ rk(x). The reason is that there are
dependencies between x, y and other k-nearest neighbor
pairs that are in the local neighborhood of x or y. When
d(x, y) ≤ rk(x)/24 these pairs are fully contained in
B(x, rk(x)) so there are at most ≈ k2 such pairs, but
when d(x, y) > rk(x)/24 there could be ≈ n2 of these,
and the Local Lemma argument fails. So for this case
we need a new map g tailored for ”far away” pairs.
From a high level view the map g takes the approach
of the maps of [1, 2], however there are several subtle
differences whose combination yields the desired result.

We highlight two of the new ideas here:

1. In order to define the map g, we use a new type of
probabilistic partition, where clusters are bounded
not by their diameter but by the number of points
they contain. Since we need to apply the Lo-
cal Lemma, the padding probability must depend
only on local events. A related partitioning no-
tion was suggested by Charikar, Makarychev and
Makarychev in [8], however their partition algo-
rithm was based on the probabilistic partitions of
Calinescu , Karloff and Rabani [7], Fakcharoenphol,
Rao and Talwar [9], which are inherently non-local
and hence cannot be used for our application. The
construction of our bounded cardinality probabilis-
tic partition uses the truncated exponential distri-
bution approach of [1]. The proof requires some
technical modifications to adapt to the bounded
cardinality case (see Lemma 4).

2. A common use of probabilistic partitions for em-
beddings is to randomly color each cluster by 0 or
1 (see [13, 1]). This typically means that the dis-
tortion of a pair depends on the color event of the

clusters of both vertices. Even in the local setting it
could be that some nodes participates in many pairs
(for example the center node in a star metric), then
this may create dependencies among many pairs
and hence prohibit the use of the Local Lemma.
The way that [2] handled this was to assume some
growth bound on the metric. To overcome this is-
sue without any assumptions, we deterministically
color each cluster into a D̄ = Θ(log k) dimensional
vector in such a way that if y is among the k nearest
neighbors of x and x, y belong to different clusters
A,B then the hamming distance between the colors
of A and B is at least D̄/8. This allows to define
the success event for the pair x, y for the map g only
as a function of the probabilistic partition around
x independent of the events around y.

2.1 Bounded cardinality probabilistic parti-
tions

Definition 3 (Partition). Let (X, d) be a finite metric
space. A partition P of X is a collection of non-empty
pair-wise disjoint clusters C(P ) = {C1, C2, . . . , Ct} such
that X = ∪jCj . The sets Cji are called clusters. For
x ∈ X we denote by P (x) the cluster containing x.

In order to define the map g, we use a new type of
probabilistic partitions, where each cluster contains at
most k points. That is, instead of the usual notion of
bounded diameter partitions, we require a bound on the
cardinality of the clusters, as captured by the following
definition.

Definition 4. Let 1/k ≤ δ ≤ 1. A distribution on
partitions P̂ of a metric space (X, d) is k-bounded and
locally padded with parameter δ if

1. For any P ∈ supp(P̂) and x, y ∈ X, if rk(x)/24 ≤
d(x, y) then y /∈ P (x).

2. Denote by L(x) the event that
B(x, 2−11rk(x) log(1/δ)/ log k) ⊆ P (x). For
any Z ⊂ X \ N̄k(x):

Pr[¬L(x) |
∧
z∈Z
L(z)] ≤ 1− δ

The first property bounds the number of points in
each cluster by k. The second property states that for
any point x, with probability at least δ, the ball around
x with radius proportional to rk(x) is contained in the
cluster that contains x, and that the probability of this
event depends only on local events.



Lemma 5. For any metric space (X, d) on n points,
any k ≤ n and any 1/k ≤ δ ≤ 1, there exists a k-
bounded and locally padded probabilistic partition with
parameter δ.

Proof. See Section 4.

2.2 The “large” distances embedding We now
detail the map g, that takes care of pairs such that
rk(x)/24 ≤ d(x, y) ≤ rk(x).

Recall that s = ep, and let δ = 1/s (recall that
p ≤ log k). Let D′ = D̂ · D̄ where D̂ = 16s ln 4 · ln k and
D̄ = 16 log k. Let P̂ be a locally k-padded probabilistic
partition as in Lemma 5. For each t ∈ [D̂] fix some
P = P (t) ∈ P (the particular choice of P will be detailed
later by Lemma 9). Define a directed graph G = (V,E),
which will be the k-neighborhood graph between the
clusters of the partition P . Let the vertex set V be
the clusters of P . Draw a directed edge (A,B) between
clusters A and B iff there exists points a ∈ A, b ∈ B
such that b ∈ Nk(a). As every cluster contains at most
k points, the out-degree of G is at most k2.

We use the following property of directed graphs
with bounded out-degree.

Lemma 6. Any directed graph G′ = (V,E) with
maximal out-degree k can be properly colored2 using
2k + 1 colors.

Proof. The proof is by induction. Assume we can color
with 2k + 1 colors any graph on less that |V | vertices,
whose out-degree is bounded by k. Consider G, the un-
directed version of G′ (connecting two vertices iff there
was an edge between them in G′ in either direction).
Since there are at most k · |V | edges in the graph, and
each edge touches two vertices, there must be a vertex x
with deg(x) ≤ 2k. Remove x and all the edges touching
x from G, and note that the resulting graph’s degree
is still bounded by k. Using the induction hypothesis,
properly color the remaining vertices with 2k+1 colors.
Now we add x back to the graph, since it has at most
2k neighbors we can properly color it with a color none
of its neighbors has.

We also use a set S of vectors in {−1, 1}O(log k) such
that any two points in S are “far” from each other.

Lemma 7. For any integer D̄ > 1 and Ω(1/D̄) < δ ≤
1/2 there exists a set S ⊆ {−1, 1}D̄, |S| ≥ 2D̄(1−H(δ))/2

(H is the entropy function), such that for any u, v ∈ S,
the Hamming distance between u and v is at least δD̄.

2Properly colored means that the end points of every directed
edge are colored by different colors.

In particular, fixing δ = 1/8 and recalling that
D̄ = 16 log k we get a set S of 2k2 + 1 vectors in
{−1, 1}D̄ such that the Hamming distance between each
two vectors is at least D̄/8. Using Lemma 6 we can
properly color G with m = 2k2 + 1 colors, and define
σ = σ(t) : V → S, such that if (A,B) ∈ E then
σ(A) 6= σ(B), by giving each color class of V a distinct
vector in S. For any t ∈ [D̂] define g(t) : X → `D̄p by

g(t)(x) = D̄−1/p · d(x,X \ P (t)(x)) · σ(P (t)(x)).

The embedding g : X → `D
′

p is the normalized concate-
nation of the g(t)s,

g(x) = D̂−1/p
D̂⊕
t=1

g(t)(x)

Observe that for any cluster A ∈ P , σ(A) is a
D̄ = O(log k) dimensional vector hence g(t)(x) is a
mapping into D̄ dimensions and g(x) is a mapping into
D′ = D̂ · D̄ = O(ep log2 k) dimensions.

Lemma 8. There exists a universal constant C1 such
that for any x, y ∈ X, ‖g(t)(x)−g(t)(y)‖p ≤ C1 ·d(x, y).

Proof. We distinguish between two cases

Case 1: P (x) = P (y). Denote by (a1, . . . aD̄) =
σ(P (x)) = σ(P (y)), then as

∣∣d(x,X \ P (x)) −
d(y,X \ P (x))

∣∣ ≤ d(x, y),

|g(t)(x)− g(t)(y)‖pp ≤ D̄−1d(x, y)p
D̄∑
i=1

|ai|p

≤ d(x, y)p .

Case 2: P (x) 6= P (y), then d(x,X \ P (x)) ≤ d(x, y),
hence

‖g(t)(x)− g(t)(y)‖pp ≤ ‖g(t)(x)‖pp + ‖g(t)(y)‖pp

≤ 2D̄−1
∣∣d(x, y)

∣∣p D̄∑
i=1

1p

≤ (2d(x, y))p.

Lemma 9. There exists a universal constant C2 and
partitions P (t) ∈ supp(P̂) for each t ∈ [D̂] such that for
any x, y ∈ X with y ∈ Nk(x) and rk(x)/24 < d(x, y) ≤
rk(x),

‖g(x)− g(y)‖p ≥ C2p · d(x, y)/ log k



Proof. Fix any t ∈ [D̂] and let P = P (t). From the first
property of Definition 4, y /∈ P (x). Since y ∈ Nk(x)
by the proper coloring σ(P (x)) 6= σ(P (y)). Let Ixy =
Ixy(t) ⊆ [D̄] be the subset of at least D̄/8 coordinates
such that for any i ∈ Ixy we have σ(P (x))i 6= σ(P (y))i,
and note that for any two positive numbers a, b we have
that |a · σ(P (x))i − b · σ(P (y))i| = a+ b. By the second
property of Definition 4 with probability 1/s we have
that x is padded, if it holds then d(x,X \ P (x)) ≥
2−11rk(x) · log s/ log k ≥ 2−11p · d(x, y)/ log k. So

‖g(t)(x)− g(t)(y)‖pp
≥ D̄−1(d(x,X \ P (x)) + d(y,X \ P (y)))p

∑
i∈Ixy

1p

≥ |Ixy|/D̄ · d(x,X \ P (x))p

≥ (1/8) · (2−11p · d(x, y)/ log k)p.

Let Zt(x) be an indicator for the event that x is padded
in P (t). Note that this is the only requirement for
getting sufficient contribution in the t-th coordinate.
For any x, y ∈ X with y ∈ Nk(x) and rk(x)/24 <
d(x, y) ≤ rk(x) define a success event Ex,y, as the
existence of a subset T ⊆ [D̂] of size D̂/(2s) such that
for all t ∈ T : Zt(x) holds. Note that if Ex,y holds then

‖g(x)− g(y)‖pp ≥ D̂−1
∑
t∈T
‖g(t)(x)− g(t)(y)‖pp

≥ Ω((1/s) · (p · d(x, y)/ log k)p).

As required, so it remains to show that there exists some
choice of randomness such that all events Ex,y for pairs
such that y ∈ Nk(x) hold simultaneously.

Let Z(x) =
∑
t∈[D̂] Zt(x), then E[Z(x)] ≥ D̂/s. In

order for Ex,y to hold, we need that Z(x) ≥ D̂/(2s).
Using Chernoff bound,

Pr[Z(x) ≤ D̂/(2s)] = Pr[Z(x) ≤ E[Z(x)]/2]

≤ e−D̂/(8s) ≤ 1/(4k2).

Define a dependency graph whose vertices are events
Ex,y, and draw an edge (Ex,y, Ex′,y′) iff x′ ∈ N̄k(x) (note
that this is a symmetric definition). It can be seen that
the out-degree of the graph is at most k2, and the second
property of Definition 4 states that given any outcome
for events which Ex,y is not connected to by an edge
in the dependency graph, the padding probability is
bounded accordingly, hence there is probability at most
1/(4k2) that the event Ex,y does not hold. By the Local
Lemma (see Lemma 17) there is a choice of randomness
for which all good events hold simultaneously.

2.3 The “small” distance embedding In this sec-
tion we prove the properties of the map f that shows

a lower bound for the small distances in Theorem 1. It
is a local version of Bourgain’s embedding method [6],
with Matoušek’s modifications for large p [11]

Let s = ep, t = dlogs ke, q = cs ln k for some
constant c to be determined later, D = t · q, T = {i |
1 ≤ i ≤ t} and Q = {j | 1 ≤ j ≤ q}. Choose random
subsets Aij for every i ∈ T , j ∈ Q, such that each point
is independently included in Aij with probability s−i.
We now define the embedding f : X → `Dp by defining
for each i ∈ T , j ∈ Q a function fi,j : X → R+ by
fi,j(u) = d(u,Aij), and

f(u) = D−1/p
t⊕
i=1

q⊕
j=1

fi,j(u)

Let u, v ∈ X be such that v ∈ B(u, rk(u)/24). For
all i ∈ T let r′si = max{rsi(u), rsi(v)}, let wi ∈ {u, v}
be the point obtaining the maximum and zi ∈ {u, v}
the other point. Let t′ ∈ T be the minimal such that
r′
st′ ≥ d(u, v)/2 and let rsi = min{r′si , d(u, v)/2} for all
i ≤ t′. Set δi = rsi − rsi−1 . Since d(u, v) ≤ rk(u) ≤ r′

st′

it follows that
∑t′

i=1 δi = rst′ = d(u, v)/2.
For any j ∈ Q, and i ≤ t′ let G(u, v, i, j) be the

event that Aij ∩B(wi, rsi) = ∅ and Aij ∩B(zi, rsi−1) 6=
∅. In such a case |fi,j(u) − fi,j(v)| ≥ rsi − rsi−1 =
δi. By standard arguments it can be shown that
Pr[G(u, v, i, j)] ≥ 1/(8s). Let G(u, v) be the event that
for all i ≤ t′ there exists Q′(i) ⊆ Q of cardinality
|Q′(i)| ≥ q/(16s) such that for all j ∈ Q′(i) event
G(u, v, i, j) holds. First we show that if G(u, v) holds
then the distortion of the pair u, v is small, the upper
bound:

‖f(u)− f(v)‖pp ≤ D−1
∑
i∈T

∑
j∈Q

d(u, v)p ≤ d(u, v),

and lower bound:

‖f(u)− f(v)‖pp = D−1
∑
i∈T

∑
j∈Q
|fi,j(u)− fi,j(v)|p

≥ D−1
∑
i≤t′

∑
j∈Q′(i)

|fi,j(u)− fi,j(v)|p

≥ D−1 q

16s

∑
i≤t′

δpi

≥ D−1 q

16s · tp−1

∑
i≤t′

δi

p

≥ (d(u, v)/2)p

16s · tp
.

Hence ‖f(u) − f(v)‖p ≥ Ω(d(u, v)/t) = Ω(p ·
d(u, v)/ log k).



Define a dependency graph on the events where
two events G(u, v), G(u′, v′) are connected by an edge
iff u′ ∈ N̄k(u) (note that this is symmetric relation),
the degree of the graph is at most k2. Notice that
event G(u, v) depends only on the choice of points in
the ball B(u, 2d(u, v)). Assume that events G(u, v) and
G(u′, v′) are not connected by an edge, i.e. u /∈ Nk(u′)
or u′ /∈ Nk(u). Since by the assumption 2d(u, v) ≤
rk(u)/12 and also 2d(u′, v′) ≤ rk(u′)/12 ≤ (d(u, u′) +
rk(u))/12, it follows that if d(u, u′) ≥ rk(u) then
d(u, u′)−2d(u, v)−2d(u′, v′) ≥ 11d(u, u′)/12−rk(u)/6 >
0 (there is a symmetric calculation for the case that
d(u, u′) ≥ rk(u′)), hence the balls B(u, 2d(u, v)) and
B(u′, 2d(u′, v′)) are disjoint.

Let G(u, v, i) =
∑
j G(u, v, i, j), then E[G(u, v, i)] ≥

q/(8s) hence by Chernoff bound

Pr[G(u, v, i) ≤ q/(16s)] ≤ e−q/(64s) ≤ k−4,

for a large enough constant c, so

Pr[¬G(u, v)] = Pr[∃i ≤ t′, G(u, v, i) ≤ q/(16s)]
≤ t · k−4 ≤ k−3.

Now by Lemma 17 there is some positive probability
that all the good events G(u, v) hold simultaneously.

3 Local Dimension Reduction

3.1 Local Dimension Reduction for the Equi-
lateral Metric The “usual suspect” for high dimen-
sionality is the equilateral metric3. Alon [3] shows that
this it is the best known lower bound example for dimen-
sion reduction - an n point equilateral requires dimen-
sion at least Ω(log n/(log(1/ε) · ε2)), for 1 + ε distortion
when embedded into `2. However, this is not the case
for local embedding.

To embed an equilateral metric, first consider the
neighborhood graph G = (X,E), where (u, v) ∈ E iff
v ∈ Nk(u) (note that we allow adversarial choice of
neighbors). By Lemma 6 there exists a proper coloring
ofG with 2k+1 colors, using Lemma 18 withm = 2k+1,
we can embed every color class to a point in `Dp where
D = O((logm)/ε2) and obtain k-local distortion of
1 + ε: For any point u ∈ X, all the points in Nk(x)
have different colors from the color of x, so the distance
between them is maintained up to 1+ε distortion. So for
any ε > 0, any finite equilateral metric embeds into `p
with k-local distortion 1+ε and dimensionO((log k)/ε2).

3.2 Local Dimension Reduction for Ultramet-
rics Even though local dimension reduction is impossi-
ble in general, we show that it is possible for the class

3A metric (X, d) is equilateral if d(u, v) = 1 for all u 6= v ∈ X

of ultrametrics. We first embed the ultrametric to an
HST (Hierarchically Separated Tree) then embed the
HST with k-local distortion 1 into a bounded degree
HST. Finally we extend the general framework of [5] to
bounded degree HSTs: showing that such HSTs can be
embedded, preserving all distances up to 1 + ε, into a
dimension that is logarithmic in the degree of the HST.
Note that the reduction we show can be done in any `p
space, where the JL[10] (non-local) dimension reduction
can be done in `2, is impossible in `1 and unknown for
other p. For simplicity of presentation we show the case
of p = 1. Recall,

• Ultrametric: An ultrametric (X, d) is a met-
ric space satisfying a strong form of the trian-
gle inequality, for all x, y, z ∈ X, d(x, z) ≤
max{d(x, y), d(y, z)}.

• HST: For θ ≥ 1, an θ−eHST is a finite metric space
defined on the branches of a rooted infinite tree,
having a finite number of branches. For branches
x, y denote by lca(x, y) the least common ancestor
of x and y in the tree, i.e. , the deepest node in x∩y,
and by dlca(x, y) its depth. The distance between
branches is defined as d(x, y) = θ−dlca(x,y). Denote
by xi the i-th node in the branch x.

Theorem 2. Let (X, d) be an ultrametric, then for
any p ≥ 1, ε > 0 and k ≤ |X| there is an embedding of
X into `p with k-local distortion 1 + ε and dimension
O((log k)/ε3).

The proof of the theorem is composed of the following
lemmata:

Lemma 10 ([4]). For any θ > 1, any ultrametric
embeds in an θ − eHST with distortion θ.

Lemma 11. For all θ > 1, any θ − eHST T ′ can be
embedded into an θ−eHST T , where every internal node
in the tree representation of T has degree at most 2k2+1,
with k-local distortion 1.

Proof. For an HST T ′ let r(T ′) denote the root of T ′

and c(u) the set of all children of u ∈ T ′. The idea is
to define a neighborhood graph on the children of the
root, and to unite those which are not connected by an
edge in this graph, thus obtaining a small number of
children, then continue recursively. Formally, perform
the following recursive process on T ′ creating T :

1. Let r = r(T ′). Define a neighborhood graph
on c(r) = {v1, . . . , v`} by adding a directed edge
(vi, vj) iff one of the branches x in the subtree
rooted at vi has y ∈ Nk(x) where y is a branch



in the subtree rooted in vj . It can be seen that
only children with at most k branches have out-
going edges, hence the out-degree of this graph is
bounded by k2.

2. Using Lemma 6 properly color the graph with m =
2k2 + 1 colors. For any 1 ≤ i ≤ m let vi1 , . . . , vis
be the children colored by color i, replace them by
a single node ri and set c(ri) =

⋃s
j=1 c(vij ).

3. For each 1 ≤ i ≤ m continue recursively on the
subtree rooted at ri.

Note that the construction of the tree in the deeper
recursion levels is done with respect to the original
set Nk(x), which guarantees that distances between k-
nearest neighbors are preserved.

Lemma 12. Let 0 < ε ≤ 1/2 and θ = eε. Let T be an
θ − eHST with branches H, such that the out-degree of
every node in T is at most m. Then T can be embedded
into `D̄p with distortion 1 + ε where D̄ = O((logm)/ε3).

Proof. Let d = 2/ε (note that θd = e2). Let D =
c(ln k)/ε2 for some constant c to be determined later
and D̄ = D · d. Let (ei)i∈{0,...,d−1} be the standard
orthonormal basis of Rd, and (ei)i∈N its extension to a
periodic sequence modulo d. For each node a ∈ T let
ba ∈ {0, 1} be a random symmetric i.i.d bit. Define for
all t ∈ [D], i > 0 f (t)

i : H → `dp as

f
(t)
i (x) = θ−ibxi

ei ,

and define f (t) : H → `dp as f (t)(x) =
∑∞
i=0 f

(t)
i (x).

Finally define f : H → `D̄p by

f(x) =
D⊕
t=1

f (t)(x) .

Fix some x, y ∈ H and t ∈ [D]. For any j ∈
{0, . . . , d − 1} let Z

(t)
j = |(f (t)(x) − f (t)(y))j |. Let

ij = min{i > dlca(x, y) | i = j mod (d)} and let
Ij = {i ≥ ij | i = j mod d}. Note that since
xi = yi for any i ≤ dlca(x, y), we have that Z(t)

j =

|
∑
i∈Ij

f
(t)
i (x)− f (t)

i (y)|. Then we have the following

(3.1) 0 ≤ Z(t)
j ≤

θ−ij

1− θ−d

Because

Z
(t)
j ≤

∑
i∈Ij

θ−i = θ−ij
∞∑
i=0

θ−id =
θ−ij

1− θ−d

Claim 13. For any j ∈ {0, . . . , d − 1} and t ∈ [D],
E[Z(t)

j ] ≥ 1
8 ·

θ−ij

1−θ−d .

Proof. There is probability of 1/4 that the random bits
bxij

= 1 and byij
= 0. In such a case f (t)

ij
(x)− f (t)

ij
(y) =

θ−ij . Note that

|
∑

i∈Ij\{ij}

f
(t)
i (x)− f (t)

i (y)|

≤ θ−ij−d
∞∑
i=0

θ−di =
θ−ij−d

1− θ−d
,

and since 1− 2θ−d ≥ 1/2 it follows that

|
∑
i∈Ij

f
(t)
i (x)− f (t)

i (y)|

≥
(
f

(t)
ij

(x)− f (t)
ij

(y)
)
−|

∑
i∈Ij\{ij}

f
(t)
i (x)− f (t)

i (y)|

≥ θ−ij
(

1− θ−d

1− θ−d

)
= θ−ij

1− 2θ−d

1− θ−d

≥ 1
2
· θ−ij

1− θ−d
.

Therefore the expectation is at least

E[Z(t)
j ] ≥ 1

8
· θ−ij

1− θ−d
.

Let Z =
∑
t∈[D]

∑d
j=1 Z

(t)
j and µ = E[Z]. By

Claim 13 and by 1− θ−1 ≤ ε we have that

µ ≥ D

8(1− θ−d)

d∑
j=1

θ−ij

=
D · θ−dlca(x,y)−1

8(1− θ−d)

d−1∑
i=0

θ−i

=
D · θ−dlca(x,y)−1

8(1− θ−d)
· 1− θ−d

1− θ−1

≥ D · θ−dlca(x,y)

10ε

Note that µ/d(x, y) is a constant independent of d(x, y),
so we can scale the embedding f by this constant. It
follows that it is enough to prove that there exists a
choice of randomness such that |Z − µ| < εµ. Then the
embedding will have distortion 1+ε from the ε deviation
of Z from its expectation.



Let M = θ−dlca(x,y)

1−θ−d , and note that (3.1) suggests

that 0 ≤ Z
(t)
j ≤ M . Let η = εµ/M ≥ D/16. By

Hoeffding’s inequality (Lemma 16)

Pr[Z − µ ≥ εµ] = Pr[Z − µ ≥ ηM ]

< e−η
2/(2dD)

≤ e−26(ln k)/ε

For a large enough constant c.
Define equivalence relation on unordered pairs of

branches such that {x, y} ∼ {x′, y′} iff xa+d = x′a+d,
ya+d = y′a+d where a = dlca(x, y). Denote by [x, y]
be the equivalence class of ∼ that contains the pair
x, y. Note that for all the pairs in [x, y] the event Z for
each one of them is defined by exactly the same random
variables. Let Y (t)

[x,y] be an indicator variable for the
event that |Z−E[Z]| ≤ εE[Z] for [x, y]. Since the success
of this event depend only on the choice of random bits
for the first d levels of the tree after lca(x, y), it follows
that events Y[x,y] and Y[x′,y′] depend on each other iff
lca(x, y) and lca(x′, y′) are on the same branch in T and
their tree distance is at most d. Since the out-degree of
T is bounded by m = 2k2 + 1, for each u ∈ T there are
at most m2d different equivalence classes. In addition
there are at most md + d other possible nodes u′ ∈ T
at tree distance at most d from u such that both u and
u′ are on the same branch of T . It follows that the
number of dependencies for each event Y (t)

[x,y] is at most
m4d ≤ e12d ln k ≤ e24(ln k)/ε.

We conclude that number of dependencies is smaller
than four times the inverse success probability of events
{|Z − µ| < εµ}, hence according to the Local Lemma
(Lemma 17) there is some positive probability that none
of the bad events {|Z − µ| ≥ εµ} occur.

4 Proof of Lemma 5

Let η = 2−11 log(1/δ)/ log k. Define the partition P of
X into clusters by generating a sequence of clusters:
C1, C2, . . . Cs, for some fixed s ∈ [n]. Notice that
we are generating a distribution over partitions and
therefore the generated clusters are random variables.
First we deterministically assign centers v1, v2, . . . , vs by
the following iterative process: Let W1 = X and j = 1.

1. Let vj ∈Wj be the point maximizing rk(x) over all
x ∈Wj .

2. Let Wj+1 = Wj \B(vj , rk(vj)/256).

3. Set j = j + 1. If Wj 6= ∅ return to 1.

Now the algorithm for the partition is as follows: Let
Z1 = X. For j = 1, 2, 3 . . . s:

• Let Cj = BZj
(vj , r) and Zj+1 = Zj \ Svj

where
r is chosen according to a truncated exponential
distribution with parameter λ = 8(ln k)/∆ where
∆ = rk(vj)/64, i.e.

f(r;λ) =
{

k2

1−k−2λe
−λr r ∈ [∆/4,∆/2]

0 otherwise

Observe that some clusters may be empty, it is not
necessarily the case that vm ∈ Cm, and every cluster
contains at most k points.

Let x ∈ X be in cluster C with center v, then we
have the following

Claim 14. rk(x) ≤ 2rk(v).

Proof. First note that since d(x, v) ≤ rk(v)/128 it fol-
lows that |B(x, rk(v)/64)| < k, hence rk(x) ≥ rk(v)/2.
Now d(x, v) ≤ rk(v)/128 ≤ rk(x)/2, hence

rk(v) ≤ d(v, x) + rk(x) ≤ rk(x)/2 + rk(x) ≤ 2rk(x) .

Now we are ready to show the first property, that
if y ∈ X is such that d(x, y) ≥ rk(x)/24 then y /∈ C:
As rk(x) ≤ rk(v) and C ⊆ B(vj , rk(v)/128) we get that
d(v, y) ≥ d(y, x) − d(x, v) ≥ rk(x)/24 − rk(v)/128 >
rk(v)/64− rk(v)/128 = rk(v)/128 (using Claim 14). It
follows that y /∈ C.

Next we will prove the locality of the second prop-
erty of the partition. For any x ∈ X let Tx =
B(x, rk(x)/32), and note that any center v that can cut
the ball of radius η · rk(x) around x must have v ∈ Tx.
Let v be such a center. Since the choice of radius is
the only randomness in the process of creating P , the
event of padding for x ∈ X is determined by the choice
of radiuses for centers vj ∈ Tx. Let z /∈ N̄k(x) and we
will show that any center that can cut the ball around
z will not be in Tx. There are two possibilities: either
z /∈ Nk(x) and hence d(x, z) ≥ rk(x), or that x /∈ Nk(z),
therefore d(x, z) ≥ rk(x)/2 (assume by contradiction
that it is not so, then B(z, d(x, z)) ⊆ B(x, 2d(x, z)) (
B(x, rk(x)), so x ∈ Nk(z)). Now assume by contradic-
tion that the center v can cut B(z, η · rk(z)), i.e. that
v ∈ Tz as well. By Claim 14 rk(v) ≤ 2rk(x), then
since rk(z) ≤ d(z, v) + rk(v) ≤ rk(z)/4 + 2rk(x) we get
that rk(z) < 3rk(x). Now d(x, z) ≤ d(x, v) + d(z, v) ≤
rk(x)/8 + rk(z)/8 < rk(x)/2, contradiction.

We conclude by proving the bound on the padding
probability. Consider the distribution over the clusters



C1, C2, . . . Cs as defined above. For 1 ≤ m ≤ s, define
the events:

Zm = {∀j, 1 ≤ j < m,B(x, η · rk(x)) ⊆ Zj+1},
Em = {∃j, m ≤ j < s,B(x, η · rk(x)) ./ (Svj , S̄vj )|Zm}

Also let T = Tx and θ =
√
δ. We prove the following

inductive claim: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

k−1).(4.2)

Note that Pr[Es] = 0. Assume the claim holds for m+ 1
and we will prove for m. Define the events:

Fm = {B(x, η · rk(x)) ./ (Svm
, S̄vm

)|Zm},
Gm = {B(x, η · rk(x)) ⊆ S̄vm

|Zm} = {Zm+1|Zm},
Ḡm = {B(x, η · rk(x)) * S̄vm

|Zm} = {Z̄m+1|Zm}.

First we bound Pr[Fm]. Recall that the center vm
of Cm is determined deterministically. The radius rm
is chosen from the interval [rk(vm)/256, rk(vm)/128].
We claim that if B(x, η · rk(x)) ./ (Svm

, S̄vm
) then

vm ∈ T . First observe that η · rk(x) ≤ rk(x)/128,
therefore d(vm, x) ≤ (rk(vm) + rk(x))/128. Note that
rk(vm) ≤ d(vm, x) + rk(x) ≤ (rk(vm) + rk(x))/128 +
rk(x), hence rk(vm) ≤ 2rk(x), which imply that
d(vm, x) ≤ (rk(vm) + rk(x))/128 ≤ rk(x)/32. There-
fore if vm /∈ T then Pr[Fm] = 0. Otherwise, using the
maximality of rk(vm) we get that η ·rk(x) ≤ η ·rk(vm) =
1
16 ln(1/θ)/ ln k ·∆, then by Lemma 15

Pr[Fm](4.3)
= Pr[B(x, η · rk(x)) ./ (Svm

, S̄vm
)|Zm]

≤ (1− θ)(Pr[B(x, η · rk(x)) * S̄vm
|Zm] + θk−1)

= (1− θ)(Pr[Ḡm] + θk−1).

Using the induction hypothesis we prove the inductive
claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]
≤ (1− θ)(Pr[Ḡm] + θ1{vm∈T}k

−1) +

Pr[Gm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T

k−1)

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

k−1),

The second inequality follows from (4.3) and the induc-
tion hypothesis. Note that for any x ∈ X, |Tx| ≤ k
we get that

∑
j≥1,vj∈Tx

k−1 ≤ 1. We conclude from the
claim (4.2) for m = 1 that:

Pr[B(x, η · rk(x)) * P (x)] ≤ Pr[E1] ≤

(1− θ)(1 + θ ·
∑

j≥1,vj∈T

k−1) ≤ (1− θ)(1 + θ) = δ.

The following was shown in [1]

Lemma 15 (Probabilistic Decomposition). Let (X, d)
be a metric space and Z ⊆ X. let χ ≥ 2 be a parameter.
Given 0 < ∆ < diam(Z) and a center point v ∈ Z, there
exists a probability distribution over partitions (S, S̄)
of Z such that S = BZ(v, r), and r is chosen from
a probability distribution in the interval [∆/4,∆/2],
such that for any θ ∈ (0, 1) satisfying θ ≥ χ−1, let
η = 1

16 ln(1/θ)/ lnχ then for any x ∈ Z, the following
holds:

Pr[BZ(x, η∆) ./ (S, S̄)] ≤
(1− θ)

[
Pr[BZ(x, η∆) * S̄] + 2χ−2

]
.

5 Some Basic Tools

Lemma 16 (Hoeffding). Let Zi be independent random
variables for i = 1, . . . , d, let E[Zi] = µi and 0 ≤ Zi ≤
M . Let Z =

∑d
i=1 Zi and µ =

∑d
i=1 µi. Then for η > 0

Pr[|Z − µ| ≥ ηM ] < e−η
2/2d.

Lemma 17 (Local Lemma). Let A1,A2, . . .An be
events in some probability space. Let G(V,E) be a graph
on n vertices with degree at most d, each vertex corre-
sponding to an event. Assume that for any i = 1, . . . , n

Pr

Ai | ∧
j∈Q
¬Aj

 ≤ p
for all Q ⊆ {j : (Ai,Aj) /∈ E}. If ep(d+ 1) ≤ 1, then

Pr

[
n∧
i=1

¬Ai

]
> 0

Lemma 18 ([10]). For any ε > 0 and integer m > 1,
there exist x1, . . . xm ∈ `Dp where D = O((logm)/ε2),
such that for any 1 ≤ i < j ≤ m:

1− ε/3 ≤ ‖xi − xj‖p ≤ 1 + ε/3 .
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