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Fig. S1: Homeomorphic Subtree Alignment. Dashed lines represent the alignment (a) An HSA A =
{(a, a′), (b, b′), . . . , (g, g′)} between two trees T and S. The set of pruned subtrees (in green fillings) with

respect to A is π(A) =
{
T a
h , T

k
l , S

c′

i′

}
. The set of smoothed nodes (in red and waved) with respect to A is

δ(A) = {k, h′}. (b) The subtrees T ′ and S′ of T and S, respectively, obtained after pruning the subtrees
in π(A). (c) The smoothings T ′′ and S′′ of T ′ and S′, respectively, obtained after smoothing the nodes in
δ(A). It may be asserted that A is an isomorphic alignment between T ′′ and S′′.
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Fig. S2: An illustration of a rooted alignment A between T v and Sv′ . (a) Each subtree of the form T v
u (Sv′

u′)

is either pruned by the alignment, or matched to exactly one subtree of the form Sv′

u′ (T v
u ). In this example,

T v
s is matched to Sv′

z′ (in red), T v
t is matched to Sv′

y′ (in blue), and T v
x is matched to Sv′

t′ (in green). These
three subtree-matchings induce three sub-alignments of A: Av

s , Av
t , and Av

x, respectively, where A is the
union of these three sub-alignments and the pair (v, v′). The pruned subtrees in this example are T v

y , T v
z ,

and Sv′

x′ . (b) The corresponding bipartite matching Mv,v′ = {(s, z′), (t, y′), (x, t′)} between N(v) and N(v′).
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Fig. S3: An illustration of the computation of Equation 6. (a) The instance
(
T v
u , S

v′

u′

)
in the left-hand side

of the equation. (b) The computation of term I in the right-hand side of the equation. The term considers
the best alignment score under the assumption that u is smoothed. In this case, the score is obtained by
taking the smoothing cost of u, and summing it for some x ∈ N(u) \ {v} with the alignment score between

Tu
x and Sv′

u′ and the pruning cost of all subtrees Tu
y for y ∈ N(u)\{v, x}. x is chosen to be the neighbor of u

that induces a minimum cost with respect to this computation. The computation of term II is symmetric.
(c) The computation of term III in the right-hand side of the equation. This term considers the case were
neither u nor u′ are smoothed, and therefore these two nodes are aligned to each other. In this case, the
score is computed similarly to the computation in Equation 4, with respect to the sets N(u) \ {v} and
N(u′) \ {v′}.
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Fig. S4: An illustration of Observation 1. (a) A node u in a tree T , such that N(u) = {v1, v2, v3}, and
|T v1

u | ≤ |T v2
u | ≤ |T v3

u |. The subtree T v1
u (bounded by a solid red line) contains Tu

v2 and Tu
v3 as subtrees

(bounded by dashed and dotted blue lines, respectively), and therefore |Tu
v2 |, |T

u
v3 | ≤ |T

v1
u | ≤ |T v2

u |. (b) The
subtree T v2

u (bounded by a solid red line) contains Tu
v1 as a subtree (bounded by a dashed blue line), and

therefore |Tu
v1 |, |T

u
v2 |, |T

u
v3 | ≤ |T

v2
u |. (c) The DP matrix H. The rows of the matrix correspond to subtrees

of T , sorted from top to bottom with increasing tree size. Rows corresponding to subtrees of the form T vi
u

are in solid red, and rows corresponding to subtrees of the form Tu
vi are in waved-blue. All waved-blue rows

have smaller indices than the row corresponding to T v2
u (circled with a dashed green line).
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Fig. S5: The incorporation of cavity matching subroutines in the DP algorithm. In (a), (c), and (e), the
DP matrix H is illustrated, where the solid red entries correspond to entries in a sub-matrix Hu,u′ for
some u ∈ T and u′ ∈ S. In this example, N(u) = v1, v2, v3, and N(u′) = v′1, v

′
2, v
′
3, v
′
4, where |T v1

u | ≤
|T v2

u | ≤ |T v3
u |, and |Sv′1

u′ | ≤ |S
v′2
u′ | ≤ |S

v′3
u′ | ≤ |S

v′4
u′ |. The solid blue entries correspond to computed values of

the form Rooted-HSA-r(Tu
vi , S

u′

v′j
), which are required for the computation of term III in Equation 6 for

entries in Hu,u′ . The waived entries correspond to computed values of the form Rooted-HSA-r(Tu
vi , S

v′j
u′ )

and Rooted-HSA-r(T vi
u , Su′

v′j
), which are required for the computation of terms I and II in Equation 6

for entries in Hu,u′ . (a) The computation of Rooted-HSA-r(T v1
u , S

v′1
u′ ) according to Equation 6. The entry

corresponding to this sub-instance is marked with a solid black circle. In order to compute term I of the

equation, there is a need to examine values of the form Rooted-HSA-r(Tu
vj , S

v′1
u′ ) for vj ∈ N(u) \ {v1}. As

each Tu
vj is a subtree of T v1

u , the rows corresponding to these subtrees have smaller indices than the row
of T v1

u , and so the required solutions are already computed and stored in H (waved entries marked with a
dashed green circle, in the same column above the computed entry). Similarly, for computing term II, there

is a need to examine solutions Rooted-HSA-r(T v1
u , Su′

v′j
) for v′j ∈ N(u′) \ {v′1}, appearing at the same row

and to the left of the computed entry. For computing term III, there is a need to construct the matching

cost function w
v1,v

′
1

u,u′ , which assigns for each vj ∈ N(u) \ {v1} and v′j′ ∈ N(u′) \ {v′1} the matching cost

w
v1,v

′
1

u,u′ (vj , v
′
j′) = Rooted-HSA-r(Tu

vj , S
u′

v′
j′

) (the corresponding matching instance is shown in (b)). These

required values appear in blue entries marked by a dashed black circle. Due to the order in which entries
are being traversed, all required values were previously computed by the algorithm and stored in H, thus

it is possible to compute Rooted-HSA-r(T v1
u , S

v′1
u′ ) at this stage. (c) Upon reaching the entry corresponding

to T v1
u and S

v′2
u′ , all values of the form Rooted-HSA-r(Tu

vj , S
u′

v′
j′

) for vj ∈ N(u) \ {v1} and v′j′ ∈ N(u′)

are computed (see (d)). This allows to compute all values MCM (N(u) \ {v1}, N(u′) \ {v′j}, w
v1,v

′
j

u,u′ ), by

solving the All-Cavity-MCM problem over the instance (N(u) \ {v1}, N(u′), wv1
u,u′), and thus computing

term III with respect to all remaining entries in the first row of Hu,u′ . (e) Upon reaching the entry

corresponding to T v2
u and S

v′2
u′ , all values of the form Rooted-HSA-r(Tu

vj , S
u′

v′
j′

) for vj ∈ N(u) and v′j′ ∈ N(u′)

are computed (see (f)). This allows to compute all values MCM (N(u)\{vj}, N(u′)\{v′j′}, w
vj ,v

′
j′

u,u′ ), by solving

the All-Pairs-Cavity-MCM problem over the instance (N(u), N(u′), wu,u′), and thus computing term III
with respect to all remaining entries in Hu,u′ .
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S2 Omitted proofs

Before proving Lemma 1, we formulate an auxiliary observation.

Observation 1 Let A be an HSA between trees T and S, and (v, v′), (x, x′), (y, y′) ∈ A. The path
between x and y in T goes through v if and only if the path between x′ and y′ in S goes through v′.

The correction of the observation can be asserted from the fact that A is an isomorphic alignment
between a smoothed subtree of T that contains v, x, and y, and a smoothed subtree of S that contains
v′, x′, and y′. The full details of the proof are excluded.

Lemma 1. Let (v, v′) ∈ A, and let u be a relevant neighbor of v. Then, there is a unique relevant
neighbor u′ of v′ such that for every (y, y′) ∈ A, y ∈ T v

u ⇔ y′ ∈ Sv′

u′ .

Proof. Since u is a relevant neighbor of v, there is a node x ∈ T v
u , such that x 6= v and x is aligned

by A. Let x′ = A(x), and let u′ be the relevant neighbor of v′ such that x′ ∈ Sv′

u′ . For (y, y′) ∈ A,
observe that y /∈ T v

u if and only if the path between x and y in T passes through v. Similarly,
y′ /∈ Sv′

u′ if and only if the path between x′ and y′ in S passes through v′. Applying Observation 1,

this implies that y ∈ T v
u ⇔ y′ ∈ Sv′

u′ . ut

Proof of Equation 6. By definition of the Rooted-HSA-r
(
T v
u , S

v′

u′

)
score, it corresponds to the

score of the best non-trivial alignment between T v
u and Sv′

u′ , minus the root alignment cost term

align(v, v′). We may divide the set of all possible non-trivial rooted alignments between T v
u and Sv′

u′

into three sets: (a) alignments in which u is unmatched, (b) alignments in which u′ is unmatched,
and (c) alignments in which both u and u′ are matched (note that there might be an intersection
between groups (a) and (b)). We show that each one of the terms I, II, and III in the right-hand
side of Equation 6 computes the minimum cost of an alignment in each one of the groups (a), (b),
and (c), respectively, and therefore the minimum among all these terms gives the correct value

Rooted-HSA-r
(
T v
u , S

v′

u′

)
.

We start by showing term I computes the minimum cost of an alignment in group (a). Let A be
an alignment in group (a) of minimum cost. Since A is non-trivial, and u is smoothed in A, u has
exactly one additional relevant neighbor x∗ besides v. It therefore follows that all nodes in T v

u except
for v which are matched by A belong to the subtree Tu

x∗ . Defining Au
x∗ = (A \ {(v, v′)}) ∪ {(u, v′)},

we have that Au
x∗ is a non-trivial rooted HSA between Tu

x∗ and Sv′

u′ . Therefore, the cost of A is
obtained by the summation of pruning costs of all subtrees Tu

y for y ∈ N(u) \ {v, x∗}, the cost

of smoothing u, and the cost w-r
(
Tu
x∗ , S

v′

u′ , A
u
x∗

)
(which counts for all cost terms corresponding

to node matchings, node smoothings, and subtree prunings, implied by the sub-alignment Au
x∗).

Since A is optimal, it is clear that w-r
(
Tu
x∗ , S

v′

u′ , A
u
x∗

)
= Rooted-HSA-r

(
Tu
x∗ , S

v′

u′

)
(otherwise, it is

possible to improve the cost of A by replacing the sub-alignment Au
x∗ with an optimal alignment for

the corresponding sub-instance). Thus, w-r
(
T v
u , S

v′

u′ , A
)

= smooth(u) + Rooted-HSA-r
(
Tu
x∗ , S

v′

u′

)
+∑

y∈N(u)\{v,x∗}

prune(Tu
y ). Since for every x ∈ N(u)\{v} the term smooth(u) + Rooted-HSA-r

(
Tu
x , S

v′

u′

)
+∑

y∈N(u)\{v,x}

prune(Tu
y ) is the w-r cost of a possible non-trivial alignment between T v

u and Sv′

u′ in which

u is smoothed (where the subtree Tu
x is optimally aligned to Sv′

u′), we get that x∗ satisfies that
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smooth(u) +
∑

y∈N(u)\{v,x∗}

prune(Tu
y ) + Rooted-HSA-r

(
Tu
x∗ , S

v′

u′

)
=

smooth(u) + min
x∈N(u)\{v}

( ∑
y∈N(u)\{v,x}

prune(Tu
y ) + Rooted-HSA-r

(
Tu
x , S

v′

u′

))
,

hence the correctness of term I.

The proof that term II of the equation computes the minimum cost of an alignment in group (b)
is symmetric to the proof of term I. As for term III, note that the case where u and u′ are matched,
but not to each other, implies a contradiction to Observation 1. Therefore, for any alignment in
group (c), and in particular for such an alignment A of minimum cost, we have that (u, u′) ∈ A.
In this case, the optimal alignment cost is obtained immediately from applying Equation 4 for this
specific sub-instance, as formulated by term III in the equation. ut

Lemma 2. It is possible to implement Algorithm 1 so that all operations, besides computation of
solutions to the MCM problem, require O(nTnS) running time.

Proof. It is simple to observe that the computations conducted in lines 1 and 4 of the algorithm
consume O(nTnS) time (the computation of all subtree sizes and their sorting can be implemented
in a linear time in a straightforward manner, where the details are omitted from this text). As
computations of Equation 4 in line 3 and of term III of Equation 6 in line 2 are dominated by
MCM computations, it is left to show that it is possible to compute terms I and II of Equation 6
in line 2 of the algorithm in O(nTnS) along the entire run of the algorithm.

Consider a pair of nodes u ∈ T and u′ ∈ S, and the corresponding sub-matrix Hu,u′ (see
Section 3.1 for definition of Hu,u′). It is simple to observe that an explicit computation of term

I of the equation with respect to some subtrees T v
u and Sv′

u′ can be conducted in O(du) time.
Nevertheless, we next show how to conduct this computation in O(1) amortized time. Fix an

index 1 ≤ j ≤ du′ . Let x∗ = argminx∈N(u)

(
Rooted-HSA-r

(
Tu
x , S

v′j
u′

)
− prune(Tu

x )
)

, and denote

α = Rooted-HSA-r
(
Tu
x∗ , S

v′j
u′

)
− prune(Tu

x∗). As N(u) \ {v} ⊂ N(u) for every v ∈ N(u), it is

clear that for v 6= x∗, min
x∈N(u)\{v}

(
Rooted-HSA-r

(
Tu
x , S

v′j
u′

)
− prune(Tu

x )
)

= α. Similarly, denote

β =
∑

x∈N(u)

prune(Tu
x ), and observe that

∑
x∈N(u)\{v}

prune(Tu
x ) = β − prune(Tu

v ) for every v ∈ N(u).

Thus, for v 6= x∗, term I of Equation 6 can be written as smooth(u)+β−prune(Tu
v )+α, and given

the values α and β, be computed in O(1) time. Due to Observation 1, when the algorithm is about
to compute the entry in the second row and j-th column of Hu,u′ (i.e. the entry corresponding

to T v2
u and S

v′j
u′ ), all required values for computing x∗, α, and β, are already stored in H, and

therefore these values may be computed in O(du) time. Once computing these values, it is possible
to compute term I for each of the reminding rows i > 1 in column j of Hu,u′ , except for row i
such that vi = x∗, in O(1) time each. Additional O(du) operations are required for computing the
term for row 1 and the row i such that vi = x∗, and therefore the total number of operations for
computing the term for all du entries in column j of Hu,u′ is O(du) time. This implies that the
amortized time for computing term I for each entry in Hu,u′ is O(1), and therefore the amortized
time for computing term I for each entry in H is O(1). The proof for term II is symmetric. All
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in all, we get that the running time for all operations conducted by the algorithm, besides MCM
computations, is O(nTnS). ut

S3 Running time analysis of Algorithm 1

From Lemma 2, all operations in the algorithm besides MCM computations require O(nTnS) time.
It thus remains to count the number of operations applied in MCM computations. Such computa-
tions are applied when computing term III of Equation 6, or when computing Equation 4. Using the
algorithm described in Section S4.1, each MCM instance can be solved in O(nmmin(n,m)), where
n and m are the sizes of the two groups in the instance. Term III of Equation 6 is computed once
for every entry in H in line 2 of the algorithm, where the group sizes of the corresponding matching
instances are at most dT−1 and dS−1. Thus, the total time for computing term III for all O(nTnS)
entries inH isO(nTnSdT dS min(dT , dS)). A tighter analysis, similar to that preformed in Section 3.1
(i.e. counting differently the cases in which min(du, du′) ≤ 2 and the cases in which du > 2 and
du′ > 2), can show that this computation is actually conducted in O(LTLSdT dS min(dT , dS)) time.
Equation 4 is computed once for each v ∈ T and v′ ∈ S in line 3, where the corresponding matching
instance’s group sizes are dv and dv′ . Summing the total number of operations in the implied MCM

computations, we get
∑
v∈T

∑
v′∈S

dvdv′ min(dv, dv′) ≤ min(dT , dS)
∑
v∈T

dv
∑
v′∈S

dv′ = min(dT , dS)nTnS .

Therefore, the overall running time of the algorithm is dictated by the the bottleneck expression
O(nTnS + LTLSdT dS min(dT , dS)).

S4 Algorithms for bipartite matching problems

In this section we show efficient algorithms for the MCM , All-Cavity-MCM , and All-Pairs-Cavity-MCM
problems defined in Section 2.3. The well known approach for solving MCM is to reduce the prob-
lem to the Min-Cost Max-Flow problem. The first efficient implementation of this reduction was
described by Edmonds and Karp in [1], where in [2] Zhang showed a modified reduction, which
takes into account also unmatched element penalties. Here, we further refine the reduction in order
to improve the running time of the algorithm. For two groups of sizes n and m, where n ≤ m,
our modification reduces the O(nm2 + m2 logm) running time of the algorithm of [2] to O(n2m).
Similarly to Kao et al. [3], we show that solutions for instances of the form (X,Y \ {y}, w) cor-
respond to certain shortest paths in the residual flow network obtained when solving the instance
(X,Y,w). In addition, we show such correlations also with respect to solutions for instances of the
form (X \ {x}, Y \ {y}, w).

Since the problems and techniques mentioned above are well known to computer scientists, we
confine ourselves to discuss the main modifications and to elaborate on certain essential points,
while only briefly explaining the rest. For a definition of the Min-Cost Max-Flow problem, related
theorems, and a thorough discussion of its properties, please refer to other works, e.g. [1, 4, 5].

S4.1 Reducing MCM to Min-Cost Max-Flow

Let (X,Y,w) be a matching instance, and denote n = min(|X|, |Y |),m = max(|X|, |Y |). We describe
the reduction for the case where |X| = n, where the construction in the case where |Y | = n is
symmetric.

8



The reduction builds the flow network N = (G, s, t, c, w′), where G is the network’s graph, s and
t are the source and sink nodes respectively, and c and w′ are the edge capacity and cost functions
respectively. The graph G = (V,E) is defined as follows (Figure S6a):

– V = X ∪ Y ∪ {s, t, φ}, where s, t, and φ are unique nodes different from all nodes in X and Y .
Note that we use the same notations for elements in X and Y and their corresponding nodes
in V , where ambiguity can be resolved by the context.

– E = E1 ∪E2, where E1 = {(x, y) : x ∈ X, y ∈ Y }, and E2 = {(s, x) : x ∈ X}∪{(y, t) : y ∈ Y }∪
{(x, φ) : x ∈ X} ∪ {(φ, t)}.

The capacity function c assigns unit capacities to all edges in E, with the exception that c(φ, t) = n.
The cost function w′ assigns to edges (x, y) ∈ E1 the costs w(x, y)−w(x)−w(y), and zero costs to
all edges in E2.

y1

y2

y3

y4
x3

x2

x1

y5

φ

s t

YX

(a)

y1

y2

y3

y4
x3

x2

x1

y5

φ

s t

YX

(b)

y1

y2

y3

y4
x3

x2

x1

y5

φ

s t

YX

(c)

Fig. S6: The reduction from MCM to Min-Cost Max-Flow. (a) The graph G constructed in the case where
|X| = 3 and |Y | = 5. All edge capacities are 1, except for the edge (φ, t) whose capacity is c(φ, t) = |X| = 3.
The cost function w′ assigns to edges of the form (xi, yj) the costs w′(xi, yj) = w(xi, yj)− w(xi)− w(yj),
and zero costs to all other edges. (b) The residual network after finding a minimum cost maximum flow
f∗ in the network. Edges over which there is a flow (depicted as thickened edges) reverse their direction
(the edge (φ, t) is not saturated, and therefore both (φ, t) and (t, φ) belong to the graph). In this example,
the flow implies the minimum cost matching Mf∗ = {(x1, y1), (x3, y4)}, where the elements x2, y2, y3, and
y5 are unmatched. (c) A minimum cost path from y2 to x1 in the residual network. The path, depicted in
dashed and dotted red, is P = y2 → t → φ → x2 → y1 → x1. The corresponding return path P ′ from
t to s is obtained by removing from p the first edge y2 → t (in dotted red), and adding at the end the
edge x1 → s (in dotted green). The flow f ′ obtained by returning one flow unit from t to s along P ′ is an
optimal flow in the network N ′ obtained by removing y2 and x1 from the graph (see proof of Lemma 2).
The corresponding matching for this flow is Mf ′ = {(x2, y1), (x3, y4)}.

Call a minimum-cost maximum-flow in N an optimal flow with respect to N . Proposition 1
shows the relation between optimal flows in f and optimal matchings of (X,Y,w).

Proposition 1. Let (X,Y,w) be a matching instance, N the corresponding network, and f∗ an op-

timal flow in N . Then, MCM(X,Y,w) = w′(f∗)+
∑

a∈X∪Y
w(a), and f∗ defines an optimal matching

as containing all pairs (x, y) such that f∗(x, y) = 1.

Proof. Let M∗ be an optimal matching of (X,Y,w). We show that w(M∗) = w′(f∗) +
∑

a∈X∪Y
w(a).
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Define the flow fM∗ in N as the flow which is obtained by transmitting one flow unit on every
path of the form s → x → y → t for all (x, y) ∈ M , and one flow unit on every path of the form
s→ x→ φ→ t for all x ∈ X such that x /∈M . It is straightforward to observe that fM∗ is a valid
flow in N (satisfying the capacity and flow conservation constraints) of maximum size (saturating
the cut ({s} , V \ {s})), and that the cost of fM∗ is given by

w′(fM∗) =
∑

(x,y)∈M∗
(w(x, y)− w(x)− w(y))

=
∑

(x,y)∈M∗
(w(x, y)− w(x)− w(y)) +

∑
a∈X∪Y

a/∈M∗

w(a)−
∑

a∈X∪Y

a/∈M∗

w(a)

= w(M∗)−
∑

a∈X∪Y
w(a) = MCM (X,Y,w)−

∑
a∈X∪Y

w(a).

Thus, w′(f∗) +
∑

a∈X∪Y
w(a) ≤ w′(fM∗) +

∑
a∈X∪Y

w(a) = MCM (X,Y,w).

On the other hand, define the matching Mf∗ of (X,Y,w) which contains all pairs (x, y) ∈ X×Y
such that f∗(x, y) = 1 (the validity of Mf∗ can be easily asserted, see Figure S6b), and similarly

observe that w′(f∗) +
∑

a∈X∪Y
w(a) = w(Mf∗) ≥ MCM (X,Y,w). Thus, MCM (X,Y,w) = w′(f∗) +∑

a∈X∪Y
w(a), while Mf∗ is an optimal matching for (X,Y,w). ut

Time complexity. Given a matching instance (X,Y,w), the flow network N can be constructed
in O(nm) running time, by the reduction. An optimal flow in N can be found with the algorithm of
Edmonds and Karp [1,6]. Essentially, this is an iterative algorithm that maintains a valid flow f in
N . The algorithm computes in each iteration a minimum cost path from s to t in the current residual
network Nf in O(|E| + |V | log |V |) = O(nm + m logm) time, using the algorithm of [6]. Negative
edge costs, which are not allowed in the minimum cost path algorithm of [6], are handled by using a
node labeling function as explained in [1], where initial labels for each v ∈ V can be computed as the
minimum cost of a path from s to v in G. Since G is acyclic, these costs can be computed in time
O(|V |+ |E|) = O(nm). The labeling function can be maintained without increasing the time bound
of iterations [1]. Once a minimum cost path from s to t in Nf is computed, the algorithm updates
the flow by transmitting one flow unit along this path. Since each iteration increases the flow size
by one and the maximum flow size is n, the time of the complete algorithm is O(n2m+ nm logm).

A more involved implementation eliminates the nm logm term from the running time bound.
This is obtained by first selecting for each x ∈ X a subset Yx ⊆ Y of n smallest cost matches for x

in Y (with respect to the w′ matching costs), setting Y ′ =
⋃
x∈X

Yx, and solving the MCM problem

with respect to the sets X and Y ′. It can be shown that there exists an optimal matching between
X and Y such that all matched elements in Y are from the subset Y ′ (since if in some optimal
matching there is an element x ∈ X which is matched to an element y ∈ Y \ Y ′, then there is
an unmatched element y′ ∈ Yx, and replacing the matching of x from y to y′ does not increase
the matching cost). Therefore, an optimal matching between X and Y ′ is an optimal matching
between X and Y . The computation of each subset Yx can be done naively in O(nm) time (or
O(m) time using the algorithm of [7]), and thus Y ′ can be computed in O(n2m) time (or O(nm)
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time, using [7]). For m′ = |Y ′| ≤ n2, solving the MCM with respect to the sets X and Y ′ takes
O(n2m′ + nm′ logm′) = O(n2m′) time (since logm′ ≤ log n2 = o(n)), and thus the total running
time of the algorithm is O(n2m+ n2m′) = O(n2m).

S4.2 Efficient algorithms for All-Cavity-MCM and All-Pairs-Cavity-MCM

We now present Algorithms 1 and 2, which solve All-Cavity-MCM and All-Pairs-Cavity-MCM ,
respectively. In what follows, given a network N and a flow f in it, we denote by dr,q the minimum
cost of a path from r to q in the residual network Nf .

Algorithm 1: All-Cavity-MCM (X,Y,w)

1 Construct the network N that corresponds to (X,Y,w), and compute an optimal flow f in N ;

2 Set MCM (X,Y,w) = w(f) +
∑

a∈X∪Y

w(a);

3 Compute for every y ∈ Y the values dy,t;
4 For every y ∈ Y , report MCM (X,Y \ {y} , w) = MCM (X,Y,w)− w(y) + dy,t;

Algorithm 2: All-Pairs-Cavity-MCM (X,Y,w)

1 Construct the network N that corresponds to (X,Y,w), and compute an optimal flow f in N ;

2 Set MCM (X,Y,w) = w(f) +
∑

a∈X∪Y

w(a);

3 Compute for every x ∈ X and every y ∈ Y the values dy,x;
4 For every x ∈ X and every y ∈ Y , report

MCM (X \ {x} , Y \ {y} , w) = MCM (X,Y,w)− w(x)− w(y) + dy,x;

Correctness of these algorithms is implied by the following analysis. We will use the following
auxiliary lemma:

Lemma 1. Let G = (V,E) be a directed graph with a cost function w over its edges and no negative
cost cycles. Let P be a minimum cost path from a node r to a node q in G. Let G′ = (V,E′) be
the graph obtained from G by replacing every edge (u, v) ∈ P with the reversed edge (v, u) (if not
already in G), whose cost is defined to be w(v, u) = −w(u, v). Then, G′ contains no negative cost
cycles.

Proof. Following [1], we call a flow extreme if it is of minimum cost among all flows of the same size.
By [1], a flow is extreme if and only if the corresponding residual network contains no negative cost
cycle. In addition, a flow obtained by increasing an extreme flow along a minimum cost augmentation
path from the source to the sink of the network, is also extreme.

Let N be the flow network defined by the graph G, the source node r, the sink node q, the cost
function w, and the capacity function c which assigns unit capacities to all edges in G. Since there
is no negative cost cycle in N , the zero flow is extreme with respect to zero-size flows. Let f be
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the unit flow along P in N , and note that the residual graph of Nf is identical to G′ by definition.
Since P is a minimum cost path from r to q in N , f is extreme with respect to all flows of size 1.
Thus, Nf contains no negative cost cycle.

Now, we show the relation between MCM solutions for instances (X,Y,w) and solutions for
sub-instances of the forms (X \ {x}, Y, w), (X,Y \ {y}, w), and (X \ {x}, Y \ {y}, w). Let N be the
network corresponding to a matching instance (X,Y,w). Let f be an optimal flow in N , and Nf

be the residual network of N with respect to f (Figure S6b). Since f is a maximum flow in N it
saturates the minimum cut ({s}, V \{s}), that is for every x ∈ X, f(s, x) = 1. Therefore, from flow
conservation considerations, for every x ∈ X there exists a single z ∈ Y ∪{φ} such that f(x, z) = 1,
and f(z, t) ≥ 1. This implies that in the residual network Nf the only edge into x is the residual
edge (z, x). For elements y ∈ Y , either there exist some x ∈ X such that f(x, y) = 1 (and then
f(y, t) = 1), or the flow through y is 0. In the former case, the only edge out from y in Nf is (y, x),
while in the latter case the only edge out from y in is (y, t).

Lemma 2. 1. For every x ∈ X, MCM(X \ {x}, Y, w) = MCM(X,Y,w)− w(x) + dt,x.
2. For every y ∈ Y, MCM(X,Y \ {y}, w) = MCM(X,Y,w)− w(y) + dy,t.
3. For every x ∈ X, y ∈ Y, MCM(X \ {x}, Y \ {y}, w) = MCM(X,Y,w)− w(x)− w(y) + dy,x.

Proof. We start by showing item 3 of the lemma. Let N ′ be the network that corresponds to the
instance (X \ {x}, Y \ {y}, w). In order to prove item 3, we construct a flow f ′ in N ′ such that
w(f ′) = w(f) + dy,x, and prove that f ′ is optimal with respect to N ′.

First, we show that there is a path from y to x in Nf . Let z ∈ Y ∪ {φ} be the node such that
f(x, z) = 1. If z = y then the residual edge (y, x) exists in Nf , composing the path y → x. Else,
if there is some x′ ∈ X such that f(x′, y) = 1, then the path y → x′ → z → x belongs to Nf .
Otherwise, Nf contains the path y → t→ z → x.

Let P be a minimum cost path from y to x in Nf . Define the graph N̂f which is obtained from
Nf by reversing all edges along P . Since Nf contains no negative cost cycle (due to the optimality

of f), Lemma 1 indicates that N̂f contains no negative cost cycle. In addition, there is no edge into

x and no edge out of y in N̂f (since the only edges of these forms were reversed).
Define the flow f ′ which is obtained from f by returning one flow unit from t to s along the path

P ′ as follows: if P starts with (y, t), then P ′ is obtained by removing (y, t) from P and concatenating
(x, s) at its end (see Figure S6c). Else, P ′ is obtained by concatenating (t, y), P , and (x, s). Observe
that f ′ is a valid flow in N ′ (since f ′ passes no flow units through x and y), the cost of f ′ is
w(f ′) = w(f) + dy,x, and its size is |f ′| = |f | − 1 = n− 1 (which is the maximum flow size in N ′).

Also, observe that N ′f
′

is a sub-graph of N̂f , and therefore it contains no negative cycles. Thus, f ′

is an optimal flow in N ′ of cost w(f) + dy,x.
Hence, we get that

MCM (X \ {x}, Y \ {y}, w) = w′(f ′) +
∑

a∈(X\{x})∪(Y \{y})

w(a)

= w′(f) + dy,x − w(x)− w(y) +
∑

a∈X∪Y
w(a)

= MCM (X,Y,w)− w(x)− w(y) + dy,x.

The proof for the other two items is similar, with the following minor differences. For item 1, P
is defined to be the minimum cost path from t to x in Nf , and P ′ is the concatenation of P with
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(x, s). For item 2, P is defined to be the minimum cost path from y to t in Nf . If this path is (y, t),
then P ′ is empty, and otherwise P ′ is the cycle obtained by concatenating (t, y) to P (in this case
the size of f ′ remains the same as that of f).

Based on Lemma 2, Algorithms 1 and 2 solve All-Cavity-MCM and All-Pairs-Cavity-MCM ,
respectively.

Efficient implementation and time complexity analysis. Recall that n = min(|X|, |Y |)
and m = max(|X|, |Y |). Lines 1 and 2 of both Algorithms 1 and 2 can be implemented in
O(n2m) running time, as explained in Section S4.1. Line 4 takes in Algorithm 1 O(m) time, and
in Algorithm 2 O(nm). Single source shortest paths in the residual graph can be computed in
O(|E| + |V | log |V |) = O(nm + m logm) using Dijkstra’s algorithm [6]. This algorithm can be
applied in line 3 of Algorithm 1 to compute minimum cost paths from all nodes into t, and in
Algorithm 2 it can be applied n times either to compute minimum cost paths from all nodes into
each x ∈ X (in the case where n = |X|), or to compute minimum cost paths into all nodes from
each y ∈ Y (in the case where n = |Y |). In order to eliminate the m logm term from the running
time bound of the shortest paths algorithm, we next consider two cases: the case where |Y | = m,
and the case where |X| = m.

In the case where |Y | = m, the graph constructed by the reduction corresponds to the sets X
and Y ′ ⊆ Y , where |Y ′| = m′ ≤ n2, as explained in the time complexity analysis in Section S4.1.
We call this graph the reduced graph, as opposed to the full graph which contains all nodes in Y .
Note that the terms dy,t or dy,x in line 3 of both algorithms should be computed with respect to the
full graph. Observe that in the full graph, each node y ∈ Y \Y ′ has exactly one outgoing edge - the
edge (y, t), and ingoing edges of the form (x, y) for all x ∈ X. Therefore, each sub-path of the form
x → y → t in the full graph can be implemented in the reduced graph by adding an edge x → t
whose cost is the cost of the path x→ y → t, so that a minimum cost path between any two nodes
in the reduced graph has the same cost as a minimum cost path between the corresponding nodes
in the full graph. As this process induces for a single x ∈ X multiple edges into t, it is enough to add
a single edge (x, t) for each x ∈ X, and set its cost to the minimum cost of a path x→ y → t for all
y ∈ Y \Y ′, in O(nm) time. Solving the single source shortest paths problem over the reduced graph
can be used for computing all values dy,t and dy,x for y ∈ Y ′. For nodes y ∈ Y \ Y ′, the minimum
cost path into some x ∈ X in the full graph is given by dt,x in the reduced graph (since such path
in the full graph starts with the edge (y, t), whose cost is 0), and the minimum cost of a path into t
is simply 0 (since the path starts with the edge (y, t), and contains no negative cost cycles). Thus,
single source shortest paths computations can be implemented in O(nm+nm′+m′ logm′) = O(nm)
(as logm′ ≤ log n2 = o(n)), and therefore line 3 requires O(nm) time in Algorithm 1, and O(n2m)
time in Algorithm 2. The case where |X| = m is solved similarly, replacing X by a subset X ′ ⊆ X
of size |X ′| = m′ ≤ n2 in a reduced graph, and using the observation that each x ∈ X \ X ′ has
only one ingoing edge in the full graph - the edge (φ, x) (since in the corresponding flow in the full
network there is a flow unit transmitted along the path s→ x→ φ→ t). The rest of the details for
solving this case are omitted. In all, the running times of both algorithms 1 and 2 is O(n2m).
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S5 Implementation details

S5.1 RNA tree representation

There are several previous models for representing a pseudoknot-free RNA secondary structure
(example in Fig. S7a) as an ordered, rooted tree [8–14]. Our tree representation uses a similar
modeling as in Höchsman et al. [15], with some variations we describe next (see Fig. S7b). Given
an RNA secondary structure, each loop, base-pair, and interval of unpaired bases generates a node
in the tree representation of the structure. Labels were assigned to tree nodes in order to indicate
their types and content. Node types that were used are: BP (base-pair), UPI (unpaired-base interval),
HP (hairpin), IL (internal loop or bulge), ML (multi-loop), and EXT (external loop). For a UPI node,
the label also includes the 5’ to 3’ base-sequence of the corresponding interval, and for a BP node the
label includes the corresponding bases as well as the indices of the two endpoints of the base-pair
(see Fig. S7).

Each loop node (HP, IL, ML, and EXT) is connected, in 5’ to 3’ sequence order, to all UPI nodes
which correspond to intervals of unpaired bases associated to the loop, and to all BP nodes which
correspond to stem-terminating base-pairs adjacent to the loop. BP nodes are nodes of degree 2
(except for the special case of a base pair which is a leaf), where the two neighbors of such nodes
are the BP nodes that correspond to adjacent stacked base-pairs, or loop nodes in the case where
the BP node terminates a stem. The set of leaves in the tree correspond to the set of UPI nodes or
BP nodes terminating loop-free stems.

5’

3’

(a)

EXT

U G:C GGGCA C:G UGAAUGGGAC

C:G

ML

AUGCCA G:U AA G:C CC

U:A

C:G

HP

GCU

C:G

HP

CCUC

A:U

IL

C:G AA

C:G

HP

AUUGUCC

(b)

Fig. S7: (a). RNA secondary structure as presented by [16]. (b). The tree representation of (a) in our model.
Each base-pairs stacking is matched by color to it’s representing branch in the tree

S5.2 Alignment cost functions

Node smoothing costs were set to 3 for BP, 11 for ML/EXT and 5 for IL. For subtree pruning costs, we
have designed a cost function that counts the occurrences of different types of elements appearing
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in the subtree and deduces a corresponding penalty. The function is of the form: prune(T ) =
Cup ·Nup +Cbp ·Nbp +Chp ·Nhp + . . ., where the values of Cx are constant penalty factors, Nup is
the number of unpaired bases in T , Nbp is the number of base-pairs, Nhp is the number of hairpins,
and so on (The specific Cx values are given in Table S1a). Table S1b summarizes the costs of
matching node pairs by the alignment.

Table S1: (a). Element pruning penalty. (b). Node matching costs. Sequence alignment costs and base-pair
alignment costs were set using the RIBOSUM85-60 scoring matrix [17].

(a)

Factor Cup Cbp Chp Cml Cil Cint Cext

Value 1 2.5 5 3 2 2 0

(b)

Type UPI BP HP IL ML EXT

UPI Sequence alignment ∞ ∞ ∞ ∞ ∞
BP ∞ Base-pair alignment ∞ ∞ ∞ ∞
HP ∞ ∞ -10 0 0 0

IL ∞ ∞ 0 -5 ∞ ∞
ML ∞ ∞ 0 ∞ -7 -7

EXT ∞ ∞ 0 ∞ -7 -10

S6 Results analysis

Type 1: loop swapping in main multiloop accompanied by hairpin deletion in P17.1 The first type of
alignment pattern is characterized by comparisons between a green sulfur bacteria Chlorobium (e.g.
ASE 00047 ) and gamma purple bacterial RNAse P RNAs. This alignment pattern is exemplified
in Figure 1b. When examining the corresponding tertiary structure information (Figure S8 ), the
transformations predicted by FRUUT seem to make sense: we observe that ASE 00047 has an
additional duplex (named P2) connecting loop l1 to l2 while in ASE 00334 the corresponding
duplex in 3D connects l1 to l3. Notice that the alignment between the two trees maps l2 to l3 while
preserving all the other information surrounding the loops - thus providing a unordered alignment
between the trees.

Type 2: hairpin swapping between P17 and P17.1 The second type of alignment pattern is charac-
terized by comparisons between Agrobacterium tumefaciens (ASE 00018 ) and several Chlamydia
trachomatis members. This alignment pattern is exemplified in Figure S9 . An interesting element-
twist transformation is observed here in hairpins P17 and P17.1 of ASE 00018, which are mapped
onto their corresponding hairpins P17.1 and P17 in ASE 00070, respectively, via a subtree reorder-
ing mapping operation. When examining the corresponding tertiary structure information (Figure
S9b ), we observe that the loops of the hairpins P17 and P17.1 are engaged in pseudoknots with
loops L and l (named P6), respectively.

S6.1 Ordered Unrooted Hammerhead Ribosyme Tree Similarities

Another type of homology detected by our tool is exemplified in the Hammerhead Ribosyme family,
which is characterized by two distinct transcript types yielding the same functional RNA (Fig-
ure 1a). Our tool can detect the similarity between these two Hammerhead types by applying the
unrooted tree alignment mode.
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It seems reasonable that some RNAs in nature share a similar secondary structure, which may
or may not consider base sequence, and are transcribed starting from different sequential locations
with respect to the resulting structure. The rationale for this assumption is that catalytic sites
and binding sites do not necessarily need conserved 5’ or 3’ ends to operate, but rather depend on
the structural context in which they reside. In what follows, the hammerhead is given to exemplify
structural similarities that cannot be detected or are poorly detected using the conventional method
of rooted tree alignment, and to demonstrate that such similarities can be detected using unrooted
tree alignment (see Figure 1a).

The Hammerhead Ribozyme, a derivative of several self-cleaving satellite virus RNAs [18] is a
single strand RNA with autocatalytic capabilities. Naturally, it has a highly specific self-cleavage
site at C17, operating via isomeration and rearrangement of the linkage phosphodiester bond [19].
Furthermore, Birikh et al. [20] suggested that the Hammerhead Ribozyme may undergo synthetic
modification by removing the loop of one of its helical arms thus making it catalytically active and
able to cleave other RNAs. Hammerheads are therefore widely used in the biotechnological industry
as biosensors, enzymes for specific RNAs and gene discovery agents.

The tertiary structure of the minimal version of the Hammerhead Ribozyme has been thoroughly
studied by [21,22]. It is composed of three base paired helices, entitled I, II, III, according to their
position in the sequence. There are highly conserved sequences within the multi-loop between stem
I and II (containing the sequence box CUGA), between stem II and III (containing the box GAAA)
and between stem III and I (containing the cleavage reaction site, C ). Evidently, there are two types
of Hammerheads: type I, where stem I starts at the 5’ and 3’ ends of the strand, and type III, where
stem III starts at the 5’ and 3’ ends of the strand. As of today, no natural type II Hammerhead
have been found.

Our benchmark was based on 146 Hammerhead structures, ranging across various organisms,
taken from the RNA Strand [23]. This yields total of 10,585 pairs of trees, with tree sizes ranging
from 17 to 48 nodes, averaging at 25.5.

Each pair of trees T, S was compared in two modes to obtain the corresponding scores and
alignments: rooted-ordered (RO) and unrooted-ordered (UO). Within each mode, we used a relative
score formula described by Höchsmann et al. [24] to assess the similarity of two trees, normalizing
the alignment cost by the average of the self-alignment costs of the compared trees. We divided
all the pairs into two groups, the first containing all pairs where both members are from the same
type and the second group containing mixed pairs where the two members in each pair belong
to different types. We calculated the average normalized similarity score for each group in both
alignment modes. The results, Summarized in Table S2, show that the UO tree alignment mode
describes the similarity between the two different types (type I and type III ) better than the RO
mode.

Table S2: The UO alignment mode helps to emphasize the similarity between the two types of Hammerhead
molecules. Each cell represent the average over all pairs in each group (same / different types)

Mode\Type Same Type Different Type

RO 0.55 0.19

UO 0.56 0.35
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We further analyzed the results by applying a ranking method similar to the one given in Section
4, however in this analysis the aligned tree-pairs were ranked by the relative improvement of the
unrooted ordered alignment in comparison to rooted ordered alignment. When examining the top-
ranking pairs in this ranking, we came across many pairs consisting of Hammerhead structures
spanning across the two different types. A more careful observation of the results shows that none
of the pairs in the top 2000 results consists of two trees of the same Hammerhead type. This suggests
that when comparing two Hammerhead trees of different types using rooted alignment, one would
observe a mild similarity score. However, when comparing the same pair using unrooted alignment,
the score improves greatly.

Fig. S8: Tertiary structural information for ASE 00147 and ASE 00334, taken from the RNAse P Database
[25].
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L

P17

P17.1

l

P17

P17.1

P6
P6

P6′
P6′

(a)

(b)

Fig. S9: (a) An example of unordered alignment between two RNAse P RNAs: ASE 00018 and ASE 00070.
Grey colored bases in the FRUUT alignment graphics represent deletions. P6 is a pseudoknot marking of
the tertiary structure information. (b) Tertiary structural information for ASE 00018 and ASE 00070,
taken from the RNAse P Database [25].
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