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Abstract. We present a novel cryptographic tool, Distributed Random
Matrix Bootstrapping, and show how it may be used to achieve MPC
schemes of arithmetic functions over finite fields with optimal round
complexity. All our schemes assume honest but curious parties and are
perfectly secure. We describe a new homomorphic secret sharing scheme,
Distributed Random Matrix, and show how it may be used to achieve 2PC
and MPC with dishonest majority in two rounds of communication as-
suming the parties posses correlated randomness. That scheme gives rise
to a scheme which enables a user to outsource the storage of confidential
data to n distrusted servers and have the servers perform computations
over the encrypted data in a single round of communication against dis-
honest majority. We then show how these schemes may be bootstrapped
by a set of three or four parties to generate the correlated randomness re-
quired for the first scheme themselves while maintaining perfect security
under an honest majority.
Our approach deviates from standard conventions of MPC that is based
on computing circuits with exponential in the depth of the circuit over-
head. We consider a representation of f as a multivariate polynomial
(rather than an arithmetic circuit). Second, we divide the problem into
two scenarios. We begin with solving the non-vanishing scenario, in which
the secrets are non-zero elements of Fp. Then, we address the general case
by showing that f is q-bounded by a prime number q. Though all arith-
metic functions are q-bounded for some q, in the worst case, q might
be exponentially larger than p. The round complexity of our schemes is
optimal, and the communication complexity of our schemes is quadratic
in the number of parties, linear in the size of the polynomial and inde-
pendent of its degree.
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1 Introduction

Secure multiparty computation (SMPC) is an extensively studied field in
cryptography which discusses the following problem. N parties, P1, . . . ,PN ,
are holding secret inputs, s1, . . . , sN , and wish to evaluate a function y =
f(x1, . . . , xn) over their inputs while not revealing any information regarding
their inputs to each other (except for what may be deduced from the out-
put). Countless papers were written on that topic in the past four decades, e.g.,
[Yao82,GMW87,CCD88,BMR90,Riv99,DN03,ABT18], suggesting various solu-
tions to that problem based on different assumptions and approaches. Solutions
usually assume that the parties are connected via authenticated point-to-point
channels (P2P) and that f is given as an arithmetic or boolean circuit. Primary
solutions used rounds of communication to reduce the degree of the polynomial
that encrypts the data after each multiplication during the computation. A round
of communication is a phase in which each party may send at most one message
to each of the other parties, perform arbitrary computations and/or receive at
most one message from each of the other parties (not necessarily in this order)
[KN06]. Recent state-of-the-art solutions also require rounds of communication
proportional to the depth of the circuit representing f .

In this work, we assume that parties are honest but curious. That is, parties
follow the protocol, yet, they may attempt to use the information they receive
throughout the execution of the protocol to gain information regarding the secret
inputs of other parties. Furthermore, a subset of corrupted parties may form a
coalition, joining the information they hold in an adversarial attempt to reveal
the secret inputs of the honest parties. For an MPC protocol π, the maximal
size of such a coalition of corrupted parties under which the privacy of the
inputs of honest parties is maintained is the threshold of π, denoted t. In our
research, we seek for MPC schemes which are perfectly secure. We assume that
the (adversarial) parties are computationally unbounded.

In their seminal work from 1988, Ben-Or et al. [BOGW88] showed that every
function of N inputs can be efficiently computed by N parties with a thresh-
old t < N/2 in case of honest but curious parties. Their methods are based on
Shamir’s secret sharing scheme [Sha79], and their protocols require rounds of
communication proportional to the depth of the arithmetic circuit. Substantial
efforts have been spent on reducing the number of rounds of communication
needed in such tasks. Bar-Ilan and Beaver [BIB89] were the first to suggest a
way to evaluate functions in a constant number of rounds of communication,
followed by further works that attempt to minimize that constant number. Re-
cent works by [ABT18,GIS18,ACGJ18] achieve optimal round complexity and
present protocols which enable SMPC of functions in two rounds of communi-
cation. Comprehensive coverage of results and bounds on the round complexity



of SMPC schemes may be found in [PR18,DLN19].

We now state the main results of our work. Assume that {Pj}nj=1 is a set of

n ≥ 2 honest but curious parties. For 1 ≤ j ≤ n, let
{
s
(i)
j

}kj
i=1
⊆ Fp a set of kj

private inputs of party Pj , and let k =
∑n
j=1 kj . We have

Theorem 1. Let f : Fkp → Fp. There exists an n-party scheme which realizes f
using correlated randomness (CR) as follows:

– Its communication complexity is
• exponential in k,
• quadratic in n,
• at most linear in the number of monomials in the polynomial represen-
tation of f , and

• independent of the degree of the polynomial representation of f .
– Its space complexity is at most linear in the number of monomials in the

polynomial representation of f , and linear in n;
– The correlated randomness (CR) used in it is independent of f and the in-

puts. The CR may be obtained in one of the following ways:
• provided by a trusted initializer (before the secrets and f are known), or
• generated by the parties themselves in a perfectly secure offline prepro-
cessing phase.

In the first case, the scheme is perfectly secure against attacks of coalitions
of up to n − 1 honest but curious parties. In the second case, the scheme
is perfectly secure against any coalition which not contain a predetermined
party (who plays a unique role in the generation of the CR). In particular,
if n ∈ {3, 4} then, the scheme is perfectly secure assuming honest majority.

– Either way, the round complexity of the online phase of the scheme is two.

We note that, in Theorem 1, in the non-vanishing case, where the secrets
are non-zero elements of Fp, if f is given as a polynomial of constant size then,
our scheme is highly efficient regardless of the degree of f . Specifically, in the
non-vanishing case, the communication complexity of the scheme is linear in k,
which is a significant improvement in comparison to the general case (where the
communication is exponential in k).

2 Preliminaries

We recall some linear algebra and MPC notations and definitions. Throughout
the paper we use Fp to denote the finite field containing p elements (where p is
prime), Fkp to denote the k-dimensional vector space over Fp, F×p to denote the
multiplicative group of Fp, and (F×p )k to denote the set of k-tuples over F×p . We
use Mn(Fp) to denote the set of square matrices of order n over Fp. N is the
set of natural numbers. The notation ∗ stands for entrywise multiplication of



equally length tuples. If α is a k-tuple then (α)i is the i’th entry of α. If C is a
matrix then [C]i is the i’th column of C. We denote by x R← A the process of
assigning to the variable x a uniformly random element from the set A.
Security of MPC schemes. The security of an MPC protocol is formalized and
proved through the Ideal world vs Real world paradigm. We briefly overview the
general idea and recall standard definitions. Let P = {Pj}nj=1 a set of n parties
and assume that each party Pj is holding a secret value sj in some (joint) domain
R. Assume that the parties wish to find f(s1, . . . , sn), where f : Rn → R, while
not revealing to each other any information regarding their secret inputs that
could not be deduced from f(s1, . . . , sn). In an ideal world, the parties could
have find a trusted entity, Ted, to whom they will all tell their private inputs
and from whom they will receive the output. Ted will perform the computation
on their behalf and promise to keep their secrets safe.

In the real world, such a trusted entity is hard to find, and hence, the par-
ties may attempt to perform the computation themselves by following an MPC
protocol π. Informally, to consider π secure for computing f , it should have the
property that by following it, the parties gain no information regarding the se-
cret inputs of other parties than they could not have learned by following the
ideal world solution. Putting it in other words, an MPC protocol is not meant
to provide a way of computing f(s1, . . . , sn) while not revealing any information
regarding the secret inputs of other parties, but to provide a way of comput-
ing f(s1, . . . , sn) while not revealing any more information regarding the secret
inputs of other parties than is revealed by an ideal world solution.

We also consider the case in which a subset of the parties, T ⊆ P, join
forces in an adversarial attempt to gain information regarding the secret inputs
of parties in T = P−T . Informally, we would say that π is secure for computing
f with threshold t if it holds that, for every T ⊆ P with |T | ≤ t, the parties in
T gain no more information regarding {si}Pi∈T from π than they would have
got from the real world solution.

To show that π leaks no more information than Ted, we show that all the
information gotten from π may be computed from the information received from
Ted only. To this end, we define viewj to be the random variable indicating sj
and all the messages that Pj receives through the execution of π, including
the results of random choices that she makes. We assume that all parties are
honest but curious. That is, they follow the exact instructions of π, though, they
attempt to gain information regarding the secret inputs of other parties through
the information they receive. That leads us to

Definition 1. Perfect security of an MPC protocol against honest but
curious adversaries. Let P = {Pj}nj=1 a set of n parties, {sj}Pj∈P ⊆ R
their corresponding secrets, f : Rn → R a function, and t ∈ N. Let π a multi-
party computation protocol for computing f . We say that π is a perfectly secure
MPC protocol for computing f against honest but curious adversaries and with
threshold t if the following holds.

1. Perfect correctness. By executing π, all parties learn y = f(s1, . . . , sn).



2. Perfect privacy. For every adversarial coalition T ⊆ P with |T | ≤ t there
exists a simulator — a probabilistic algorithm Sim — which receives inputs
y and {sj}Pj⊆T , and its output is identically distributed to

viewT = {viewj}Pj∈T .

Minimal multivariate polynomial representation. Any function f : Fkp →
Fp can be represented as a multivariate polynomial. This representation may
be obtained, for example, by using the multivariate interpolation formula over
finite fields suggested in [CLF12]. The fact that xp ≡ x (mod p) implies that
for a given f : Fkp → Fp there are infinitely many polynomial representations
of it.3 Given a function f , we assign f with a minimal multivariate polynomial
representation of it, that is, the representation of f as a multivariate polynomial
with the degree of each variable being at most p−1. We denote this polynomial by
Qf and assign f with Qf as its minimal multivariate polynomial representation.
Throughout the paper we abuse notation and write f instead of Qf . Whenever
a function f : Fkp → Fp is discussed we assume that f is given with its minimal
multivariate polynomial representation. We note that the total degree4 of Qf is
at most k(p− 1) and write

f(x) =
∑

i=(i1,...,ik)∈L

ai · xi11 . . . x
ik
k ,

where L = {0, . . . , p − 1}k and ai ∈ Fp. The fact that each variable in each
monomial can appear with any exponent between 0 and p− 1 implies that there
are pk different monomials. For i = (i1, . . . , ik) ∈ L, we denote xi11 . . . x

ik
k by Ai.

We refer to Ai as the i’th monomial of f .
q-bounded functions. Let f : Fkp → Fp and s = (s1, . . . , sk) ∈ Fkp. One can
compute f(s) by performing operations in Fq on s according to a representation
of f as a multivariate polynomial. The same result is obtained if one computes
f(s) over the positive integers and then takes the result modulo p. Formally,
for each entry sj of s let aj ∈ {1, 2, . . . , p} ⊆ N denote the minimal positive
integer such that aj ≡ sj (mod p). Then, performing the computation over
the aj ’s using integer operations we obtain an integer result f(s)N, such that
f(s)N ≡ f(s) (mod p). Assume a function f : Fkq → Fq is such that for every
s ∈ Fkp, computation of f(s) over the integers yields an integer result, f(s)N,
which is strictly smaller than a large prime q. Such a function is q-bounded. In
fact, all functions f : Fkp → Fp are q-bounded for q ≥ pkp+1. In practice, we are
interested in the minimal prime q for which f is q-bounded.

3 Generally, there are infinitely many polynomials of k variables and only a finite
number, namely pp

k

, of functions f : Fk
p → Fp.

4 The total degree of a multivariate polynomial is the maximal sum of exponents in a
single monomial of it.



3 The Distributed Matrix Secret Sharing Scheme

In this section we describe the basic tool of this work, the Distributed Matrix
procedure, Dist.Matrix, and discuss some of its properties. Dist.Matrix em-
ploys two other basic procedures — Mult.split (which will also be used by
parties in our schemes to secret share their private inputs) and Add.split. We
now describe these schemes and discuss some of their properties.

Multiplicative secret sharing procedure. The following procedure is in-
voked by party Pi to split si ∈ F×p into n multiplicative secret shares. Given a
prime number p, an element s ∈ Fp, a natural number n ∈ N, and 1 ≤ i ≤ n,
the procedure Mult.split is as follows. Pick n− 1 uniformly random non-zero
elements mj (1 ≤ j ≤ n, j 6= i) from Fp and set mi ∈ Fp such that s =

∏n
j=1mj .

Output (m1, . . . ,mn), a sequence of multiplicative shares of s. Formally:

Mult.split(p, s, n, i): # {p is prime, s ∈ Fp, n ∈ N, 1 ≤ i ≤ n}

For 1 ≤ j ≤ n, j 6= i:

mj
R← F×p ;

δ ←
∏n
j=1,j 6=imj ;

mi ← s
δ

return (m1, . . . ,mn)

Procedure 1: Mult.split. Given an element s ∈ Fp, the
procedure returns n elements whose product equals s.

Remark 1. Joint zeroness of s and mi. Observe that the assignment mi ← s
δ

implies that if s = 0 then mi = 0 and if s 6= 0 then mi 6= 0. All other entries mj

of the output (with j 6= i) are uniformly random non-zero elements of F×p .

Lemma 1. Procedure Mult.split is a perfectly secure secret sharing scheme
for F×p elements with a threshold of n − 1 and which supports homomorphic
multiplications.

Proof. Assume that a user, holding a non-zero element s ∈ F×p , distributes the
output of Mult.split(p, s, n, i) (for some i) to a set of parties {Pj}nj=1. Any
coalition of n− 1 parties gains absolutely no information regarding s since given
their shares, for every non-zero element s′ ∈ F×p there exists a single n’th share
for which the product of the n shares equals s′. Now, assume that s1 and s2 are
two non-zero elements of Fp that were secret shared by a user using Mult.split.
From the definition of Mult.split, it immediately follows that

n∏
j=1

(
Mult.split(p, s1, n, i) ∗ Mult.split(p, s2, n, i′)

)
j
= s1 · s2,



where ∗ stands for entrywise multiplication of vectors and the subscript j indi-
cates the j’th entry of the vector. The same holds for any number d of shared
secrets s1, . . . , sd. Hence, if a user secret shares d non-zero elements of F×p using
Mult.split, then, having each of the parties compute the product of her shares
(locally), each party obtains a multiplicative share of

∏d
i=1 si. �

Additive secret sharing procedure. Similarly to the previous procedure,
given a prime number p, an element s ∈ Fp, and a natural number n ∈ N,
the procedure Add.split is as follows. Pick n − 1 uniformly random elements
a1, . . . , an−1 from Fp and set an = s−

∑n−1
i=1 ai. Output (a1, . . . , an), a sequence

of additive shares of s. Formally:

Add.split(p, s, n): # {p is prime, s ∈ Fp, n ∈ N}

For 1 ≤ i ≤ n− 1:

ai
R← Fp;

an ←
(
s−

∑n−1
i=1 ai

)
;

return (a1, . . . , an)

Procedure 2: Add.split. Given an element s ∈ Fp, the
procedure returns n elements whose sum equals s.

Lemma 2. The procedure Add.split is a perfectly secure secret sharing scheme
for Fp elements with a threshold of n − 1 and which supports homomorphic
additions.

Proof. Assume that a user, holding an element s ∈ Fp, distributes the aj ’s to
a set of parties {Pj}nj=1. Any coalition of n − 1 parties gains absolutely no
information regarding s since given their shares, for every element s′ ∈ Fp there
exists a single n’th share for which the sum of the n shares equals s′. Now,
assume that s1 and s2 are two elements of Fp that were secret shared by a user
using Add.split. From the definition of Add.split it immediately follows that

n∑
j=1

(
Mult.split(p, s1, n, i) + Mult.split(p, s2, n, i′)

)
j
= s1 + s2.

The same holds for any number d of shared secrets s1, . . . , sd. Consequently, if
a user secret shares d elements of Fp using Add.split, then, having each of the
parties locally compute the sum of the shares received, each party obtains an
additive share of

∑d
i=1 si. �

Distributed matrix secret sharing procedure.We now define the procedure
Dist.Matrix. Given a prime number p, an element x ∈ Fp and a natural number



n ∈ N, the procedure Dist.Matrix outputs (the columns of) a matrix C, a
matrix-random-split of x. C is generated by performing additive secret sharing
of x, followed by multiplicative secret sharing of each of the additive shares.
Formally:

Dist.Matrix(p, s, n): # {p is prime, s ∈ Fp, n ∈ N}

(γ1, . . . , γn)← Add.split(p, s, n);

For 1 ≤ i ≤ n:

(ci1, ci2, . . . , cin)← Mult.split(p, γi, n, i) ;

C ← (cij) ∈Mn(Fp);

return
(
[C]1, . . . , [C]n

)
Procedure 3: Dist.Matrix. Given an element s ∈ Fp, the
procedure returns n columns of a matrix C.

Remark 2. Since the i’th row of C is generated by the call Mult.split(p, γi, n, i),
from Remark 1 it follows that the matrix C may contain zeroes only on its main
diagonal, if any. That is, cij = 0 =⇒ i = j.

Reconstruction of a Dist.matrix-secret-shared element x from n shares may
be performed by simply multiplying all the elements in each row of C and sum-
ming the products. Namely,

n∑
i=1

n∏
j=1

cij = x.

To formalize that, we define the following reconstruction procedure.

Reconstruct
(
p, (v1, . . . , vn), n

)
: # {p is prime, vi ∈ Fnp , n ∈ N}

return
∑n
i=1

∏n
j=1(vj)i

Procedure 4: Reconstruct. The procedures reconstructs
x from n columns of a square matrix.

One may readily verify that, for a prime number p, a natural number n ∈ N and
an element s ∈ Fp, it holds that Reconstruct

(
p, Dist.Matrix(p, s, n), n

)
= s.

Lemma 3. The procedure Dist.Matrix is a perfectly secure secret sharing scheme
for Fp elements with a threshold of n− 1 and which supports homomorphic mul-
tiplications by Mult.split-secret-shared elements.



Proof. Assume that a user, holding an element x ∈ Fp, distributes the output of
Dist.Matrix(p, x, n) to a set of parties {Pj}nj=1 in such a way that Pj receives
[C]j . Any coalition of n− 1 parties gains absolutely no information regarding x
since given their shares, for every element x′ ∈ Fp there exist exactly (p− 1)n−1

elements of Fnp for which the collection of the n shares is a matrix-random-split
of x′. Indeed, an appropriate n’th share for x′ may be computed as follows.
Without loss of generality, assume that such an adversarial coalition contains
P1, . . . ,Pn−1. Choose n−1 uniformly random non-zero elements c1,n, . . . , cn−1,n
of F×p and (given the n− 1 shares of the coalition) set

cnn =
x′ −

∑n−1
i=1

∏n
j=1 cij∏n−1

j=1 cjn
. (1)

One may readily verify that (c1n, . . . , cnn) is a possible n’th share for x′.
Now, to show that the Dist.Matrix secret sharing scheme supports homo-

morphic multiplications by Mult.split-secret-shred non-zero elements, assume
that a user, holding s ∈ Fp and s′ ∈ F×p , distributes n Dist.Matrix shares(
[C]1, . . . , [C]n

)
of s and n Mult.split shares (m1, . . . ,mn) of s′, respectively,

to a set of n parties, {Pj}nj=1. Let each party Pi locally compute the product
mi[C]i. This way, each party obtains a Dist.Matrix share of s · s′. Indeed,

Reconstruct
(
p,
(
m1[C]1, . . . ,mn[C]n

)
, p
)
=

n∑
i=1

n∏
j=1

(
mj [C]j

)
i

=

n∑
i=1

(( n∏
j=1

mj

)
·
( n∏
j=1

cij

))
= s′ ·

n∑
i=1

n∏
j=1

cij = s · s′.
(2)

Observe that, even if s is public, the procedure of homomorphically multi-
plying s by s′ leaks no information regarding s′, and if s 6= 0 then this proce-
dure leaks no information regarding the result. Similarly, one can multiply the
Dist.Matrix shares

(
[C]1, . . . , [C]n

)
of s by Mult.split shares of F×p elements

s′1, ..., s
′
d (for an arbitrary d) and obtain a result which is a Dist.Matrix-share

of the product s ·
∏d
i=1 s

′
i. �

Remark 3. Observe that, regarding the second part of the proof of Lemma 3,
from (1) it follows that, given the n2 − 1 entries cij of C with i, j 6= n, the
entry cnn is uniquely determined by x′. Hence, even if the coalition is given an
additional information — the n − 1 entries of the n’th share not on the main
diagonal of C — the coalition remains perfectly oblivious to the actual value of
x. This implies the following:

1. The Dist.Matrix sharing scheme enables transforming from holding mul-
tiplicative shares of x to holding additive shares of x in a single round of
communication. Simply let each party Pi send the j’th entry of [C]i to Pj
and have each party Pi compute the product of of the elements ci,j received



to obtain an additive share γi of x. Now the parties are ready to perform ho-
momorphic additions with (practically infinite) Add.split-shared elements.

2. Transforming from additive shares of x to multiplicative shares of x can be
done by letting each party Pi run Mult.Split(p, γi, n, i) and send the j’th
output entry to Pj . Receiving these outputs from all other parties, each party
obtains n elements of Fp which constitute a Dist.Matrix share of x.

4 Two-round MPC protocol with correlated randomness

In this section we make the first step approaching a proof of Theorem 1. We sug-
gest schemes which enable MPC of arithmetic functions in two rounds of commu-
nication with perfect security using correlated randomness (CR). We begin with
the non-vanishing case and then address the general q-bounded case. Assume
that P = {Pj}nj=1 is a set of n parties, where each party Pj is holding a private
input sj ∈ Fp. We assume that the parties are connected by point-to-point au-
thenticated secure channels. Assume the parties wish to realize f : Fkp → Fp over
their inputs, where the minimal multivariate polynomial representation of f is

f(x1, . . . , xk) =
∑

l=(l0,...,lk)∈L

l0 · xl11 . . . x
lk
k

and L = {0, . . . , p− 1}k+1. For l ∈ L, the l’th monomial is l0 · xl11 . . . x
lk
k .

The non-vanishing case.
In this case we assume that si 6= 0. The scheme Stages are as follows. We

begin with the offline phase.

Preprocessing. For each monomial of f , each party Pj obtains a
Dist.Matrix share [C]

(l)
j of 1 ∈ Fp (l ∈ L). For ease of presentation, we

occasionally omit the superscript (l).

Secret sharing. Each party Pi secret-shares si using Mult.split to obtain
multiplicative shares si1, . . . , sin of si and distributes sij to Pj .

We regard the secret sharing stage as a part of the offline phase since we
consider the case in which the secrets may be known long before the function,
such as in the case of secret shared database. The Secret sharing phase can be
squeezed into the first evaluation phase in a function-dependent way as explained
below while maintaining two rounds of communication in the online phase. We
continue with the online phase of the scheme.

Evaluation 1. For each monomial of f , each party Pj computes:

αj :=

n∏
i=1

sliij · [C]j .



Communication 1. For 1 ≤ i, j ≤ n, Pj sends the i’th entry of αj to Pi.

Evaluation 2. Party Pi computes: Ui = l0 ·
∏n
j=1(αj)i.

Communication 2. Each party Pi sends
∑
l U

(l)
i to all other parties.

Output reconstruction. Each party computes

n∑
i=1

∑
l

U
(l)
i .

Observe that,

n∑
i=1

∑
l

U
(l)
i =

∑
l

n∑
i=1

U
(l)
i =

∑
l

n∑
i=1

l0·
n∏
j=1

(αj)i =
∑
l

l0·
n∑
i=1

n∏
j=1

(
sl11j . . . s

ln
nj ·[C]j

)
i

=
∑
l

l0 ·
n∑
i=1

(
sl11 . . . s

ln
n ·

n∏
j=1

cij

)
=
∑
l

l0 · sl11 . . . slnn ·
n∑
i=1

γi,

where γi denotes the product ci1 . . . cin. Since C is a matrix-random-split of 1,
we have

∑n
i=1 γi = 1 and hence,

n∑
i=1

∑
l

U
(l)
i = f(s1, . . . , sn).

The q-bounded case. In the non-vanishing case, there is a limitation on the
possible values that the sj ’s may take. Namely, they cannot be zero. Can we
avoid that limitation? We now consider a scenario in which some of the sj ’s
may be zero and suggest a way to overcome these limitations using a simple
adjustment of the scheme assuming f is q-bounded for small enough q. That
adjustment costs in a possible exponential blowup of the communication com-
plexity. The general idea is to take the integer correspondents of the Fp inputs
and run the same procedure as in the previous case while performing the com-
putations in Fq. Formally, for sj let aj ∈ {1, 2, . . . , p} ⊆ N denote the minimal
positive integer such that aj ≡ sj (mod p). For 1 ≤ j ≤ k, let s̃j := aj (mod q)
and let s̃ = (s̃1, . . . , s̃k) ∈ Fkq denote the element of Fkq corresponding to s in the
q-world. Similarly, for f : Fkp → Fp, let f̃ : Fkq → Fq denote the function corre-
sponding to f in the q-world. Now, all inputs are non-zero elements of Fq and
the parties may invoke the same scheme of the non-vanishing case to evaluate f̃
over the inputs s̃j .

Complexity analysis. We now analyze the communication complexity of the
schemes suggested above. We begin with an important observation regarding



representations of functions. Typically, SMPC protocols evaluate functions as-
suming that the function is described using an arithmetic circuit. One of the
benefits of using arithmetic circuits is that they allow re-using intermediate val-
ues. The communication complexity of such schemes is analyzed in reference to
the size and depth of the circuit. Under such considerations, addition gates are
typically cheap (communication wise), and multiplication gates are costly.

In this work, we take a different approach and assume that the function is
described by a multivariate polynomial and analyze the communication com-
plexity of our schemes in reference to the size of the polynomial (the number
of monomials in it). Our constructions induce free multiplications and a sin-
gle round of communication in which all the additions are performed. Using a
polynomial representation instead of an arithmetic circuit might induce some
overhead. What is the exact relation between the number of monomials in the
polynomial representation of an arbitrary function f and the size and depth of
an arithmetic circuit which describes f? Giving a full answer to this question is
beyond the scope of this paper. This question has roots in the algebraic analog
of the problem P

?
= NP , suggested by Valiant in [Val79].

Denote by k the number of monomials in f . In the preprocessing stage, each
party obtains correlated randomness in the form of an independent Dist.Matrix
share of 1 ∈ Fp for each monomial of f . That share is an n-long vector of Fp
elements. Hence, the space complexity induced by this stage is linear in n, linear
in k, and linear in log p.

In the secret sharing stage, each party obtains a single field element for each
secret of every other party. Hence, the space complexity of this stage is linear in
n and in log p.

In the first communication stage, each party sends n messages for each mono-
mial of f , where each message is single field element. Hence, we have a total of
n2 · k · log p bits of communication. Namely, the communication complexity in-
duced by this stage is quadratic in n, linear in k and linear in log p. Observe
that the degree of f does not play a role here. In other words, the depth of the
circuit neither affects the communication complexity of the scheme nor its round
complexity.

In the second communication stage each party sends a single field element
to every other party. That implies sending a total of n2 messages, regardless of k.

Evaluation of boolean formulas. The scheme suggested above may be used
to perform SMPC of boolean formulas by working in F2. A True boolean value
is 1 ∈ F2 and a False boolean value is 0 ∈ F2. Boolean operations may be identi-
fied with field operations in the following way. The ∧ operation is identified with
F2 multiplication, the ⊕ operation with F2 addition, and the ¬ operation with
adding 1 in F2. The ∨ operation of two literals is identified with x + y + x · y,



where x and y are the elements of F2 corresponding to the literals. Then, given
a boolean formula C over boolean literals b1, . . . , bk ∈ {True, False}, one can
use the scheme suggested above for q-bounded functions to perform SMPC of C
by taking s1, . . . , sk ∈ F2, where the si’s are the F2 correspondents of the bi’s.
The boolean formula C : {True, False}k → {True, False} will be taken as a
polynomial function C̃ : Fk2 → F2.

5 The client-servers model

Cloud services have become very popular in recent years. Companies like Ama-
zon, Google, Microsoft, IBM, etc., are offering storage devices and computing
engines to both private users and organizations. The usage of clouds for stor-
age and computing has significant benefits in price, speed, and manageability.
Nonetheless, it requires users to send their information to an untrusted party.
In some cases, the information held by a user is confidential, and hence, the
distribution of the information to untrusted parties cannot be considered. One
solution to this problem may be a cryptographic scheme that enables a user to
upload encrypted data to the cloud, perform computations in the cloud over the
encrypted data and retrieve the encrypted version of the desired result. Such an
encryption scheme enables the user to take advantage of the storage and comput-
ing services provided by the cloud without compromising the confidentiality of
the data. Existing fully homomorphic encryption schemes suggest a centralized
(rather than distributed) computationally secure solutions to the above men-
tioned problem [Gen09,SV10,VDGHV10,GHS12,GHS16,BP16,AGHL18]. Unfor-
tunately, beyond being only computationally secure (rather than information-
theoretically secure), they are currently too slow to be used in practice.
We now suggest a solution to this problem based on the scheme suggested in the
previous section. Assume that a user has a private connection channel with n
honest-but-curious servers, denoted P1,P2, . . . ,Pn. The scheme we suggest now
enables a user to secret share s1, . . . , sk amongst the servers in a way that al-
lows the user to evaluate f(s1, . . . , sk) using computing engines provided by the
servers, where f : Fkp → Fp.

Secret sharing. The user secret-shares each si using Mult.split to ob-
tain multiplicative shares si1, . . . , sin of si and distributes the shares to the
servers.
Preprocessing. For each monomial of f , the user uses the Dist.Matrix
secret sharing scheme to generate and distribute [C]

(l)
j , shares of 1 ∈ Fp,

(l ∈ L) amongst the servers. Again, for ease of presentation, we occasionally
omit the superscript (l).



Evaluation 1. For each monomial of f , each server Pj computes:

αj :=

n∏
i=1

sliij · [C]j .

Communication 1. For 1 ≤ i, j ≤ n, Pj sends the i’th entry of αj to Pi.

Evaluation 2. Pi computes: Ui = l0 ·
∏n
j=1(αj)i.

Sending shares of output to the user. Each server Pi sends
∑
l U

(l)
i to

the user.

Output reconstruction. The user computes

n∑
i=1

∑
l

U
(l)
i .

6 Bootstrapping the Distributed Matrix

The schemes described above may be bootstrapped to enable the users gen-
erate the correlated randomness (CR) them selves. To jointly generate a ma-
trix random split of 1 ∈ Fp we use the following simple observations. By (1),
given x, the last entry of the matrix is a function of the other entries. Let each
party Pi, ≤ i ≤ n − 1 randomly choose n − 1 uniformly random non-zero ele-
ments c1,i, . . . , ci−1,i, ci+1,i, . . . , cn,i of Fp and another uniformly element cii of
Fp (which may be zero). Let Pn choose n−1 uniformly random non-zero elements
c1,n, . . . , cn−1,n of Fp. Now, let f : Fn2−1

p → Fp such that

f(c11, . . . , cn,n−1) =
1−

∑n−1
i=1

∏n
j=1 cij∏n−1

j=1 cjn
.

For 1 ≤ j ≤ n − 1 let c′jn = 1
cjn

. Replacing the c with the c′ elements when
necessary, f is an n-monomials polynomial. Let the parties engage in the client-
servers scheme where Pn plays the role of the user and P1, . . . ,Pn−1 play the
role of the servers. At the end of the protocol the user obtains the n’th entry
of his correlated randomness vector. This way the parties may generate the CR
themselves.

7 Conclusions

In this paper, we have suggested schemes for perfectly secure multiparty com-
putation of any arithmetic function with optimal round complexity, both in the



CR model and the client-servers model. These schemes were established based
on four other SMPC schemes, presented in [BD18]. The schemes that appear in
[BD18] use two sets of participants and require the elimination of the previous set
whenever there is a switch between operations. That need for ongoing elimina-
tion of parties is solved here, where we present schemes for SMPC of arithmetic
functions using one set of n parties for both operations with no need to elimi-
nate parties. This solution costs in communication complexity. Particularly, in
the schemes presented in [BD18], some of the procedures have communication
complexity which is linear in the number of parties, and some of the proce-
dures require sending a total of n1 ·n2 messages between the participants, where
n = n1+n2. In the schemes suggested here, the number of messages sent between
participants is quadratic in the number of parties.

We have suggested schemes for performing computations in a finite field Fp in
two different cases. The first case assumes that the secrets are non-zero elements
in the field. In the second case, the secrets may vanish in Fp, and we assume
that f is q-bounded. We solve the second case using the first case by embedding
Fp in Fq for large enough q. Such a q always exists. Nevertheless, in some cases,
q must be so large that the resulting scheme is impractical.

To emphasize the importance of round-efficiency, we note that, while process-
ing information becomes faster as technology improves, the time that it takes to
transmit information between two distant places is strongly limited by the speed
of light. One may consider a future need to perform SPMC over inputs held by
parties which reside in distant places outside of earth.

Lastly, we believe that our new approach and techniques may be used to se-
curely outsource computations in a reduced cost of communication complexity,
and may be found to have further uses in many other scopes.
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