
Bee’s Strategy Against Byzantines
Replacing Byzantine Participants

by

Roberto Baldoni, Silvia Banomi, Shlomi Dolev, Michel Raynal, Amitay Shaer

September 21, 2018

The Lynne and William Frankel Center for Computer Science
Department of Computer Science,

Ben-Gurion University, Beer Sheva, Israel

Technical Report #18-05

Bee’s Strategy Against Byzantines

Replacing Byzantine Participants ?

(Preliminary Version)

Amitay Shaer1, Shlomi Dolev1, Silvia Bonomi2,3, Michel Raynal4, and Roberto
Baldoni2,3

1 Dept. of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
{shaera, dolev}@cs.bgu.ac.il

2 Research Center of Cyber Intelligence and Information Security (CIS)
3 Department of Computer, Control, and Management Engineering “A. Ruberti”,

Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy
{bonomi,baldoni}@diag.uniroma1.it

4 IRISA, Université de Rennes, 35042 Rennes, France
michel.raynal@irisa.fr

Abstract. Schemes for the identification and replacement of two-faced
Byzantine processes are presented. The detection is based on the compar-
ison of the (blackbox) decision result of a Byzantine consensus on input
consisting of the inputs of each of the processes, in a system containing n
processes p1, . . . , pn. Process pi that received a gossiped message from pj
with the input of another process pk, that differs from pk’s input value as
received from pk by pi, reports on pk and pj being two-faced. If enough
processes (where enough means at least t + 1, t < n is a threshold on
the number of Byzantine participants) report on the same participant
pj to be two-faced, participant pj is replaced. If less than the required
t + 1 processes threshold report on a participant pj , both the report-
ing processes and the reported process are replaced. If one of them is
not Byzantine, its replacement is the price to pay to cope with the un-
certainty created by Byzantine processes. The scheme ensures that any
two-faced Byzantine participant that prevents fast termination is elimi-
nated and replaced. Such replacement may serve as a preparation for the
next invocations of Byzantine agreement possibly used to implement a
replicated state machine.

Keywords: Distributed Algorithms · Consensus · Byzantine Failures ·
Detection.

? The research was partially supported by the Rita Altura Trust Chair in Computer
Sciences; the Lynne and William Frankel Center for Computer Science; the Ministry
of Foreign Affairs, Italy; the grant from the Ministry of Science, Technology and
Space, Israel, and the National Science Council (NSC) of Taiwan; the Ministry of
Science, Technology and Space, Infrastructure Research in the Field of Advanced
Computing and Cyber Security; Michel Raynal was visiting BGU with the support
of Dozor founding; and the Israel National Cyber Bureau. Contact author: Shlomi
Dolev.

2 A. Shaer et al.

1 Introduction

The Byzantine Agreement (BA) problem, introduced by Pease, Shostak, and
Lamport in [7], is known as a fundamental problem in fault-tolerant distributed
computing. The problem has received a lot of attention in the literature and has
become the essence of a variety of schemes in distributed computing.

Solving the Byzantine agreement problem is not necessarily tied to the de-
tection of the Byzantine processes, the only success criterion of the agreement
is whether all correct processes agree on the same value. In this work, we focus
on detecting a sub-class of Byzantine behavior (i.e., namely two-faced Byzantine
processes) for the sake of replacing them in the next Byzantine agreement invo-
cation. The detection and replacement procedure can be plugged in any other
algorithm using a Byzantine Agreement e.g., possibly as part of the implemen-
tation of a replicated state machine. The final goal is to prepare for the future
invocations of the agreement, trying to ensure that the next invocation of the
Byzantine agreement will cope with a smaller number of two-faced Byzantine
processes.

The Byzantine Agreement Problem. In the Byzantine Agreement Problem,
there are n processes, Π = {p1, . . . , pn} with unique names over N = {1, ..., n}
and at most t < n of the processes can be Byzantine. Each process starts with
an input value v from a set of values V 1. The goal is to ensure that all non-faulty
processes eventually output the same value. The output of a non-faulty process
is called the decision value.
More formally, an algorithm solves the Byzantine Agreement if the following
conditions hold:

– Agreement. All non-faulty processes agreed on the same value (i.e., there
are no two non-faulty processes that decide different values).

– Validity.2 If all non-faulty processes start with the same value v, the decision
value of all non-faulty participants is v.

– Termination. Eventually, all non-faulty processes decide a value.

Reaching agreement in presence of Byzantine processes is expensive as the num-
ber of messages grows quadratically with the number of participants n and the
number of rounds (time) grows linearly with the number of Byzantine partici-
pants t (with n > 3t).

Applications may repeatedly invocate agreement instances (e.g., as part of
implementing a replicated state machine). Typically, the presence of Byzantine
activity is rare, and it is desirable that the overhead in handling Byzantine
activity will be tuned to the actual situation. Hence, we want to adjust the time
it takes for each consensus invocation to run according to the actual situation at
the time. In addition, when the system is interactive and never stops (as in the

1 Binary Agreement is defined with the set V = {0, 1}.
2 There is an alternative, stronger property for Validity [6]. The decision value v has

to be an input value of at least one non-faulty process.

Bee’s Strategy Against Byzantines 3

case of a replicated state machine) the number of Byzantine participants may be
accumulated to exceed any threshold. To avoid the accumulation of Byzantine
participants over time, we suggest a detection and replacements of Byzantine
participants. Thus, we suggest to couple the consensus algorithm with a detection
mechanism. As soon as a Byzantine activity is detected, the suspected Byzantine
process will be eliminated and replaced.

The rest of the paper is organized as follows: in Section 2, we describe shortly
our system settings. In Section 3, we introduce our approach of the detection
process as a combination of two algorithms, fast and slow presented in Section
4 and 5 respectively.

2 System Settings

We consider a distributed system composed of n processes, each having a unique
identifier p1, p2, ..., pn. We assume that up to t processes can be Byzantine with
n > 3t. A process is said to be Byzantine if it deviates from the protocol, other-
wise it is said to be correct. Processes communicate trough message exchanges.
A reliable communication is assumed, where a point-to-point channel exists for
every pair of processes. More precisely, if a correct process pi sends a message m
to a process pj , then m will be delivered by process pj . Channels are authenti-
cated, i.e., when a process pj receives a message m from a process pi, pj knows
that m has been generated by pi.

We consider a particular sub-class of Byzantine failures called two-faced
Byzantine. A process is said to be two-faced Byzantine if it is supposed to send
a broadcast message to all processes in the system but it is sending different
messages to different processes. In the sequel, we use the term process acting as
Byzantine to refer to a process that exhibits two-faced behaviour.

The system is synchronous and evolves in sequential synchronous rounds
r1, r2, . . . ri Every round is divided into three steps: (i) send step where the
processes send all the messages for the current round, (ii) receive step where the
processes receive all the messages sent at the beginning of the current round3

and (iii) computation step where the processes process the received messages
and prepare new messages to be sent in the next round. The processes have
the ability to make speculative execution when needed, meaning an execution
is made, but all states are saved until a condition holds, sometimes forcing the
system rolling back to the previous state (see e.g., [5]).

We assume the existence of a trusted entity component (or components),
called hypervisor. The hypervisor can only receive messages from the processes
but cannot send them messages. The hypervisor can eliminate or replace a pro-
cess with a different process instance. The hypervisor is assumed to be correct
all the time. We consider two different types in which the hypervisor integrated
into the system:

3 Let us note, that in round-based computations, all deliver() events happen during
the receive step.

4 A. Shaer et al.

– Global hypervisor. There exists just one global hypervisor that controls
all the processes in the system.

– Local hypervisor. There is a hypervisor that controls p for each process p.
Each local hypervisor can communicate with the other local hypervisors.

3 Byzantine Detection and Replacement

Many various algorithms exist for solving different problems given Byzantine
processes (some of the algorithms require a restriction on the number of Byzan-
tine participants). In order to detect Byzantine processes, it is necessary that
participants running the distributed algorithm report and audit activities per-
formed by each other. Let us observe that given t + 1 or more testimonies for
process pj as faulty, pj is Byzantine as there exists at least one correct process
suspecting pj with correct evidences (i.e., there exists at least one correct process
that observed a misbehavior from pj). On the other hand, in case there are at
least one and less than t + 1 testimonies on pj being Byzantine, then at least
one process is Byzantine among the reporting processes and pj . Unfortunately,
in this case it is not possible to detect who is the Byzantine process but it is
possible to identify a group of processes that collectively exhibits a bad behavior
and that for sure contains the Byzantine process.
In the heart of the detection, we expect two main parts: fast and slow. The
fast part is run by the processes as long as there is no Byzantine activity. When
Byzantine activity is discovered the slow part takes place and replaces the Byzan-
tine processes that acted in a two faced fashion, enforcing the system to continue
beyond the fast part. We use the term fast termination for a scenario in which
the fast part is successfully completed.

Thus, our problem can be summarized by adding the following properties to
the specification of the original Byzantine agreement problem:

– Completeness. A process pi acting two-faced in a manner that eliminates
fast termination is suspected by some correct process pj .

– Sacrifice. If process pi is suspected by at least t + 1 processes, pi is the
only one to be replaced. Otherwise, pi and the processes that suspect pi are
replaced.

Note, that the completeness above somewhat resembles game theory con-
sideration, enforcing Byzantine process that would like to survive to allow the
system to terminate fast, and the best global utility is achieved.

4 Byzantine Free Fast Termination

We suggest a Byzantine agreement protocol composed of fast and slow parts.
As long as there is no indication of a Byzantine activity, such that is causing the
slow algorithm to be executed, only the fast algorithm takes place (Algorithm 1).
Combined with the capability of speculative execution and roll back, the actual

Bee’s Strategy Against Byzantines 5

execution is only two rounds (rounds 1 and 2 of Phase 1). Contrarily, when a
testimony of Byzantine activity has been discovered, processes start to execute
the slow algorithm (Algorithms 3 or 4).

Optimistically, all processes are assumed to be correct and start with the
fast algorithm. When a Byzantine activity is detected by a correct process, the
correct process notifies other processes, essentially, invoking the slow algorithm.

Preliminaries. In our schemes, a process p is replaced whenever enough tes-
timonies of a two-faced behavior of p are collected. When there is no sufficient
number of testimonies for a two-faced behavior of a particular process p, several
replacements may take place. A replacement may be scheduled for the processes
that provide the testimonies (possibly as a sacrifice action), and also for the
process that is blamed to be two-faced.

A consensus vector of n inputs is required for maintaining the replicated
state machine as described, for example in [3]. We are interested in providing
a consensus vector solution with Byzantine detection, as we define next. The
properties of the consensus vector task are defined in terms of n inputs. In a
more formal way:

– Agreement. All non-faulty processes agreed on the same vector. There are
not two non-faulty processes that decide on different vectors.

– Validity. Let V be the decision vector. ∀i ∈ N , if pi is correct then vector[i]
is the input value of pi.

As for the detection properties, the following are defined:

– Completeness. A process pi acting in a two-faced manner that causes the
system not to decide in a fast termination fashion is suspected by some
correct process pj (and eventually replaced by the hypervisor).

– Sacrifice. If process pi is suspected by at least t + 1 processes, pi is the
only one to be replaced. Otherwise, pi and the processes that suspect pi are
replaced.

The Fast Algorithm (Algorithm 1). The fast algorithm takes place in the first
three rounds following a consensus invocation. In the first round (lines 1−2), each
process sends its input value while in the second round (lines 3−5) each process
sends the values it received in the previous round. After these two rounds, each
process looks for conflicting messages as an indication for Byzantine activity and
extracts a suspect list. In the third round, a process sends a bit (an indication bit)
with value of 1 (suspect message) as an indication for Byzantine activity if such
activity is detected. Then, processes start a new binary consensus invocation
(phase 2 line 9). The input value is determined as follows: if a process receives
suspect messages, the process uses 1 as an input value and uses 0 otherwise.

Either way, starting from this point, the processes make a speculative ex-
ecution of the consensus. The processes use the consensus vector of the first
two rounds as a decision value, save the state before the consensus execution
and concurrently, start the consensus and a new fast algorithm. If the decision

6 A. Shaer et al.

value is 0, then the speculative execution appears to be the right execution and
the saved state is discarded. Otherwise, the decision value equals 1, meaning a
Byzantine activity occurred. The processes roll back to the state before making
the consensus and start the slow algorithm that will replace the Byzantine pro-
cesses that cause disagreement on the input vectors. The relevant suspect lists
that have been recorded in the corresponding incarnation of the fast algorithm
is used by the slow one.

An early stopping Byzantine agreement is used to agree on the indication bit.
For example, one may use the algorithm suggested in [?,4]. Such an early stopping
algorithm terminates in min{t+1, f+1} rounds, where t is the maximum number
of Byzantine and f is the actual Byzantine processes.

Algorithm 1 Fast Algorithm for process pi, Denote by N the group of processes’
identities, by vi, the input value of process pi:

Process fields (initialized with each invocation):
vector = [⊥, . . . ,⊥]
vectors = [⊥, . . . ,⊥]
slow = 0 , suspects = ∅

Phase 1:
Round 1:

1: ∀j ∈ N : send vi to pj
2: on receive of vj from pj : vector[j] = vj

Round 2:
3: ∀j ∈ N : send vector to pj
4: on receive of vectorj from pj : vectors[j] = vectorj

. Concurrently decides vector and speculatively executes the rest
Round 3:

5: suspects = getSuspects(vectors) . check for conflicts
6: if (|suspects| ≥ 1) then ∀j ∈ N : send ′1′ to pj . indication for suspicion
7: on receive of ′1′ from pj : slow = 1

Phase 2:
8: if BA.decide(slow) = 1 then . BA - optimal early stopping Agreement
9: role back state and apply SLOW algorithm with suspects list

The getSuspected function is used in the third round of the first phase. This
function is used to detect Byzantine processes based on the received messages
of the first two rounds. The function input is vectorsi, a vector of vectors that
represents all the received messages of the two rounds. The value of vectorsi[k][j],
k, j ∈ N , represents the value of pj as received by pk in the first round. The value
of vectorsi[k][j] has been sent to pi by pk during the second round (if k = i then
vectorsi[i][j] is known after the first round).

At the beginning, the function finds Byzantine processes and removes their
values from vectorsi. Then the function searches for suspected processes. By
analysing the vector it is possible to use a voting approach for each value pro-

Bee’s Strategy Against Byzantines 7

posed on the basis of the value received during the exchanges in the first two
rounds. Majority of process pj is the most frequent value in {vectors[i][j] : i ∈
N}, where N is the unique processes’ identifier.

In order to find faulty processes based on vectorsi, the getSuspects function
checks, for each process pk, if there are at least n − t processes that sent the
same value in the second round, otherwise pk is faulty. This check is done by
examining the k-th entry of each vector in vectorsi. Then, the function counts
how many times pk provides a value v for pj (given by vectorsi[k][j]), such that v
and the majority value for pj are different. If it counts more than t occurrences,
pk is faulty. The function then checks, that the value received from pk in the first
round equals the majority value for pk. After finding faulty process (or processes),
their value is removed from vectorsi. However, when at least one faulty process
had been found, less than t + 1 testimonies are required to discover additional
faulty processes. Finally, when no more faulty processes can be discovered, the
remaining processes’ conflicts are considered to be the suspected processes only.
The function returns a union of the faulty and suspect groups.

Algorithm 2 Description of the function getSuspects(vectors) for process pi
1: procedure getSuspects(vectors)
2: maxFaults = t
3: faulty = ∅
4: repeat
5: newFaulty = ∅
6: for k ∈ N \ faulty do
7: majorityDiff = {j ∈ N \ faulty : vectors[k][j] 6= majority(j)}
8: if (majority(k) = ⊥) OR (vectors[i][k] 6= majority(k))

OR (|majorityDiff | ≥ maxFaulty + 1) then
9: newFaulty = newFaulty ∪ {k}

10: for k ∈ newFaulty do
11: vectors[k] = [⊥, ...,⊥]
12: ∀j ∈ N : vectors[j][k] = ⊥
13: maxFaults = t− |faulty|
14: faulty = faulty ∪ newFaulty
15: until (newFaulty = ∅ OR |faulty| = t)
16: suspects = {k : k ∈ {i, j} s.t. ∃j,i∈N\faulty vectors[j][i] 6= majority(i)}
17: return faulty ∪ suspects

18: procedure majority(k)
19: if vectors[i][k] = ⊥ then
20: return ⊥
21: return v s.t. |{j ∈ N : vectors[j][k] = v}| ≥ n− t, ⊥ otherwise

The first two rounds of the algorithm are based on the exponential informa-
tion gathering (EIG) Byzantine agreement algorithm introduced in [2]. In the

8 A. Shaer et al.

first round, each process sends its own input value. In round r > 1, each process
sends all the messages it receives in round r − 1.

The following definitions and proofs are used to explain the detection pro-
cess of the fast algorithm. The main detection process is done by the function
getSuspects (Algorithm 2) after collecting messages of two rounds. The function
starts with identification of the Byzantine processes, then the function finds sus-
pect processes using pi messages (i.e., from pi’s point of view). The definitions
c-order lie with respect to pi and A c-discoverable with respect to pi are used to
explain the detection of Byzantine process and the definition pi co-suspects pj
and pk is used for explaining the detection of suspected processes. Then lemmas
are used, based on those definitions, to prove the correctness of the detection
algorithm. First, getSuspects function tries to identify Byzantine processes by
finding A c-discoverable with respect to pi processes. Then, identifies the suspects
process by looking for processes pj , pk such that pi co-suspects pj and pk.

Definition 1. pi co-suspects pj and pk. Let r > 1, process pi co-suspects pj
and pk if in round r, pj has sent to pi value v, which supposed to be the value
that pk sent in round r− 1, while a majority of processes have sent value v′ 6= v
to pi as the value sent by pk in round r − 1.

Definition 2. c-order lie with respect to pi. Let c ≥ 1, C - a correct pro-
cesses group of size c, called the lied group, pi ∈ C. There are two kinds of
c-order lie:

– Two-faced. Process pj , j ∈ N/C sends value v to all processes in C and a
different value (or values) to others not in C.

– Anomalous. ∀pi ∈ C, pi co-suspects pj and pk, k ∈ N

A better understanding of the difference between two-faced and anomalous re-
quires a look in Algorithm 1. In the first round only one value, the input value,
is sent. In the second round, n values are sent (as a single message). A two-faced
lie can be made in the first round and be discovered in the second round. In that
case, in the first round, the process may send v as its initial value to 0 < c < n
processes and value v′, v 6= v′, to others, but it can only lie concerning a single
value in its message. On the other hand, an anomalous lie can be made in the
second round, where there are n possibilities to lie for each one of the n values.

c-order lie leads to the c-discoverable definition. Usually, given t + 1 testi-
monies for process p to be Byzantine, process p is doomed to be Byzantine.
However, if we already count x Byzantine processes, then only t + 1 − x testi-
monies are required to discover another Byzantine process. Using this fact, the
algorithm starts looking for Byzantine processes using t+ 1 testimonies to find
x Byzantine processes, then uses t−x+ 1 testimonies, and so on, as long as new
Byzantine processes are found. Note, that both lies are two-faced, but the way
of detecting those lies is different.

Definition 3. A c-discoverable with respect to pi process. Let 1 ≤ c ≤
t + 1, a process pj is c-discoverable with respect to pi if i 6= j, and pj made a
c-order lie to the lied group C, pi ∈ C and:

Bee’s Strategy Against Byzantines 9

Fig. 1. We focus only on messages regarding process p3. p1 co-suspects p2 and p3.
Three processes (including p1) notify p1 that p3 sent 1 at the first round and p2 tells
p1 that p3 sent 0 at the first round.

Fig. 2. p4 sends different values to different processes. p4 is 3-discoverable (C =
{5, 3, 2}) and P7 is 2-discoverable (C = {1, 2}). p4 and p7 will cause the processes
to run the slow algorithm. p4 and p7 will be replaced by the hypervisor then.

– c = t+ 1 or

– c < t + 1, and there is a group G = {k ∈ N : pk is a c′-discoverable with
respect to pi, c

′ > c}, such that |G| > t− c

In Figure 1, we focused only on messages involving p3, even though other
messages are sent as well. In the first round p1, p2 and p4 receive the value 1
from p3. In the second round, p4 and p1 notify p1 (p1 sends the message to itself),
that p3 sent 1 in the first round, while p2 claims that the value 0 had been sent
by p3. In that case, p1 has two processes, including itself, that report 1, and one
process that reports 0. p1 cannot identify whether p3 or p2 are faulty and p1
suspects them both. p1 co-suspects p2 and p3. Figure 2 depicts the case in which
p4 and p7 are 4 and 3-discoverable, respectively. The algorithm first detects p4
and only then can detect p3.

Lemma 1. If p is a c-discoverable with respect to pi, then p is detected as Byzan-
tine by pi.

Proof. The proof is given by decreasing induction on the value of c, 1 ≤ c ≤ t+1,
starting with c = t + 1 as the base case. Let c = t + 1, pi has t + 1 testimonies
claiming pj as faulty. Since there are at most t faulty processes, at least one of
them is correct. Thus pj is faulty.

10 A. Shaer et al.

The inductive step. Assuming the claim is correct for c < t+ 1, we show its
correctness for c′ = c− 1. By definition, there is a group of processes G wherein,
each process is c′′-discoverable with respect to pj , such that c′′ > c′. Therefore,
by the induction assumption, all processes in G will be detected as faulty by pi.
|G| > t− c′ means that pi has already discovered at least t− c′ faulty processes.
By definition of c-order lie with respect to pi, c refers to the number of correct
processes that have been lied to. Consider the case in which N ′ = N/G, in such
a case any group of c′ processes in N ′ includes at least one correct process. Now,
given c′ testimonies claiming pj as faulty, there is at least one correct process,
therefore pj is faulty and discovered by pi.

The following lemmas can be used for the exponential information gathering
(EIG) Byzantine agreement algorithm [2] where the algorithm terminates in t+1
rounds. In our algorithm, these lemmas hold for the first two rounds of the fast
algorithm.

Lemma 2. Let pj be a c-discoverable with respect to pi in round r ≥ 1. If pj
is two-faced, assuming at least one round left, pi detects pj as faulty in round
r + 1.

Proof. Let pj be a c-discoverable with respect to pi in round r with a two-faced
lie. It follows that pj sends a value v to group C of c correct processes while
sending a different value (or values) to other correct processes. Processes in C
will identify the different value sent to the other processes only in the next round
when all the processes send their receiving value of the previous round.

Lemma 3. Let pj be a c-discoverable with respect to pi in round r ≥ 1. If r > 1
and pj is anomalous, pi detects pj as faulty in round r.

Proof. Let process pj be a c-discoverable with respect to pi in round r > 1 with
an anomalous lie. It follows that pj claims that it received certain messages from
processes in C (of c correct processes), while these messages are different from
the messages received by pi from the processes in C. Since processes in C are
correct, they sent the same message to all processes, including the n− t correct
processes. Let pk ∈ C, when pi checks the received messages from all processes
for pk, pi will identify at least n− t messages carrying the same value as pi got
last round from pk. Giving the fact that pj is c-discoverable with respect to pi, pi
has c testimonies claiming pj for being faulty. Thus, pi can detect pj as faulty.

Remark 1. Lines 5−9 in Algorithm 2 are searching for two−faced or anomalous
processes with maxFaults testimonies.

Remark 2. Line 16 in Algorithm 2 when applied with vectorsi is searching for
pj , pk such that pi co-suspects pj and pk.

Lemma 4. Let pj a c-discoverable with respect to pi, then getSuspects(vectorsi)
for pi will return pj as faulty.

Bee’s Strategy Against Byzantines 11

Proof. Let pj be a c-discoverable with respect to pi, then there is a group G =
{k ∈ N : pk is a c′-discoverable with respect to pi, c

′ > c}, such that |G| > t− c.
Lines 5−9 of getSuspects (Algorithm 2) search for (maxFaults+1) testimonies
of two− faced or anomalous for each process.
The proof is given by decreasing induction on the value of c, 1 ≤ c ≤ t + 1,
starting with c = t + 1 as the base case. Let c = t + 1, pi has t + 1 testimonies
claiming pj as faulty. In line 2, maxFaults is initialized to t, then lines 5 − 9
searching for t+1 testimonies of two−faced or anomalous. A (t+1)-discoverable
with respect to pi process is discovered after executing lines 5− 9.

After discovering a group of c-discoverable with respect to pi, maxFaults is
decreased by the size of this group (line 13).

The inductive step. Assuming the claim is correct for c < t+ 1, we show its
correctness for c′ = c− 1. By definition, there is a group of processes G wherein,
each process is c′′-discoverable with respect to pj , such that c′′ > c′. Therefore,
by the induction assumption, all processes in G will be detected as faulty by pi.
|G| > t− c′ means that pi has already discovered at least t− c′ faulty processes.
Thus, maxFault eventually is updated to be t− |G| and lines 5− 9 will search
for at least maxFault+ 1 (t− c′ + 1) testimonies and pj will be discovered.

Lemma 5. Let pj be a c-discoverable with respect to pi, with two − faced in
round 1 or anomalous in round 2, where pi is a correct process. Then all pro-
cesses moved to the slow algorithm, where at least one process has non-empty
suspect list.

Proof. Let pj be a c-discoverable with respect to pi, by Lemma 4 pi will discover
pj by round 3 and will send indication bit ′1′ to all processes. Then in phase 3 a
Byzantine agreement will be executed. Since pi is correct, all correct processes’
input value will be ′1′, the decision value will be ′1′ and all correct processes will
move to the slow algorithm

Claim. After applying getSuspects(vectorsi) for each correct process pi the fol-
lowing holds:

– Let pj be a Byzantine process that exhibits Byzantine behavior. If pj is a
c-discoverable with respect to pi, pj will be included in pi’s faulty list, where
pi is a correct process. Otherwise, if pi co-suspects pj and pk, k ∈ N , pj will
be included in pi’s suspect list, where pi is correct process.

Proof. Suppose pj acts in a Byzantine two-faced fashion in the first two round of
the fast algorithm. In case pj acts in a c-discoverable fashion, then by Lemma 4 pj
will be discovered as faulty. Otherwise, suppose pi co-suspects pj and pk, k ∈ N ,
by Remark 2 it will be discovered as suspected.

Lemma 6. If there is no Byzantine activity, while running the fast algorithm,
the algorithm satisfies Agreement, validity, and termination.

Proof. Suppose there is no Byzantine activity while running the fast algorithm.
Agreement. Each correct processes received the same messages for creating vectori.

12 A. Shaer et al.

Hence, they agreed on the same vector.
Validity. Since no Byzantine activity done, the value at entry i of the vector (aka
vector[i]) is the input value of pi.
Termination. The algorithm composed of two phases. The first phase (lines 1−7)
contains three rounds and the second phase (lines 8−11) composed of Byzantine
agreement execution (line 8), which is finite due to the Byzantine agreement ter-
mination property, then the algorithm terminates. After termination, the slow
algorithm might be applied (a separate proof for the slow algorithm in the se-
quel).

Theorem 1. The fast algorithm satisfies completeness.

Proof. Suppose there is a Byzantine behavior of c-order lie (either two-faces or
anomalous) occurs by process pk while running the Fast algorithm. suppose the
Byzantine activity occurs at phase 1, by Claim 4 there is a correct process pi that
the return value of applying getSuspects function will return process pk either
as faulty or suspect. Thus, pi will let the other correct processes know about the
Byzantine activity and the Slow algorithm will be scheduled. Otherwise, suppose
that Byzantine activity occurs at phase 2 only, by the speculative execution
method, the fast algorithm keeps running and if the decision value equals 1, a
rollback is scheduled, and the slow algorithm is scheduled to replace the faulty
process that has been detected before running the consensus.

Sacrifice property will be dealt with later in the Slow algorithm.

5 Using Byzantine Agreement Objects

5.1 Global Hypervisor

The Slow Algorithm (Algorithm 3). The algorithm consists of n stages that
run one after another, one for each process. The stage computation steps are
presented in Algorithm 3 and composed of 3 phases. The first 2 phases are done
by the processes, and the third phase is done by the global hypervisor, a single
hypervisor for controlling all the processes as defined earlier. In stage s, phase 1
(lines 1− 7), process pi, such that (s mod n) + 1 = i, is the sender. The sender
sends its input value, vi, to all the other processes. Then the processes invoke
an initialized version of a Byzantine consensus on vi. Process pj sets the suspect
variable to 1 (line 7) if an agreement is reached, but the decision value is differed
from the received value, or pj had suspect pi in the fast algorithm already. In
that cases, pj suspects pi. In phase 2 (lines 8 − 10) each process, with suspect
variable set to 1, sends a suspect message to the global hypervisor (line 10).

The hypervisor can decide to eliminate or replace a process based on the
testimonies of other processes. In phase 3 (lines 11−14), if the hypervisor receives
at least t+ 1 testimonies claiming that process pi is faulty, pi is doomed to be a
Byzantine process since at least one non-faulty process’s testimony exists. If the
number of testimonies is less than t+ 1, it is unclear whether pi is Byzantine or

Bee’s Strategy Against Byzantines 13

Algorithm 3 Code for process pi and hypervisor in stage s, each process starts
with suspect list it discovered in the fast algorithm:

Process fields: ini[1 . . . n] initially [null, . . . ,null],
suspect = 0
suspects = initialized from fast algorithm
BA[1 . . . n] initially [null, . . . ,null]

Phase 1 of stage s:
1: if s (mod n)+1 = i then
2: send vi to all processes
3: else . upon receiving vj from pj
4: ini[j] = vj
5: deci[j] = BA[j].decide(vj) . BA - Byzantine Agreement object
6: if deci[j] 6= ini[j] OR j ∈ suspects then
7: turn on hypervisor ; suspect = 1

Phase 2 of stage s:
8: if s (mod n)+1 6= i AND suspect = 1 then
9: j = s (mod n)+1

10: send suspect(j) to hypervisor

Hypervisor code:

Phase 3 of stage s: . Let P = {i1, . . . , ik} group of processes that send suspect(i)
messages.

11: if (k > t) then
12: replace pi
13: else
14: ∀j ∈ P ∪ {i}: replace pj

not. Either the testimonies are correct and pi is Byzantine, or the t Byzantine
processes worked together to incriminate pi. Thus, in this case, the hypervisor
has to replace them all, i.e., pi and the other processes that sent the testimonies.

By this approach, once Byzantine activity occurs by sender process pi, it will
be replaced by the hypervisor. Still, sometimes some correct processes would
be replaced along with pi. As a conclusion, the addition of third party (the
hypervisor) cannot identify Byzantine process pi unless there are at least t + 1
processes that claim pi is Byzantine. Otherwise, in the worst case scenario, the
only possibility left is to suspect all the t + 1 processes. That way, in all cases
Byzantine process pi that has been discovered in the fast part is doomed to be
replaced at stage s′, such that (s′ mod n) + 1 = i. At the end of the n stages,
each Byzantine process that has been discovered in the fast algorithm will be
replaced and each non-faulty process will have the same vector of values. The
next theorem summarizes the above observations.

Theorem 2. Algorithm 3 satisfies agreement, validity, and termination.

14 A. Shaer et al.

Proof. Agreement. The algorithm consists of n stages, at each stage, all the
correct processes agree on the same value for process pi with s(mod n) + 1 = i
through a Byzantine consensus (line 5). Eventually, after n stages, all correct
processes received the same n values representing the vector of size n.
Validity. For each entry i in the vector a consensus had been made at stage
s, such that i(mod n) + 1 = i. Validity, by definition, concerns only the input
value of correct processes. If the sender is correct, it sent the same value, v to
all processes in phase 1 (line 2). Then Byzantine agreement is invoked and all
correct processes hold the same input value v. By validity property of Byzantine
consensus, the decision value is v.
Termination. The algorithms consist of n stages. Each stage composed of three
phases. The first phase contains one round and Byzantine agreement execution
(lines 1−7), which is finite due to the Byzantine agreement termination property.
The second phase lasts for one round (lines 8− 10) and finally, the third phase
(lines 11−14) contains the hypervisor part which requires one round. Given that
stage is finite, n stages are also finite, thus the algorithm terminates.

Figures 3 to 6 describe the various scenarios for the case of n = 4, t = 1.

Fig. 3. P1 sends wrong value to P3. P3 suspects P1 and both replaced by the hypervisor.

Fig. 4. P1 sends different values such that P2, P3 suspect P1, and P1 replaced by the
hypervisor.

Bee’s Strategy Against Byzantines 15

Fig. 5. P1 sends different values such that there is no agreement, and P1 replaced by
the hypervisor.

Fig. 6. P1 non-faulty, but incriminated by P3. Both replaced by the hypervisor.

5.2 Local Hypervisor

In this part, we assume a different hypervisor, namely, a local hypervisor for
each process. The local hypervisor can be turned on by its process and assumed
to be correct all the time. The local hypervisors can send and receive suspects
messages (as explained in the sequel) but cannot send messages to the processes.
The hypervisor can replace the process based on the suspect messages.

Algorithm 4. The algorithm starts the same as Algorithm 3, in phase 1 there is
a sender process sending its own input value to all processes, following by Byzan-
tine consensus invocation for the received value, and suspect if the decision value
is different from the received value or if the sender had already suspected in the
fast algorithm. Algorithm 4 differs from Algorithm 3 following the detection part.
A process that suspects the sender turns on its local hypervisor as an indication
for the detection. In phase 2, the local hypervisor sends suspect messages to all
other hypervisors. During phase 3, after all suspects messages of phase 2 have
been received, the local hypervisor that controls the sender replaces the sender
as a consequence of receiving at least one suspect message. The local hypervisor
of the other processes, different from the sender, replaces their hosted process
only when there are less than t+ 1 suspect messages.

Theorem 3. Algorithm 4 satisfies agreement, validity, and termination.

Proof. Agreement. The algorithm consists of n stages, at each stage, all the
correct processes agree on the same value for process pi with s(mod n) + 1 = i
through a Byzantine consensus (line 5). Eventually, after n stages, all correct
processes receive the same n values representing the vector of size n.

16 A. Shaer et al.

Algorithm 4 Code for separated hypervisors and process pi in stage s, each
process starts with suspect list it discovered in the fast algorithm:

local hypervisor turned off except for pi, such that s (mod n)+1 = i
Process fields:

ini[1 . . . n] initially [null, . . . ,null],
BA[1 . . . n] initially [null, . . . ,null] . BA - Byzantine Agreement object
suspects = initialized from fast algorithm

Phase 1 of stage s:
1: if s (mod n)+1 = i then
2: send val(vi) to all processes
3: else . upon receiving vj from pj
4: ini[j] = vj
5: deci[j] = BA[j].decide(vj) . BA - Byzantine Agreement object
6: if deci[j] 6= ini[j] OR j ∈ suspects then
7: turn on local hypervisor

Hypervisor code (for pi’s turned on (active) local hypervisor):

Phase 2 of stage s:
8: if s (mod n)+1 6= i then
9: j = s (mod n)+1

10: send suspect(j) to all active hypervisors
11: else . counter-testimony for all active hypervisors
12: ∀j ∈ N s.t. pj ’s hypervisor is active: send suspect(j) to pj ’s local hypervisor

Phase 3 of stage s: . k - amount of received suspect(i) messages.
13: if s (mod n)+1 = i AND k > 0 then
14: replace pi
15: else if k ≤ t then . upon receiving k suspect(j) messages
16: replace pi

Validity. For each entry i in the vector a consensus had been made at stage
s, such that i(mod n) + 1 = i. Validity, by definition, concerns only the input
value of correct processes. If the sender is correct, it sent the same value, v, to
all processes in phase 1 (line 2). Then Byzantine agreement is invoked and all
correct processes hold the same input value v. By validity property of Byzantine
consensus, the decision value is v.
Termination. The algorithms consist of n stages. Each stage composed of three
phases. The first phase contains one round and Byzantine agreement execution
(lines 1−7), which is finite due to the Byzantine agreement termination property.
The second phase lasts for one round (lines 8− 12) and finally, the third phase
(lines 13− 16) which requires one round. Given that stage is finite, n stages are
also finite, thus the algorithm terminates.

Theorem 4. The slow algorithm satisfies completeness and sacrifice.

Bee’s Strategy Against Byzantines 17

Proof. Completeness. As seen in the algorithm, a process can lie either as the
sender (line 2) and make up to processes to be restarted, or as a receiver (line 7)
and it will make itself and the sender be restarted. Either way the faulty process
will pay for it.
Sacrifice. Following lines 13 − 16, if there is not enough, e.g. at least t + 1,
receivers that claims the sender (process i with s (mod n) + 1 = i) for being
faulty, the sender and the reporting receivers will be restarted as an act of
sacrifice. Otherwise, the sender alone will be restarted.

Theorem 5. The combinations of Algorithm 4 and Algorithm 1 satisfies Com-
pleteness and sacrifice.

Proof. Completeness. As already mentions, the fast algorithm satisfy com-
pleteness (Theorem 1) by recording and delivering the faulty and suspects pro-
cess list to the slow algorithm. Then the slow algorithm continues satisfies Com-
pleteness (Theorem 4) collect more evidences (if there is any) for Byzantine
behavioral.
Sacrifice. Restart of processes is done only in the slow part. As seen earlier
(Theorem 4), the slow algorithm satisfies sacrifice.

Figures 7 to 9 describe the various scenarios for the case of n = 4, t = 1.

Fig. 7. P1 sends wrong value to P3. P3 suspects P1 and both replaced by their local
hypervisors.

18 A. Shaer et al.

Fig. 8. P1 sends different values such that P2, P3 suspect P1, and P1 replaced by its
local hypervisor.

Fig. 9. P1 non-faulty, but incriminated by P3. Both replaced by their local hypervisors.

6 Conclusion

This paper presented an approach to detect and remove Byzantine processes
from consensus-based computation. Long-lived computation relying on consen-
sus (e.g., state machine replication) may benefit from our solution as it allows to
continuously monitor the computation and inhibits Byzantine processes to act,
if they wants to remain in the computation.

References

1. Abraham, I., Dolev, D. “Byzantine agreement with optimal early stopping, optimal
resilience and polynomial complexity, Proc. of the 47th Annual on Symposium on
Theory of Computing, (STOC), 2015.

2. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R. “Shifting gears: Changing algo-
rithms on the fly to expedite byzantine agreement,” Information and Computation
97(2), 205-233 (1992).

3. Binun, A., Coupaye, T., Dolev, S., Kassi-Lahlou, M., Lacoste, M., Palesandro, A.,
Yagel, R., Yankulin, L., “Self-stabilizing byzantine-tolerant distributed replicated
state machine,” Proc. of the 18th International Symposium on Stabilization, Safety
and Security of Distributed Systems, (SSS) 2016.

Bee’s Strategy Against Byzantines 19

4. Dolev, D., Reischuk, R., Strong, H.R., “Early stopping in byzantine agreement,”
J. ACM 37(4), 720-741 (Oct 1990)

5. Kung, H.T., Robinson, J.T., “On optimistic methods for concurrency control,”
ACM Trans. Database Syst., 6(2), 213-226 (Jun 1981)

6. Mostfaoui, A., Raynal, M., “Intrusion-tolerant broadcast and agreement abstrac-
tions in the presence of byzantine processes,” IEEE Transactions on Parallel and
Distributed Systems 27(4), 1085-1098 (April 2016).

7. Pease, M., Shostak, R., Lamport, L., “Reaching agreement in the presence of
faults,” J. ACM 27(2), 228-234 (Apr 1980).

