
Technical Report

Dmitry Zbarski

May 2014



Abstract

This is a technical report of tests that were done to compare simple LZ77 algorithm against LZ77 with EAC
extension.



Contents

1 Introduction 3

2 CFC - Comma Free Coding 4
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 LZ77 algorithm 6
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 EAC extension 9
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Test program 12
5.1 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.1 bit string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.2 bit string writer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.3 block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.4 cfc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.5 delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.6 log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.7 lz77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3.8 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4 Executable programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.1 eac encode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.2 eac decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.3 generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.1 tests/graphgen.php . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.2 tests/jsonReport.php . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.3 tests/performance.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.4 tests/perf single.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.5 tests/sanity.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.6 Additional parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6.1 Interactive Web based graphs viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6.2 Build system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.6.3 Project documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



A Partial list of graphs 19
A.1 File - 1.raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2 File - gen-80-0.01-0.1.bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
A.3 File - sp4rpt.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.4 File - random64.bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2



Chapter 1

Introduction

This is a technical report of work that was done to check whether EAC can improve simple LZ77
experimentally. To check this a program was written that implements both simple LZ77 algorithm and LZ77
with EAC extension. This document contains description of all algorithms that were used and programmed,
description of program and results of running simple LZ77 and LZ77 with EAC extension on sample files.

List of algorithms that were used:

CFC Comma Free Coding [2]

LZ77 Lempel-Ziv data compression algorithm that maintains sliding window during compression [1]

EAC Entropy Adaptive Coding is an extension for data compression algorithm that maintains sliding
window during compression [3]

3



Chapter 2

CFC - Comma Free Coding

2.1 Overview

Comma free coding [2] is an algorithm that allows coding arbitrary length sequences of bits1. This
algorithm will be used later by simple LZ77 algorithm to effectively code any data. In simple words the
algorithm works as follows. Let k be any positive integer number and let b(k) be a binary expansion of
integer k. Further let’s define e(i) = 0i−1 ∗ 12. Then CFC encodes any positive integer number like this
cfc(k) = e(|b(k)|) ∗ |b(k)| ∗ b(k). Clearly CFC is bijection between [1,∞) and {0, 1}∗3.

cfc encode This function encodes any given bit string (bits are actually representing some number) using
CFC algorithm and returns bit string (a sequence of bits) that represent encoded value. See
algorithm 1

cfc decode This function decodes CFC encoded value stored in a bit string. Return value is actually a
pair of decoded value and length of CFC bit string that was detected during decoding process.
See algorithm 2

e Supplementary function that gets bit string as parameter and returns bit string consisting of
len(bitString) zeroes followed by 1 one. For example for bit string 001011 value returned is
000001. See algorithm 3

e inverse Supplementary function that gets bit string and returns number of zeroes till first one is met
plus one. For example if bit string is 00001, then value returned is 5. See algorithm 4

2.2 Algorithm

Functions that appear in algorithms below, but not described fully as separate algorithms:

• len(bitString) - this function receives as an argument bit string and returns it’s length.

• bitConcat(bitString1, bitString2) - this function receives 2 or more bit strings as arguments and
returns their concatenation.

• bitSubStr(bitString, offset, length) - this function receives 3 arguments: bitString, start offset and
length and returns part of bitString ’length’ length that starts at offset.

1For full explanation of how this algorithm works look at [2, Appendix Comma-Free Coding of an Unbounded Integer]
2∗ is a concatenation
3∗ is the Kleene star

4



Algorithm 1 Comma Free Coding - encode

1: function cfc encode(bitString)
2: l← len(bitString)
3: return bitConcat(E(l), l, bitString)
4: end function

Algorithm 2 Comma Free Coding - decode

1: procedure cfc decode(bitString)
2: l len← E INV ERSE(bitString)
3: l← bitSubStr(bitString, l len, l len)
4: output← bitSubStr(bitString, l len + l len, l)
5: return (output, l len + l len + l)
6: end procedure

Algorithm 3 Comma Free Coding - function e

1: function e(bitString)
2: i← 0
3: while i < len(bitString)− 1 do
4: output[i]← 0
5: end while
6: output[i]← 1 return output
7: end function

Algorithm 4 Comma Free Coding - function e−1

1: function e inverse(bitString)
2: i← 0
3: while bitString[i] 6= 1 do
4: i← i + 1
5: end while
6: i← i + 1 return i
7: end function

5



Chapter 3

LZ77 algorithm

3.1 Overview

LZ77 is an algorithm was published in papers by Abraham Lempel and Jacob Ziv in 1977. In tests that
were performed algorithm was not used in the exact manner as it was published for the first time [1]. Instead
it was implemented as it was described in ”The Sliding-Window Lempel-Ziv algorithm is asymptotically
optimal.” [2]. The latter implementation uses CFC.

In this implementation in compressed data each bit string is coded with it’s length encoded using CFC
followed by either data itself or an index in sliding window where coded data is found. To determine whether
data itself is following length or an index, size of bit string used. If size of bit string less than or equals to
log(window size), then uncompressed data follows. Otherwise an index in sliding window follows (index is
coded using log(window size bits).

To determine window size, first CFC encoded value can be used. As noted above, first ’window size’ bits
are not compressed. Therefore first CFC coded number indicates what window size was used to compress
data. Knowing window size allows us to compute log(window size) and distinguish between compressed
chunks and uncompressed chunks of data.

lz77 encode given window size and optional training sequence1, compresses data and returns it as bit
string (see algorithm 5).

lz77 decode given data, optional training sequence, optional winSize and optional original size (size of data
after decompression) decompresses data and returns pair of decompressed data and length of
compressed data that was processed (see algorithm 6).

3.2 Algorithm

This section contains pseudo-code of LZ77 compression and decompression algorithms.
These algorithms were adapted to be able to get training sequence (which is a sliding window that

precedes current data). This is to allow later reuse these algorithms in EAC extension4.

• len(bitString) - this function receives as an argument bit string and returns it’s length.

• bitConcat(bitString1, bitString2) - this function receives 2 or more bit strings as arguments and
returns their concatenation.

• bitSubStr(bitString, offset, length) - this function receives 3 arguments: bitString, start offset and
length and returns part of bitString ’length’ length that starts at offset.

• findBestMatch(bitString1, bitString2) - returns pair, offset and length, of longest bit string in
bitString1 that matches length first bits in bitString2.

• bitAppendNumber(bitString, number) - appends number’s bit representation to bitString.

1training sequence - a number of bits that are not compressed in the beginning of data that are needed to create first window

6



• bitGetNumber(bitString, offset) - return number representation stored at offset offset in bit string
bitString.

• NUMBER BITS - represents how many bits long our numbers.

Following is a pseudo-code of compression (algorithm 5) and decompression (algorithm 6) algorithms.

Algorithm 5 Simple LZ77 compression algorithm

1: function lz77 encode(winSize, trainingSequence, data)
2: output← new bitString . output is a bit string
3: i← 0 . index in data that we are currently on
4: lastWritten← 0 . index in data till where we already wrote
5: if trainingSequence is empty then . Write first winSize bits uncompressed
6: output← bitConcat(output, cfc encode(winSize))
7: for i← 0, winSize do
8: output← bitConcat(output, data[i])
9: end for

10: lastWritten← winSize− 1
11: end if
12: while i < len(data) do
13: window ← bitSubStr(data, i− winSize, winSize)
14: remainder ← bitSubStr(data, i, len(data))
15: (offset, length)← findBestMatch(window, remainder)
16: if length > log(winSize) then . If found match that is long enough, replace it
17: if lastWritten 6= i− 1 then . Write uncompressed bits if needed
18: output← bitConcat(output, cfc encode((i− 1)− lastWritten))
19: output← bitConcat(output, bitSubStr(data, lastWritten + 1, (i− 1)− lastWritten))
20: lastWritten← i− 1
21: end if
22: output← bitConcat(output, cfc encode(length))
23: output← bitAppendNumber(output, offset)
24: i← i + length
25: lastWritten← i− 1
26: else . Match found is too short, continue
27: i← i + 1
28: end if
29: end while
30: return output
31: end function

7



Algorithm 6 Simple LZ77 algorithm decompression

1: function lz77 decode(data, trainingSequence, winSize, outputSize)
2: if winSize = 0 then
3: winSize = cfc decode(data)
4: end if
5: i← 0 . index in data that we are currently on
6: output← new bitString . output is a bit string
7: if trainingSequence is not null then . prepend training sequence to data
8: data← bitConcat(trainingSequence, data)
9: i← len(trainingSequence)

10: end if
11: while i < len(data) do
12: if outputSize 6= 0 ∧ len(output) ≥ outputSize then
13: break
14: end if
15: (length, cfcLength)← cfc decode(bitSubStr(data, i, len(data)− i))
16: i← i + cfcLength
17: if length > log(winSize) then . offset follows
18: offset← bitGetNumber(data, i)
19: output← bitSubStr(output, len(output)− offset, length)
20: i← i + NUMBER BITS
21: else . uncompressed data follows
22: output← bitConcat(output, bitSubStr(data, i− offset, length))
23: i← i + length
24: end if
25: end while
26: return (output, i)
27: end function

8



Chapter 4

EAC extension

4.1 Overview

EAC - Entropy Adaptive Coding, is an extension that should improve any existing sliding window
algorithm. EAC splits data into blocks and tries to compress each block with all available window sizes.
Window sizes that are tested are powers of 2 from 8 to size of block. For each block, window size that
produces best compression ratio is selected. To simplify coding of window size changes, we will simply code
log(window size) between blocks. Window size of first block can be known from CFC value coded in start
of it. 1

It’s worth to note that because data is split into blocks and each block does not depend on output of
any other block (except window size change between blocks) it is very easy to parallelize this algorithm.
Test program that was built to actually test and that is described in next chapter actually utilizes this fact
to improve performance.

First block of data is used as training sequence and therefore is not compressed. Later each block uses
data from previous block for training sequence. Therefore sliding window, when starting compression of
each block, lies in previous block. As compression continues, sliding window slides gradually from previous
block into current.

After compression of block is complete it can be written to file only after all previous blocks were
compressed. This is because prior to finishing compression of previous blocks, we do not know their size. In
this chapter we will only look at sequential version of algorithm to simplify things and ease understanding
of algorithm. But in test program, algorithm was actually parallelized to improve performance and speed
up tests of files.

eac encode given data and block size compresses data and returns it as bit string (see algorithm 7

eac decode given data decompresses it and returns as bit string 8

4.2 Algorithm

This section contains pseudo-code of EAC compression and decompression algorithms.
List of functions used in these algorithms, which implementation is out of scope of this report:

• len(bitString) - this function receives as an argument bit string and returns it’s length.

• bitConcat(bitString1, bitString2) - this function receives 2 or more bit strings as arguments and
returns their concatenation.

• bitSubStr(bitString, offset, length) - this function receives 3 arguments: bitString, start offset and
length and returns part of bitString ’length’ length that starts at offset.

• bitAppendNumber(bitString, number) - appends number’s bit representation to bitString.

1For details why, see chapter LZ77 algorithm

9



• bitGetNumber(bitString, offset) - return number representation stored at offset offset in bit string
bitString.

• split(bitString, size) - splits bitString bit string into multiple bit strings where each bit string’s length
is length bits long (except may be last bit string).

• shift(array) - returns pair of first element of array and array without first element.

• NUMBER BITS - represents how many bits long our numbers.

Following is a pseudo-code of compression (algorithm 5) and decompression (algorithm 6) algorithms.

Algorithm 7 EAC compression algorithm that uses LZ77 algorithm

1: procedure eac encode(blockSize, data)
2: blocks← split(data, blockSize)
3: output← new bitString
4: (first, data)← shift(blocks)
5: i← 8
6: best← new bitString
7: while i ≤ blockSize do
8: tmp← lz77 encode(i,NULL, first)
9: if len(tmp) < len(best) then

10: tmp← best
11: end if
12: i← i× 2
13: end while
14: output← bitConcat(output, best)
15: prev ← first
16: for block ∈ blocks do
17: best← new bitString
18: i← 8
19: winSize← 8
20: while i ≤ blockSize do
21: tmp← lz77 encode(i, prev, block)
22: if len(tmp) < len(best) then
23: best← tmp
24: winSize← i
25: end if
26: i← i× 2
27: end while
28: output← bitAppendNumber(output, winSize)
29: output← bitConcat(output, best)
30: prev ← block
31: end for
32: return output
33: end procedure

10



Algorithm 8 EAC decompression algorithm that uses LZ77 algorithm

data,trainingSequence,winSize,outputSize

1: procedure eac decode(blockSize, data)
2: output← new bitString
3: trainingSequence← new bitString
4: winSize← 0
5: while len(data) ≥ 0 do
6: (tmp, length)← lz77 decode(data, trainingSequence, winSize, blockSize)
7: output← bitConcat(output, tmp)
8: trainingSequence← tmp
9: data← bitSubStr(data, length, len(data)− length)

10: winSize← bitGetNumber(data, 0)
11: data← bitSubStr(data,NUMBER BITS, len(data)−NUMBER BITS)
12: end while
13: return output
14: end procedure

11



Chapter 5

Test program

5.1 Availability

Sources of program, scripts and test files available at https://github.com/dintel/eac.

5.2 Overview

For testing purposes a program written in C was developed that implements both LZ77, as described
in chapter LZ77 algorithm and EAC as described in chapter EAC extension. C programming language was
chosen because of performance reasons and because C programming language allows relatively easy working
with bit strings.

Program was used on different files to test how both LZ77 and EAC perform in terms of compression
ratio. To ensure that every run of program was correct, files were decompressed in the end to ensure that
original file can be restored. Test of files were run by scripts written in bash. In the end results were stored
in simple CSV1 file.

Data from this file, result.csv, was then used to generate all graphs using gnuplot2 program in Partial
list of graphs. Generation of image files is done by script that is written in PHP programing language.
Additionally a simple interactive web interface was developed to ease inspection of graphs without generating
final graph images.

5.3 Modules

5.3.1 bit string

This module implements a bit string. Bit string is a data type that consists of multiple ordered bits.
List of functions that this module provides:

bit string init - Initialize new bit string

bit string destroy - Destroy bit string

bit string cmp - Compare 2 bit strings

bit string sub cmp - Compare 2 bit substrings

bit string count zeroes - Count number of 0 bits

bit string append bit - Append bit to bit string

bit string get bit - Get value of bit at some index

1CSV - Comma Separated Values. Simple text format to store table data. In this case each value in row was separated by
semicolon (;).

2More information about gnuplot see at their official website http://www.gnuplot.info

12

https://github.com/dintel/eac
http://www.gnuplot.info


bit string substr - Get substring of bit string

bit string concat - Append one bit string to another

bit string concat and destroy - Append one bit string to another and destroy source bit string

bit string copy - Copy substring of bit string to another bit string

bit string read byte - Read up to 8 bits into byte

bit string print - Print bit string

bit string full copy - Copy bit string into another bit string

For detailed information about this module, see bit string module documentation in project documen-
tation (for details how to access project documentation see chapter Project documentation).

5.3.2 bit string writer

This module implements bit string writer that allows writing bit string into file.

• bit string writer init - Initialize new bit string writer

• bit string writer destroy - Destroy bit string writer

• bit string writer write - Write bit string

• bit string writer flush - Flush bit string writer buffer onto disk

• bit string writer write byte - Write some bits of byte using bit string writer

For detailed information about this module, see bit string writer module documentation in project doc-
umentation (for details how to access project documentation see chapter Project documentation).

5.3.3 block

This module is used only by EAC compressor/decompressor. It provides abstraction of block of data
that EAC works with.

List of functions that this module provides:

• block init - Initialize new block

• block destroy - Destroy block

• block update - Update block result

• block is complete - Check whether block is completed

For detailed information about this module, see block module documentation in project documentation
(for details how to access project documentation see chapter Project documentation).

5.3.4 cfc

This module provides CFC related functions.
List of functions that this module provides:

• cfc encode - Encode number using CFC

• cfc decode - Decode CFC encoded number

For detailed information about this module, see cfc module documentation in project documentation
(for details how to access project documentation see chapter Project documentation).

13



5.3.5 delta

This module provides abstraction of how window size changes are read/written between blocks.
List of functions that this module provides:

• nw change encode - Output encoded change in window size

• nw change decode - Decode window size of next block

For detailed information about this module, see delta module documentation in project documentation
(for details how to access project documentation see chapter Project documentation).

5.3.6 log

This module provides macros related to logging when some variable is set to 1.
List of macros that this module provides:

• PRINT VERBOSE - Macro that outputs message only if log verbose flag is set

• PRINT DEBUG - Macro that outputs message only if log debug flag is set

For detailed information about this module, see log module documentation in project documentation
(for details how to access project documentation see chapter Project documentation).

5.3.7 lz77

This module provides functions that implement LZ77 algorithm as it is described in chapter LZ77
algorithm

List of functions that this module provides:

• lz77 encode - Encode block bit string using LZ77

• lz77 decode - Decode block bit string using LZ77

For detailed information about this module, see lz77 module documentation in project documentation
(for details how to access project documentation see chapter Project documentation).

5.3.8 queue

This module provides functions related to queue of compression jobs. Each job tries to compress
block 5.3.3 of data using some window size. Upon completion block is updated with results of compression.
Jobs run asynchronously and number of max threads can be specified when running queue.

List of functions that this module provides:

• queue init - Initialize new queue of jobs

• queue destroy - Destroy queue of jobs

• queue run job - Run new job

• queue add job - Add new job to queue

• queue fetch finished - Fetch first finished job

• queue run - Run queue

• queue destroy job - Destroy job

For detailed information about this module, see queue module documentation in project documentation
(for details how to access project documentation see chapter Project documentation).

14



5.4 Executable programs

5.4.1 eac encode

Usage: eac_encode [OPTION ...] -i INPUT_FILE -o OUTPUT_FILE

Entropy Adaptive Coding - encoder

-b, --block -size=BLOCK_SIZE Block size

-d, --debug Don ’t produce any output

-e, --eac Use Adaptive Entropy Coding

-i, --input=FILE Input file

-n, --window -size=FILE LZ77 window size (ignored when --eac is used)

-o, --output=FILE Output file

-t, --threads=THREADS Number of concurrent threads

-v, --verbose Produce verbose output

-?, --help Give this help list

--usage Give a short usage message

-V, --version Print program version

eac encode program can compress files using either LZ77 or EAC algorithms. By default eac encode
compresses using LZ77 algorithm. If EAC is desired, then –eac switch must be specified.

Additional output verbosity can be enabled by –verbose option. If that’s not enough, specifying –debug
option will enable debug output.

When compressing using EAC algorithm, multiple threads can be used. –threads parameter controls
how many threads should be used during compression process.

By default eac encode produces one line of output where following values are separated by semicolon (;):
1. File size - size of input file in bits

2. Compressed size - size of output file in bits

3. Ratio - compression ratio

4. File longest match - length of longest match found in file during compression

5. Average longest match - average between longest matches in each block (in case LZ77 used equals
to previous value)

6. Standard deviation of longest match - Standard deviation of longest matches of all blocks (in
case LZ77 used equals to 0)

7. Block longest match - space separated list of lengths of longest matches in each block

5.4.2 eac decode

Usage: eac_decode [OPTION ...] -i INPUT_FILE -o OUTPUT_FILE

Entropy Adaptive Coding - decoder

-b, --block -size=BLOCK_SIZE Block size

-d, --debug Don ’t produce any output

-e, --eac Use Adaptive Entropy Coding

-i, --input=FILE Input file

-o, --output=FILE Output file

-v, --verbose Produce verbose output

-?, --help Give this help list

--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

15



eac decode program can decompress files using either LZ77 or EAC algorithms. By default eac decode
decompresses using LZ77 algorithm. If EAC is desired, then –eac switch must be specified.

Additional output verbosity can be enabled by –verbose option. If that’s not enough, specifying –debug
option will enable debug output.

By default eac decode produces one line of output where following values are separated by semicolon (;):
1. Compressed size - size of input file in bits

2. Original size - size of output file in bits

3. Ratio - compression ratio

5.4.3 generator

Usage: generator [OPTION ...] -o OUTPUT_FILE -n SIZE

Entropy Adaptive Coding - generator

-n, --size=FILE Size of file in bytes

-o, --output=FILE Output file name

-p, --probability=NUM Probability of 0 (probability of 1 is calculated

automatically)

-?, --help Give this help list

--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

This is a supplementary program that was used to create some test files. It generates files of given size
where probability of 0 and 1 bits is as specified by -p parameter.

5.5 Scripts

5.5.1 tests/graphgen.php

Usage: ./ graphgen.php <result.csv >

This script is written in PHP programming language and requires PHP interpreter to be installed.
Additionally it requires gnuplot to be installed. It parses result.csv file and generates graphs of results in
tests/images directory.

5.5.2 tests/jsonReport.php

Usage: ./ jsonReport.php

This script generates file viewer/result.json that is later used by Web based interactive graph viewer.

5.5.3 tests/performance.sh

Usage: ./ performance.sh

This script is written in bash. For each file located in tests/files directory it runs perf single.sh script
to test compression and decompression using LZ77 and EAC with windows sizes from 8 to 32768 and block
sizes 64 to 65536 1. Tests are run in parallel, so that all tests for any single file are started simultaneously
and then script waits till they all finish. After all tests are complete all result files in results directory
combined into result.csv file 2.

5.5.4 tests/perf single.sh

Usage: ./ perf_single.sh <file > <block -size > <window -size > [-e]

1window size and block size are doubled at each iteration
2previous result.csv is renamed into result-DATE.csv where DATE is date when result.csv was created

16



This script compresses and decompresses specified file using:
1. If -e specified then EAC algorithm with specified block size.

2. If -e not specified then LZ77 algorithm with specified window size.

After completing it’s run following values separated by semicolon (;) are output into tests/results/FILE-
BLOCK SIZE-WINDOW SIZE.ALGORITHM.result (where FILE is file name, BLOCK SIZE is block size,
WINDOW SIZE is window size and ALGORITHM is either eac or lz77)

1. File name - name of file

2. Block size - block size

3. Window size - window size

4. Algorithm - algorithm that was used during compression/decompression

5. Encode time - time took to compress file

6. Decode time - time took to decompress file

7. Result - SUCCESS in case input and decompressed files match

8. File size - size of input file in bits

9. Compressed size - size of output file in bits

10. Ratio - compression ratio

11. File longest match - length of longest match found in file during compression

12. Average longest match - average between longest matches in each block (in case LZ77 used equals
to previous value)

13. Standard deviation of longest match - Standard deviation of longest matches of all blocks (in
case LZ77 used equals to 0)

14. Block longest match - space separated list of lengths of longest matches in each block

5.5.5 tests/sanity.sh

Usage: ./ sanity.sh

This is a simple sanity test script. It simply compresses and then decompresses each file in tests/files
directory such that it’s size is between 32KB and 50KB. Compression and decompression is done using both
LZ77 and EAC algorithms. After decompression decompressed file is compared to original file. If files match,
then script prints SUCCESS - FILENAME.ALGORITHM (where FILENAME is name of file tested and AL-
GORITHM is algorithm used - eac or lz77). Otherwise script prints FAILED - FILENAME.ALGORITHM.

This script is used to run simple sanity tests of eac encode and eac decode. Each output line of this
script must begin with SUCCESS. If output contains line beginning with FAILED, then there is a bug in a
program1.

5.6 Additional parts

5.6.1 Interactive Web based graphs viewer

Interactive web based graphs viewer is located in viewer directory. To work correctly following require-
ments must be met:

• tests/performance.sh script must be run to generate tests/result.csv file.

1Failure can be caused by limitation of eac encode and/or eac decode programs

17



• tests/jsonReport.sh script must be run to generate viewer/result.json file.

To launch web based graphs viewer just open viewer/index.html file in your browser. You will then be
able to see graphs in your browser. On top of page there is a selector of test file whose results are shown.

5.6.2 Build system

Requirements for building executable files:

• GNU Make (version ≥ 4.0)

• GNU C Compiler (version ≥ 4.8.2)

Project uses GNU Make to build all executable files. All source files compiled using GNU C Compiler.
To build all executable files run

�� ��’make all’ command in project directory. This will build all executable
files: eac encode, eac decode, generator.

5.6.3 Project documentation

Project documentation is written using doxygen inside source code. To extract documentation and gen-
erate HTML files with documentation run command

�� ��’make doc’ in project documentation. Documentation
is generated into ’doc/html’ directory. To read documentation open doc/html/index.html file.

18



Appendix A

Partial list of graphs

A.1 File - 1.raw

19



20



21



A.2 File - gen-80-0.01-0.1.bin

22



23



24



A.3 File - sp4rpt.txt

25



26



27



A.4 File - random64.bin

28



29



30



Bibliography

[1] Jacob Ziv and Abraham Lempel. ”A Universal Algorithm for Sequential Data Compression.” IEEE
TRANSACTIONS ON INFORMATION THEORY, 1977: 337-343.

[2] Aaron D. Wyner and Jacob Ziv. ”The Sliding-Window Lempel-Ziv algorithm is asymptotically optimal.”
Proceedings of the IEEE, 1994: 872-877.

[3] Shlomi Dolev, Marina Kopeetsky and Sergey Frenkel. ”Entropy Adaptive On-Line Compression”

31


	1 Introduction
	2 CFC - Comma Free Coding
	2.1 Overview
	2.2 Algorithm

	3 LZ77 algorithm
	3.1 Overview
	3.2 Algorithm

	4 EAC extension
	4.1 Overview
	4.2 Algorithm

	5 Test program
	5.1 Availability
	5.2 Overview
	5.3 Modules
	5.3.1 bit_string
	5.3.2 bit_string_writer
	5.3.3 block
	5.3.4 cfc
	5.3.5 delta
	5.3.6 log
	5.3.7 lz77
	5.3.8 queue

	5.4 Executable programs
	5.4.1 eac_encode
	5.4.2 eac_decode
	5.4.3 generator

	5.5 Scripts
	5.5.1 tests/graphgen.php
	5.5.2 tests/jsonReport.php
	5.5.3 tests/performance.sh
	5.5.4 tests/perf_single.sh
	5.5.5 tests/sanity.sh

	5.6 Additional parts
	5.6.1 Interactive Web based graphs viewer
	5.6.2 Build system
	5.6.3 Project documentation


	A Partial list of graphs
	A.1 File - 1.raw
	A.2 File - gen-80-0.01-0.1.bin
	A.3 File - sp4rpt.txt
	A.4 File - random64.bin


