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Abstract

The power of Steiner points was studied in a number of different settings in the context of met-
ric embeddings. Perhaps most notably in the context of probabilistic tree embeddings Bartal and
Fakcharoenphol et al. [8, 9, 21] used Steiner points to devise near-optimal constructions of such em-
beddings. However, Konjevod et al. [24] and Gupta [22] demonstrated that Steiner points do not help
in this context. Specifically, they showed that any probabilistic tree embedding with distortion D that
employs Steiner points can be converted into a probabilistic tree embedding of distortion O(D) that
uses only points of the original metric.

Steiner points were also studied in the context of graph spanners [3], in the context of Euclidean
spanners [27, 19, 28], and in the context of distance preservers [10]. In all these contexts it is known
[3, 27, 19, 28, 10] that Steiner points cannot be used to significantly improve inherent tradeoffs between
the involved parameters. The situation is similar in the context of low-light trees. Specifically, it is
known [17, 19] that essentially the same tradeoff between unweighted diameter and weight that applies
to spanning low-light trees applies to Steiner low-light trees too.

These results may lead to a far-reaching conclusion that Steiner points do not help in metric
embeddings in general. In this paper we show that this is not the case, and demonstrate that Steiner
points do help dramatically in the context of shallow-light trees.

Shallow-light trees [6, 7, 23, 12, 13, 14] combine small weight with small distortion with respect
to a designated root vertex rt (henceforth, root-distortion). Awerbuch et al. [7] and Khuller et al.
[23] showed that for any positive real parameter ǫ > 0, one can simultaneously achieve root-distortion
(1 + ǫ) and weight O( 1

ǫ
) times the weight of the minimum spanning tree w(MST ). Moreover, this

tradeoff is tight up to constant factors. In this paper we show that by using Steiner points one can
simultaneously achieve root-distortion (1 + ǫ) and weight O(log

(

1

ǫ

)

) ·w(MST ). In particular, one can
also construct a Steiner tree with weight O(log n) ·w(MST ) that preserves all distances between rt and
other vertices. Furthermore, we show that up to constant factors this tradeoff is tight. These results
imply that there is an exponential separation between shallow-light trees that use Steiner points and
shallow-light trees that do not use them.

Finally, on the way to these results we also address a number of open questions that were posed by
Khuller et al. [23]. Specifically, we show that the lower bound on the tradeoff between root-distortion
(1 + ǫ) and weight Ω(1

ǫ
) · w(MST ) of spanning shallow-light trees (1) applies even to 2-dimensional

Euclidean metrics rather than to general metrics; (2) applies even if we replace (worst-case) root-
distortion by average root-distortion; (3) applies even if the designated root vertex is selected at will.
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1 Introduction

1.1 Steiner Points in Spanners. Steiner points were studied in various settings in the area of metric
spanning trees and spanners. Althofer et al. [3] studied Steiner points in the context of graph spanners.
Given a possibly weighted undirected graph G = (V, E, w), with w : E → R

+ being a positive weight
function, and an integer parameter t ≥ 1, a subgraph t-spanner of G is a subgraph G′ = (V, H, w) of G,
i.e., H ⊆ E, that approximates all distances of G up to a multiplicative factor of t. The parameter t is
called the stretch (or distortion) of the spanner. A graph G = (V,H, w′) with V ⊆ V is called a (metric)
Steiner subgraph of G if for every pair u, v ∈ V of original vertices, the distance dG(u, v) between u and
v in H is greater or equal to the distance dG(u, v) between them in G, i.e., dG(u, v) ≥ dG(u, v) [3]. A
(metric) Steiner subgraph G of G is said to be a (metric) Steiner t-spanner of G if it also satisfies that
dG(u, v) ≤ t · dG(u, v), for every pair of original vertices u, v ∈ V .

Althofer et al. [3] observed that for some specific graphs, Steiner spanners can be substantially sparser
than subgraph spanners. In particular, they considered the complete n-vertex graph Kn with unit weights.
Obviously every subgraph 1-spanner of Kn requires all the Ω(n2) edges. On the other hand, the Steiner
spanner that uses one additional vertex rt, and connects rt to each original vertex with an edge of weight
1
2 , is a Steiner 1-spanner for Kn with just n edges.

However, Althofer et al. [3] showed that this phenomenon does not hold in general. Specifically, there

are n-vertex graphs for which any subgraph (2t − 1)-spanner requires Ω(n1+ 4
3t ) edges, and any Steiner

(2t − 1)-spanner requires Ω(n1+ 4
3t

log n ) edges [26, 3]. Moreover, in fact, it is known [3] that a lower bound
of T (n, t) on the number of edges required for subgraph t-spanners of general n-vertex graphs implies an

analogous lower bound of Ω(T (n,t)
log n ) for Steiner t-spanners. Therefore, while Steiner points can help to

produce much sparser spanners for certain specific graphs, they cannot help to significantly improve the
bounds on the number of edges requires for spanners of general graphs.

Bollobás et al. [10] studied the impact of Steiner points in the context of distance preservers. The
notion of distance preserver is closely related to the notion of graph spanner. (See [10] for details.) It was
shown in [10] that similarly to the situation with graph spanners, Steiner points cannot help improving
the tradeoff between the involved parameters of distance preservers by more than a logarithmic factor.

Rao and Smith [27] analyzed the impact of Steiner points in the context of Euclidean spanners, and
arrived to similar conclusions. Given a set P of n points in R

d, d ≥ 2, a graph G′ = (P, H, w), H ⊆
(

P
2

)

,
with w(u, v) = ‖u − v‖2 = ‖u − v‖, for every u, v ∈ P , is said to be a subgraph t-spanner for P (for
t ≥ 1), if for every u, v ∈ P , the distance dG′(u, v) between u and v in G′ is no greater than t times the
Euclidean distance ‖u − v‖ between u and v, i.e., dG′(u, v) ≤ t · ‖u − v‖. A Euclidean Steiner t-spanner
for P is a graph G = (P, H, w), with P ⊆ P ⊆ R

d and w(x, y) = ‖x− y‖ for every x, y ∈ P, that satisfies
dG(u, v) ≤ t · ‖u− v‖, for every u, v ∈ P . (Note that the Euclidean Steiner spanner notion of [27] is more
restrictive than the metric Steiner spanner notion of [3].)

Similarly to the case of Kn for general graph spanners, Rao and Smith (see Section 6 of [27]) devised
examples of point configurations for which Euclidean Steiner points can drastically improve the weight of
spanners, in comparison to subgraph spanners. However, they also demonstrated that “Steiner spanners
cannot be too short”, i.e., that there are configurations P of n points in R

d for which any Steiner (1+ ǫ)-

spanner has weight
(

1
ǫ

)Ω(d) · w(MST (P )), where MST (P ) stands for the minimum spanning tree of
P . (See [27], Theorem 56.) On the other hand, constructions of subgraph (1 + ǫ)-spanners of weight

O
(

(

1
ǫ

)2d
)

· w(MST (P )), for point sets P ⊆ R
d, are known [4, 25].

Other lower bounds of similar flavor were shown for the tradeoffs between weight and unweighted
diameter or Euclidean spanners [19], and between number of edges and unweighted diameter of Euclidean
spanners [28]. The former lower bound (of [19]) refers to the stronger notion of metric Steiner spanners,
whereas the latter bound (of [28]) refers to the notion of Euclidean Steiner ones.
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1.2 Steiner Points in Trees. Steiner points were also studied in the context of metric spanning
trees. Alon et al. [2] showed that for every graph G = (V, E, w) there exists a probability distribution

D of spanning trees of G such that for every edge e = (u, v) ∈ E, ET∈D
[

dT (u,v)
w(e)

]

= 2O(
√

log n log log n).

Such a distribution is called probabilistic tree embedding [8], and the value maxe=(u,v)∈E E

[

dT (u,v)
w(e)

]

is

called the stretch of the embedding. Bartal and Fakcharoenphol et al. [8, 9, 21] showed that using metric
Steiner points one can drastically improve the bound of [2], and devise probabilistic tree embeddings with
stretch O(log n). The bound O(log n) is also known to be optimal up to constant factors [2, 8]. However,
soon afterwards Konjevod et al. [24] and Gupta [22] demonstrated that the same bounds (up to constant
factors) as those of Bartal and Fakcharoenphol et al. [8, 9, 21] can be obtained without Steiner points,
i.e., by using only spanning trees of the metric induced by G. (Such spanning trees are also said to use
Steiner edges, rather than Steiner points.) Moreover, more recent studies [18, 1] showed that nearly the
same bounds can be obtained by using spanning trees of the original graph G. Therefore, it turns out
that neither Steiner points nor Steiner edges can really help to improve probabilistic tree embeddings.

A similar situation is known in the context of low-light trees, which combine small weight with small
unweighted diameter [17]. In [19] the authors of the current paper showed that Steiner points do not help
in this context either, i.e., that any Steiner tree T with a given unweighted diameter can be converted
into a spanning tree with the the same (up to constant factors) diameter and weight as those of T .

To summarize, Steiner points were studied in many different settings in the context of trees, graph
spanners, Euclidean spanners and distance preservers [3, 27, 24, 22, 10, 19, 28]. In all these settings
they are known either not to help much or not to help at all in improving inherent tradeoffs between the
involved parameters.

1.3 Steiner points in Shallow-Light Trees. In this paper we study the impact of metric Steiner
points on shallow-light trees. In a sharp contrast to the situation in spanners, distance preservers, proba-
bilistic tree embeddings and low-light trees (see Sections 1.1 and 1.2), we demonstrate that using metric
Steiner points, one can exponentially improve the tradeoff between the involved parameters of shallow-
light trees.

Shallow-light trees (henceforth, SLTs) were introduced by Awerbuch et al. [6]. Given a graph G =
(V, E, w), a designated root vertex rt ∈ V , and parameters α ≥ 1, β ≥ 1, a spanning tree T of G is
said to be an (α, β)-SLT of G if (1) for every vertex v ∈ V , dT (rt, v) ≤ α · dG(rt, v), and (2) w(T ) ≤
β · w(MST (G)), where MST (G) stands for the minimum spanning tree of G. A tree T that satisfies
only the first requirement will be referred to as an α-shortest paths tree, or shortly, α-SPT, of G. We will
say that such a tree T has root-stretch at most α. A 1-SPT will also be referred to as an SPT. These
definitions can also be extended to metrics rather than to graphs, and to Steiner trees rather than to
spanning ones. Awerbuch et al. [7] and Khuller et al. [23] showed that for every graph and every ǫ > 0,
a (1 + ǫ, O(1

ǫ ))-SLT exists. Moreover, Khuller et al. [23] showed that there exist graphs G for which any
(1 + ǫ)-SPT T has weight1 w(T ) = Ω(1

ǫ ) · w(MST (G)).
In this paper we show that for every graph G there exists a metric Steiner (1+ǫ, O(log 1

ǫ ))-SLT. In other
words, we present a construction of Steiner (1 + ǫ)-SPTs whose lightness is exponentially smaller than
the lightness of the best-known (and, in fact, optimal) spanning (1+ ǫ)-SPTs. In view of the lower bound
from [23] that shows that spanning (1 + ǫ)-SPTs must have lightness2 Ω(1

ǫ ), our results demonstrate
an exponential separation between spanning SLTs and metric Steiner SLTs! We also complement our

1For convenience, we will henceforth use a normalized notion of weight, called lightness, defined by Ψ(T ) = w(T )
w(MST (G))

.
2Strictly speaking, the appropriate notion of lightness for a Steiner tree T should be Ψ′(T ) = w(T )

w(SMT (G))
, where SMT (G)

stands for the minimum Steiner tree of G. However, since 1
2
· w(MST (G)) ≤ w(SMT (G)) ≤ w(MST (G)), it follows that

Ψ(T ) ≤ Ψ′(T ) ≤ 2 · Ψ(T ). Hence, up to a factor of 2 these two notions of lightness are equivalent. In this discussion we do
not distinguish between them.
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construction with matching lower bounds, and show that there are graphs (and, in fact, much stronger
than that: we show that there are n-point 2-dimensional Euclidean metrics) for which any metric Steiner
(1 + ǫ)-SPT must have lightness Ω(log 1

ǫ ).
One particularly interesting point on our tradeoff curve is ǫ = 0. Observe that there are (simple)

n-vertex graphs for which any spanning shortest paths tree from a designated root vertex rt ∈ V has
lightness Ω(n). Consider, for example, a path Pn−1 of n − 1 vertices (v1, v2, . . . , vn−1), with each vi

connected to vi+1 via a unit-weight edge, for i ∈ {1, 2, . . . , n − 2}. Add also the root vertex rt, and
connect it to all vertices of Pn−1 via edges of weight n−1

2 . Call the resulting graph G. Obviously, any
MST of G uses a single edge that connects rt to Pn−1, and has weight O(n). On the other hand, the
SPT of G rooted at rt contains all the n− 1 edes (rt, vi), i ∈ {1, 2, . . . , n− 1}, and has weight Ω(n2), i.e.,
lightness Ω(n). (The same bound of Ω(n) on the lightness of a spanning SPT can also be obtained for
simple Euclidean 2-dimensional point sets, such as the following one. Spread n − 1 points uniformly on
the boundary of a unit circle, and add the root point rt at the center of the circle. Denote this point set by
C̃n.) On the other hand, we show that by using metric Steiner points one can construct a shortest paths
tree with lightness O(log n) for any n-vertex graph! Moreover, as was mentioned above, up to constant
factors this logarithmic upper bound is tight, even for Euclidean 2-dimensional metrics. In addition, our
constructions of Steiner (1 + ǫ, O(log 1

ǫ ))-SLTs and of Steiner SPTs with lightness O(log n) can both be
implemented within O(n2) time.

We remark, however, that the Steiner points that we use are metric ones, even if the original metric
is a Euclidean one. (See Section 1.1 for the distinction between metric and Euclidean Steiner points.) On
the other hand, it is easy to see that any Euclidean Steiner SPT for C̃n rooted at rt has lightness Ω(n).
More generally, we show that for any ǫ > 0, any Euclidean Steiner (1 + ǫ)-SPT for C̃n rooted at rt has

lightness Ω(
√

1
ǫ ). Therefore, our results imply also an exponential separation between the lightness of

metric Steiner SLTs (which is Θ(log 1
ǫ )) and the lightness of Euclidean Steiner SLTs (which is Ω(

√

1
ǫ )).

1.4 Additional Results.

Euclidean Shallow-Light Trees. We also proved a number of results concerning spanning SLTs
(rather than Steiner SLTs). In the Conclusions section of their paper [23] Khuller et al. asked four
questions. In this paper we address three of them.

First, Khuller et al. [23] showed that there are graphs for which any (1 + ǫ)-SPT has lightness 1 + 2
ǫ .

They asked whether the same lower bound applies to Euclidean metrics. Up to constant factors we answer
this question in the affirmative, and show that there exist configurations of n points in the Euclidean
plane for which any (1 + ǫ)-SPT rooted at a designated root-vertex rt has lightness Ω(1

ǫ ). We also show
that there exist configurations for which any α-SPT has lightness at least 1 + Ω( 1

α), for any α > 1.
Second, Khuller et al. [23] suggested to relax the notion of root-stretch, and replace it with the notion

of average root-stretch. A spanning tree T for a graph G is said to have average root-stretch at most

1 + ǫ with respect to a designated root vertex rt if
∑

v∈V \{rt} dT (rt,v)
∑

v∈V \{rt} dG(rt,v) ≤ 1 + ǫ. (Observe that the average

root-stretch of a tree is bounded above by its root-stretch.) They asked whether their lower bound applies
when replacing root-stretch by average root-stretch. We show that there exist configurations of n points
in the Euclidean plane for which any spanning tree with average root-stretch at most 1 + ǫ (respectively,
α) with respect to a certain designated root vertex rt has lightness Ω(1

ǫ ) (resp., at least 1+Ω( 1
α)).

Third, Khuller et al. [23] asked whether their lower bound applies if one is allowed to select the root
vertex at will. We show that there are configurations of n points in the Euclidean plane for which any
spanning tree with average root-stretch at most (1+ ǫ) (respectively, α) with respect to any vertex rt has
lightness Ω(1

ǫ ) (resp., at least 1+Ω( 1
α)).

In other words, up to constant factors we settle three out of the four open questions posed by Khuller
et al. [23]. The fourth question concerns approximation algorithms for SLTs; this question is left open.
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We also show that Steiner edges do not help in the context of SLTs. In other words, we show that
for any graph G = (V, E, w) and any designated root vertex rt ∈ V , every spanning tree T of the metric
induced by G (i.e., T may include Steiner edges but not Steiner vertices) can be converted into a spanning
tree T ′ of G whose weight and root-stretch are bounded by the weight and root-stretch of T , respectively.
(Hence there exist metrics (and not just graphs) for which any (1 + ǫ)-SPT has lightness 1 + 2

ǫ .)

Euclidean spanners. Another result that we prove in this paper concerns the tradeoff between the
stretch and the maximum degree of Euclidean spanners. Das and Narasimhan [16] (see also [5, 4, 11])
showed that for any configuration of n points in the d-dimensional Euclidean space R

d, and any ǫ > 0,
there exists a (1+ ǫ)-spanner with maximum degree O(ǫ−d+1). We show that this bound on the degree is
tight up to constant factors, i.e., that there exist configurations of n points in R

d for which any (1 + ǫ)-
spanner has maximum degree Ω(ǫ−d+1).

1.5 Our Techniques. The most technically involved result in this paper is that for any n-vertex graph
G there exists a metric Steiner SPT with lightness O(log n), and that this bound is tight up to constant
factors. Other results are deduced (in a non-trivial) way either from this result, or from the methods
developed on our way to this result.

Our method in deriving this result is to identify a core example, i.e., a simple example that manages
to encapsulate the inherent complexity of the problem. Our core example is C̃n (see Section 1.3). We
start with devising a construction of Steiner SPTs with respect to the root vertex rt that lies at the
center of the circle with lightness O(log n). Then we proceed to extending it to all possible graphs. This
extension is not at all simple, but nevertheless, the construction for the core example provides us with
certain guidelines as to how to proceed to the general case.

Note also that it is sufficient to prove the lower bound only for the core example. The fact that
already this simple Euclidean metric acheives the worst (up to constant factors) possible tradeoff is, in
our opinion, interesting on its own right. We remark that a similar in spirit approach was taken in [17] for
the analysis of low-light trees. There a different core example was identified. Specificially, it was a path
Pn of n points lying on the same line, with unit distance between consecutive points. It was shown in
[17] that essentially tight lower bounds can be proved already for this elementary metric, and moreover,
that constructions for Pn extend naturally to general metrics. However, the techniques that are used to
construct spanning low-light trees in [17] are fundamentally different from the techniques that we use
here to construct metric Steiner shallow-light trees. Also, the proofs of lower bounds for the different
core examples here and in [17] have nothing in common. In particular, the proof of lower bound in [17]
relies on analyzing a linear program from [20] for the minimum linear arrangement problem. On the
other hand, here we empoy direct combinatorial arguments, and methods from the area of low-distortion
embeddings for working with Steiner points. (See, e.g., [24, 22, 8].)

1.6 Structure of the Paper. In Section 2 we present our construction of metric Steiner SLTs.
Therein we start (Section 2.1) with the construction of metric Steiner SPTs with logarithmic lightness,
and proceed (Section 2.2) with its generalization for metric Steiner SLTs with root-stretch at most 1 + ǫ
and lightness O(log 1

ǫ ). The matching lower bound on the lightness of metric Steiner SLTs is given in
Section 3. In Sections 4 and 5 we provide our lower bounds for Euclidean spanning SLTs and spanners,
respectively. Finally, the argument that shows that Steiner edges do not help appears in Section 6.

1.7 Preliminaries. Let T = (T, rt) be either a spanning tree or a Steiner tree of a graph G = (V, E, w)
rooted at some designated point rt. The stretch between a pair u, v of vertices in T is defined as
StrT (u, v) = dT (u,v)

dG(u,v) . The root-stretch and average root-stretch of (T, rt) are defined as rtStr(T, rt) =

max {StrT (rt, v) | v ∈ V \ {rt}} and AvgStr(T, rt) =
∑

v∈V \{rt} StrT (rt,v)

|V |−1 , respectively. We remark that

this definition of average root-stretch is slightly different than the one used by Khuller et al. [23]. (See
Section 1.4.) Nevertheless, all bounds on average root-stretch presented in this paper apply with respect
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to both definitions. For a pair of non-negative integers k, n, k ≤ n, we denote the sets {k, k + 1, . . . , n}
and {1, 2, . . . , n} by [k, n] and [n], respectively.

2 Upper Bounds for Steiner SLTs

This section is devoted to upper bound constructions for Steiner SLTs.

2.1 Steiner SPTs with Logarithmic Lightness

In this section we devise a construction of Steiner SPTs for general metrics with logarithmic lightness.
We harness this construction in Section 2.2 to produce a construction of Steiner SLTs.

Let M = (V, dist) be an n-point metric, let rt be a designated (root) point in V , and let M ′ =
(V \ {rt}, dist) be the (n − 1)-point metric induced by the point set of V \ {rt}.

Consider a Hamiltonian path H ′ of M ′. In what follows we construct a binary Steiner tree T ′ = T ′(H ′)
for M ′ rooted at a Steiner point rt′ of weight O(log n) ·w(H ′). The tree T ′ will also satisfy the following
property. For any vertex x in T ′, there exists a number ρ(x) ≥ 0, such that for any point v in V \ {rt}
that belongs to the subtree T ′

x of T ′ rooted at x,

dist(rt, v) − dT ′(x, v) = ρ(x). (1)

We show (Corollary 2.8) that the rooted tree (T, rt), T = T (H ′), obtained from T ′ by adding to it an
edge (rt, rt′) of weight ρ(rt′), is a Steiner SPT for M with weight at most O(log n) · w(H ′) + ρ(rt′) ≤
O(log n) · w(H ′) + w(MST (M)). (See Figure 1 for an illustration.) In particular, if we take H ′ to be

x

v ∈ V \ {rt}

T ′

rt′

rt

rt′

T ′

T

ρ(rt′)

T ′
x

Figure 1: The trees T ′ and T .

a Hamiltonian path for M ′ with weight O(w(MST (M ′))) = O(w(MST (M))) (e.g., if H ′ is a TSP for
M ′), then the lightness of T is bounded by O(log n).

Denote the points of the Hamiltonian path H ′, from left to right, by p1, p2, . . . , pn−1. To construct T ′,
we start by building a skeleton of a full balanced binary tree rooted at rt′ with N leaves, where N is the
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smallest integer power of 2 greater or equal to n−1. (Note that N < 2n−2 and log N = ⌈log(n−1)⌉.) All
inner vertices of T ′ are Steiner points. Denote the N leaves of this tree, from left to right, by ℓ1, ℓ2, . . . , ℓN .
For each index i ∈ [n − 2], the leaf ℓi corresponds to the point pi, and for each index i ∈ [n − 1, N ], the
leaf ℓi corresponds to the point pn−1, i.e., pi = pn−1 for each i ∈ [n− 1, N ]. (Thus, the last point pn−1 of
H ′ is duplicated N − n + 1 times.)

Before we describe the weight assignment of edges in T ′, we need to introduce some notation.
For a vertex x in T ′, denote its left child by L(x), its right child by R(x), and the set of leaves in
the subtree T ′

x of T ′ rooted at x by Leaves(x). (For a leaf x, we have L(x) = R(x) = NULL and
Leaves(x) = {x}.) Observe that for an inner vertex x, Leaves(x) = Leaves(L(x)) ∪ Leaves(R(x)) and
Leaves(rt′) = {p1, p2, . . . , pN} = {p1, p2, . . . , pn−1} = V \ {rt}. The weight assignment of edges in the
tree is computed recursively bottom-up, so that the weights wL(x) and wR(x) of the two edges (x, L(x))
and (x, R(x)) connecting an inner vertex x with its two children are computed only after all other edge
weights in the subtree T ′

x have been computed. We hold for each vertex x in T ′ three variables ∆x, δx

and ρ(x), and use them to compute the weights wL(x) and wR(x) in the following way.
If x is a leaf, we set δx = ∆x = 0 and ρ(x) = dist(rt, x), and define wL(x) = wR(x) = 0.
For an inner vertex x, we set δx = ρ(L(x)) − ρ(R(x)). Also, consider a pair of leaves xL ∈ Leaves(L(x))
and xR ∈ Leaves(R(x)). Let ∆(xL, xR) = dist(xL, xR)− (dT ′(L(x), xL)+dT ′(R(x), xR)). Recall that the
distance between xL and xR in the tree T ′ needs to be at least dist(xL, xR). Also, the distance between
these two vertices in T ′ is realized by the path

P ′(xL, xR) = P ′(xL, L(x)) ◦ (L(x), x) ◦ (x, R(x)) ◦ P ′(R(x), xR),

where ◦ stands for the concatenation, and P ′(xL, L(x)) (respectively, P ′(R(x), xR)) stands for the path
connecting xL with L(x) (resp., R(x) with xR) in the tree T ′. (See Figure 2 for an illustration.) In other

L(x)

xL

x

xR

R(x)

Figure 2: The path P ′(xL, xR) that connects xL with xR in T ′.

words, it must hold that

dist(xL, xR) ≤ dT ′(xL, L(x)) + wL(x) + wR(x) + dT ′(R(x), xR),

and so
wL(x) + wR(x) ≥ dist(xL, xR) − (dT ′(xL, L(x)) + dT ′(R(x), xR)) = ∆(xL, xR).

Therefore, ∆(xL, xR) is a lower bound on the sum of the weights that we need to assign to the edges
(L(x), x) and (x, R(x)). We will call ∆(xL, xR) the distance surplus of the pair (xL, xR). Finally, the

6



distance surplus of the vertex x is defined as the maximum distance surplus over all pairs (xL, xR) with
xL ∈ Leaves(L(x)) and xR ∈ Leaves(R(x)), i.e.,

∆x = max{∆(xL, xR) | xL ∈ Leaves(L(x)), xR ∈ Leaves(R(x))}. (2)

Note that the choice of the weights wL(x) and wR(x) for the edges (L(x), x) and (x, R(x)), respectively,
needs to satisfy wL(x) + wR(x) ≥ ∆x. This inequality motivates the definition (2).

Given the values δx and ∆x determined as above, we set the weights wL(x) and wR(x) as follows. If
|δx| ≤ ∆x, we set wL(x) = ∆x+δx

2 , wR(x) = ∆x−δx

2 . Otherwise, we set wL(x) = max{δx, 0}, wR(x) =
max{−δx, 0}. (In the latter case, either wL(x) or wR(x) is equal to zero, and the other parameter is equal
to |δx|.) Finally, having computed the weight assignment for the entire subtree T ′

x, we pick an arbitrary
vertex v in Leaves(x), and set

ρ(x) = dist(rt, v) − dT ′(x, v).

We start the analysis of our construction with the following observation.

Observation 2.1 For any vertex x in T ′, (1) wL(x), wR(x) ≥ 0, (2) wL(x) + wR(x) = max{∆x, |δx|},
and (3) wL(x) − wR(x) = δx, or equivalently, ρ(L(x)) − wL(x) = ρ(R(x)) − wR(x).

The third statement of Observation 2.1 demonstrates the intuitive meaning of the variable δ(x). It is the
difference between wL(x) and wR(x).

Next, we show that if the numbers ρ(x) are set as was described above, then they satisfy Equation
(1).

Lemma 2.2 For any vertex x in T ′ and any vertex v in Leaves(x), dist(rt, v) − dT ′(x, v) = ρ(x).

Proof: The proof is by induction on the depth h = h(T ′
x) of the subtree T ′

x. The basis h = 0 is trivial.
Induction Step: We assume that the statement holds for the two children L(x) and R(x) of x, and prove
it for x. Consider an arbitrary pair v, w of vertices in Leaves(x).
Next, we show that dist(rt, v) − dT ′(x, v) = dist(rt, w) − dT ′(x, w), which suffices. (Indeed, ρ(x) was set
as dist(rt, u) − dT ′(x, u), for an arbitrary leaf u ∈ Leaves(x). Hence, it suffices to show that for any leaf
u ∈ Leaves(x), the expression dist(rt, u) − dT ′(x, u) is equal to the same value.)
If both v and w belong to T ′

L(x) or if they both belong to T ′
R(x), then the result follows easily from the in-

duction hypothesis. Specifically, if v, w ∈ T ′
L(x) then dist(rt, v)−dT ′(L(x), v) = dist(rt, w)−dT ′(L(x), w).

However, dist(rt, v)−dT ′(x, v) = (dist(rt, v)−dT ′(L(x), v))−wL(x), and similarly, dist(rt, w)−dT ′(x, w) =
(dist(rt, w) − dT ′(L(x), w)) − wL(x). Hence dist(rt, v) − dT ′(x, v) = dist(rt, w) − dT ′(x, w), as required.
(See Figure 3 for an illustration.) The case when v, w ∈ T ′

R(x) is analogous.

We may henceforth suppose without loss of generality that v ∈ Leaves(L(x)) and w ∈ Leaves(R(x)).
By construction, dT ′(x, v) = dT ′(L(x), v) + wL(x) and dT ′(x, w) = dT ′(R(x), w) + wR(x). By the third
statement of Observation 2.1 and the induction hypothesis,

dist(rt, v) − dT ′(x, v) = dist(rt, v) − dT ′(L(x), v) − wL(x) = ρ(L(x)) − wL(x)

= ρ(R(x)) − wR(x) = dist(rt, w) − dT ′(R(x), w) − wR(x)

= dist(rt, w) − dT ′(x, w).

Lemma 2.2 shows that for an inner vertex x and a leaf v ∈ Leaves(x), dist(rt, v) = dT ′(x, v) + ρ(x).
The next lemma shows that ρ(x) ≥ 0. Hence dist(rt, v) ≥ dT ′(x, v). Eventually we will need to guarantee
dist(rt, v) = dT (rt, v), where T = T ′ ∪ {(rt, rt′)}. Intuitively, the meaning of the value ρ(x) is that if the
vertex x were the root of T ′, i.e., if rt′ = x, then the edge (rt, x) = (rt, rt′) in T would need to be of
weight ρ(x) = ρ(rt′). (See Figure 1 for an illustration.)
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L(x)

v

x

wL(x)

w

Figure 3: The case v, w ∈ Leaves(L(x)).

Lemma 2.3 For any vertex x in T ′, ρ(x) ≥ 0.

Proof: The proof is by induction on the depth h = h(T ′
x) of the subtree T ′

x. The basis h = 0 is trivial.
Induction Step: We assume that the statement holds for the two children L(x) and R(x) of x, and prove it
for x. Suppose without loss of generality that wL(x) ≤ wR(x). (The complementary case wL(x) > wR(x)
is symmetric.) By the third statement of Observation 2.1, δx ≤ 0, and so |δx| = −δx.

Suppose first that |δx| ≤ ∆x. By Observation 2.1, wL(x) + wR(x) = ∆x and wL(x) − wR(x) = δx.
Hence 2 · wL(x) = ∆x + δx. Let xL ∈ Leaves(L(x)) and xR ∈ Leaves(R(x)) be two vertices for which
∆x = ∆(xL, xR) = dist(xL, xR)−dT ′(L(x), xL)−dT ′(R(x), xR). By Lemma 2.2, ρ(L(x)) = dist(rt, xL)−
dT ′(L(x), xL) and ρ(R(x)) = dist(rt, xR) − dT ′(R(x), xR). Altogether

2 · wL(x) = ∆x + δx = ∆x + ρ(L(x)) − ρ(R(x))

= dist(xL, xR) + dist(rt, xL) − dist(rt, xR) − 2 · dT ′(L(x), xL)

≤ 2 · dist(rt, xL) − 2 · dT ′(L(x), xL).

(The last inequality holds by the triangle inequality.) Hence wL(x) ≤ dist(rt, xL) − dT ′(L(x), xL).
Otherwise, |δx| > ∆x. In this case wL(x) = 0. By Lemma 2.2 and the induction hypothesis,

dist(rt, xL) − dT ′(L(x), xL) = ρ(L(x)) ≥ 0, and so wL(x) ≤ dist(rt, xL) − dT ′(L(x), xL).
We have shown that in both cases, wL(x) ≤ dist(rt, xL) − dT ′(L(x), xL). Also, by Lemma 2.2,

ρ(x) = dist(rt, xL) − dT ′(x, xL). It follows that

ρ(x) = dist(rt, xL) − dT ′(x, xL) = dist(rt, xL) − dT ′(L(x), xL) − wL(x) ≥ 0.

The following lemma shows that the tree T ′ dominates the metric M ′.

Lemma 2.4 For any vertex x in T ′ and any pair v, w of vertices in Leaves(x), dT ′(v, w) ≥ dist(v, w).

Proof: The proof is by induction on the depth h = h(T ′
x) of the subtree T ′

x. The basis h = 0 holds
vacuously.
Induction Step: We assume that the statement holds for the two children L(x) and R(x) of x, and prove
it for x.
If both v and w belong to T ′

L(x) or if they both belong to T ′
R(x), then the result follows immediately from

the induction hypothesis.
We may henceforth suppose without loss of generality that v ∈ Leaves(L(x)) and w ∈ Leaves(R(x)). By
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construction, we have dT ′(v, w) = dT ′(x, v) + dT ′(x, w), dT ′(x, v) = dT ′(L(x), v) + wL(x) and dT ′(x, w) =
dT ′(R(x), w) + wR(x). By definition, ∆x ≥ ∆(v, w) = dist(v, w) − (dT ′(L(x), v) + dT ′(R(x), w)). By the
second statement of Observation 2.1, wL(x) + wR(x) ≥ ∆x. Altogether,

dT ′(v, w) = dT ′(L(x), v) + wL(x) + dT ′(R(x), w) + wR(x)

≥ dT ′(L(x), v) + dT ′(R(x), w) + ∆x ≥ dist(v, w).

Next, we analyze the weight of the tree T ′.
For a vertex x in T ′, let f(x) and l(x), f(x) ≤ l(x), be the indices in [N ] for which Leaves(x) =
{pf(x), pf(x)+1, . . . , pl(x)}. For a pair i, j of indices in [N ], i ≤ j, let Wt(i, j) =

∑j−1
k=i dist(pk, pk+1) denote

the sum of all edge weights along the subpath (pi, pi+1, . . . , pj) of the path H̃ = (p1, p2, . . . , pN ). Since
all points pn, pn+1, . . . , pN are copies of the same point pn−1, we have Wt(1, N) = Wt(1, n − 1). Hence,

w(H̃) = Wt(1, N) = Wt(1, n − 1) = w(H ′).

We use the following claim to prove Lemma 2.6, which is, in turn, used to obtain an upper bound on
the weight of the tree T ′.

Claim 2.5 For any vertex x in T ′, there exist indices i and j in [f(x), l(x)], such that dT ′(x, pi) ≤
Wt(i, l(x)) and dT ′(x, pj) ≤ Wt(f(x), j).

Proof: The proof is by induction on the depth h = h(T ′
x) of the subtree T ′

x.
Basis: h = 0. In this case x is a leaf, and there exists an index k in [N ], such that x = pk. Thus
f(x) = l(x) = k, and for i = j = k, we have dT ′(x, pi) = dT ′(x, pj) = Wt(i, l(x)) = Wt(f(x), j) = 0.
Induction Step: We assume that the statement holds for the two children L(x) and R(x) of x, and prove
it for x.

Suppose first that |δx| ≤ ∆x. By the first two statements of Observation 2.1, wL(x), wR(x) ≤
max{∆x, |δx|} = ∆x. Let pi ∈ Leaves(L(x)) and pj ∈ Leaves(R(x)) be two points for which ∆x =
∆(pi, pj) = dist(pi, pj) − (dT ′(L(x), pi) + dT ′(R(x), pj)). Clearly both i and j are indices in [f(x), l(x)].
Observe that

dT ′(x, pi) = wL(x) + dT ′(L(x), pi) ≤ ∆x + dT ′(L(x), pi)

= dist(pi, pj) − dT ′(R(x), pj) ≤ dist(pi, pj) ≤ Wt(i, j) ≤ Wt(i, l(x)).

(The one before last inequality holds by the triangle inequality.) Similarly, we get that

dT ′(x, pj) = wR(x) + dT ′(R(x), pj) ≤ ∆x + dT ′(R(x), pj)

= dist(pi, pj) − dT ′(L(x), pi) ≤ dist(pi, pj) ≤ Wt(i, j) ≤ Wt(f(x), j).

Otherwise, |δx| > ∆x. Suppose without loss of generality that wL(x) ≤ wR(x). In this case, we
have wL(x) = 0. By the induction hypothesis, there exist indices i and j in [f(L(x)), l(L(x))], such
that dT ′(L(x), pi) ≤ Wt(i, l(L(x))) and dT ′(L(x), pj) ≤ Wt(f(L(x)), j). Since wL(x) = 0, dT ′(x, pi) =
dT ′(L(x), pi) and dT ′(x, pj) = dT ′(L(x), pj). Also, [f(L(x)), l(L(x))] ⊂ [f(x), l(x)]. Consequently, i and
j serve as two indices in [f(x), l(x)] for which dT ′(x, pi) ≤ Wt(i, l(L(x))) ≤ Wt(i, l(x)) and dT ′(x, pj) ≤
Wt(f(L(x)), j) ≤ Wt(f(x), j).

The next lemma shows that for every inner vertex x in T ′, the sum of weights of the two edges that
descend from x is no greater than the length of the sub-path of the Hamiltonian path H that traverses
all vertices from Leaves(x).

9



Lemma 2.6 For any vertex x in T ′, wL(x) + wR(x) ≤ Wt(f(x), l(x)).

Proof: The proof is by induction on the depth h = h(T ′
x) of the subtree T ′

x. The basis h = 0 is trivial.
Induction Step: We assume that the statement holds for the two children L(x) and R(x) of x, and prove
it for x.

Suppose first that |δx| ≤ ∆x. By Observation 2.1, wL(x) + wR(x) = ∆x. Let pi ∈ Leaves(L(x)) and
pj ∈ Leaves(R(x)) be two points for which ∆x = ∆(pi, pj) = dist(pi, pj)− (dT ′(L(x), pi)+dT ′(R(x), pj)).
It follows that

wL(x) + wR(x) = ∆x ≤ dist(pi, pj) ≤ Wt(i, j) ≤ Wt(f(x), l(x)).

(The one before last inequality holds by the triangle inequality.)
Otherwise, |δx| > ∆x. Suppose without loss of generality that wL(x) ≤ wR(x). In this case, we have

|δx| = −δx, and so wL(x) + wR(x) = −δx = ρ(R(x)) − ρ(L(x)). By Claim 2.5, there exists an index a
in [f(L(x)), l(L(x))], such that dT ′(L(x), pa) ≤ Wt(f(L(x)), a). By Lemma 2.2, ρ(L(x)) = dist(rt, pa) −
dT ′(L(x), pa) and ρ(R(x)) = dist(rt, pb)− dT ′(R(x), pb), for an arbitrary index b in [f(R(x)), l(R(x))]. It
follows that

wL(x) + wR(x) = ρ(R(x)) − ρ(L(x))

= dist(rt, pb) − dT ′(R(x), pb) − dist(rt, pa) + dT ′(L(x), pa)

≤ dist(rt, pb) − dist(rt, pa) + dT ′(L(x), pa)

≤ dist(pa, pb) + Wt(f(L(x)), a) ≤ Wt(f(L(x)), b) ≤ Wt(f(x), l(x)).

(The second and third inequalities hold by the triangle inequality. See Figure 4 for an illustration.)

L(x)

pa

x

pb

R(x)

−δx0

pf(L(x))

Figure 4: An illustration for the inequality dist(pa, pb) + Wt(f(L(x)), a) ≤ Wt(f(L(x)), b).

Notice that the depth of T ′ is log N = ⌈log(n − 1)⌉. The level of a vertex in T ′ is defined as its
unweighted distance from rt. We denote by Vi the set of all vertices in T ′ of level i, for each index
i ∈ [0, log N ]. Also, denote by Ei the set of all edges in T ′ that connect a vertex in Vi with a vertex in
Vi+1, for each index i ∈ [0, log N − 1], and denote by Wi the sum of all edge weights in Ei.

The following lemma implies that the weight w(T ′) of T ′ is at most ⌈log(n − 1)⌉ · w(H ′).

Lemma 2.7 For each index i ∈ [0, log N − 1], Wi ≤ w(H ′).
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Proof: Fix an arbitrary index i ∈ [0, log N − 1]. By definition, we have

Wi =
∑

e∈Ei

w(e) =
∑

x∈Vi

(wL(x) + wR(x)).

By construction, for any pair x, x′ of distinct vertices in Vi, Leaves(x) and Leaves(x′) are disjoint,
and so either f(x) ≤ l(x) < f(x′) ≤ l(x′) or f(x′) ≤ l(x′) < f(x) ≤ l(x) must hold. It follows that
∑

x∈Vi
Wt(f(x), l(x)) ≤ Wt(1, N) = Wt(1, n − 1) = w(H ′). Lemma 2.6 implies that wL(x) +

wR(x) ≤ Wt(f(x), l(x)), for any x ∈ Vi. Altogether,

Wi =
∑

x∈Vi

wL(x) + wR(x) ≤
∑

x∈Vi

Wt(f(x), l(x)) ≤ w(H ′).

Note that the tree T ′ consists of 2N − 1 = O(n) vertices. Also, it is easy to verify that it can be
constructed in O(n2) time, disregarding the time needed to compute the Hamiltonian path H ′.
Define W ∗(M, rt) = min{dist(rt, v) | v ∈ V \ {rt}}. Clearly, W ∗(M, rt) ≤ w(MST (M)).
Lemmas 2.2, 2.3, 2.4 and 2.7 yield the following corollary.

Corollary 2.8 The rooted tree (T, rt), T = T (H ′), obtained from T ′ by adding to it an edge (rt, rt′) of
weight ρ(rt′), is a Steiner SPT for M with weight at most ⌈log(n − 1)⌉ · w(H ′) + W ∗(M, rt) and O(n)
vertices. Moreover, T can be constructed in O(n2) time, disregarding the time needed to compute the
Hamiltonian path H ′.

Proof: First, we argue that all edge weights in T are non-negative. Indeed, the first statement of
Observation 2.1 implies that all edge weights in T ′ are non-negative. The only edge of T that does not
belong to T ′ is (rt, rt′), and its weight ρ(rt′) is non-negative by Lemma 2.3.

By Lemma 2.4, for any two points v and w in V \ {rt}, dT (v, w) = dT ′(v, w) ≥ dist(v, w). Also, by
Lemma 2.2, for any point v in V \ {rt}, we have dT (rt, v) = dT ′(rt′, v) + ρ(rt′) = dist(rt, v). It follows
that (T, rt) is a Steiner shortest paths tree for M .

To bound the weight of the tree, first note that for any point v ∈ V \ {rt}, ρ(rt′) = dist(rt, v) −
dT ′(rt′, v), and so ρ(rt′) ≤ W ∗(M, rt). By Lemma 2.7, w(T ′) ≤ log N · w(H ′) = ⌈log(n − 1)⌉ · w(H ′),
implying that w(T ) = w(T ′) + ρ(rt′) ≤ ⌈log(n − 1)⌉ · w(H ′) + W ∗(M, rt).

Given the bound on the construction time of T ′, we conclude that T can also be constructed in O(n2)
time, disregarding the time needed to compute the Hamiltonian path H ′.

Finally, we remark that it is possible to construct within O(n2) time a Hamiltonian path L(M ′)
for M ′ with weight at most 2 · w(MST (M ′)) = O(w(MST (M))). The following claim is provided for
completeness.

Claim 2.9 For any n-point metric X, one can construct in O(n2) time a Hamiltonian path L(X) with
weight at most 2 · w(MST (X)).

Proof: Let T (X) be an MST of X rooted at an arbitrary designated point rt ∈ X. Let D(X) be an
Euler tour of T (X), starting at rt. For every vertex v ∈ X, remove from D(X) all occurrences of v except
for the first one, and denote by L(X) = (v1 = rt, v2, . . . , vn) the resulting Hamiltonian path of X. It is
easy to verify that w(L(X)) ≤ 2 · w(T (X)) = 2 · w(MST (X)).

Since the metric X contains at most O(n2) edges, its MST can be computed within O(n2) time (cf.
[15], chapter 23). The construction of the Euler tour D(X), as well as the subsequent removal of all
non-first occurrences of elements from it, can be performed in O(n) time in the straight-forward way.
The claim follows.
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To optimize the bounds on the weight and construction time of the tree T in Corollary 2.8, we take
H ′ to be the Hamiltonian path L(M ′) that is guaranteed by Claim 2.9. Specifically, the weight bound of
T is reduced to O(log n) · w(MST (M)), and the overall construction time of T is reduced to O(n2). We
derive the main result of this section.

Theorem 2.10 The rooted tree (T, rt) returned by our construction is a Steiner SPT with lightness
O(log n) and O(n) vertices for the input n-point metric M . Moreover, our construction can be imple-
mented within O(n2) time.

Observe that one can easily get rid of zero weight edges that are present in our construction. This
can be done just by iteratively contracting all such edges.

2.2 Steiner SLTs

In Section 2.1 we showed that for any n-point metric M and a designated point rt there exists a Steiner
tree T which preserves the distances between rt and all other points of M (i.e., an SPT of M with respect
to rt) and has lightness at most O(log n). In this section we generalize this result and show that for any
ǫ > 0 there exists a Steiner SLT that provides a (1 + ǫ)-approximation to the distances between rt and
all other points and has lightness O(log 1

ǫ ).
This generalization is based on the following ideas. In [7] Awerbuch et al. devised a construction

of spanning SLTs with lightness O
(

1
ǫ

)

. Their construction identifies a set B of special points, called
break-points, and connects each of the points B ∈ B to rt via shortest paths. Our construction replaces
these shortest paths by the Steiner SPT for the set B rooted at rt, which was constructed in Section 2.1.
It is pretty obvious that the resulting tree satisfies the desired distance properties. Also, by Theorem
2.10, its lightness is O(log |B|). If we could show that |B| = O

(

1
ǫ

)

, this would finish the proof. However,
it is easy to see that this is generally not the case. For example, if the metric M is the unit clique and
ǫ is some small constant, every non-root point will be identified as a breakpoint, and we will thus get
|B| = n − 1. To overcome this obstacle we refine the bound on w(T ) from Theorem 2.10, and express it
in terms of the sum of all root-distances

∑

v∈V \{rt} dist(rt, v), rather than in terms of the number n ot
points in M . We then use this refined bound to analyze the weight of our shallow-light trees.

We start with the following simple observation.

Claim 2.11
∑

v∈V \{rt} dT ′(rt′, v) =
∑log N−1

i=0 2log N−(i+1) · Wi.

Proof: Fix an arbitrary index i ∈ [0, log N − 1], and consider an edge e = (vi, vi+1) ∈ Ei, vi ∈ Vi,
vi+1 ∈ Vi+1. For each vertex v ∈ Leaves(vi+1), the edge e belongs to the path connecting rt′ with v in T ′.
Moreover, the edge e does not belong to paths that connect rt′ to other vertices z ∈ V \{rt}\Leaves(vi+1).
Hence,

∑

v∈V \{rt}
dT ′(rt′, v) =

∑

e=(vi,vi+1)∈E(T ′)

|Leaves(vi+1)| · w(e),

where w(e) stands for the weight of the edge e in T ′. Observe that for vi+1 ∈ Vi+1, |Leaves(vi+1)| =
2log N−(i+1). It follows that

∑

e=(vi,vi+1)∈E(T ′)

|Leaves(vi+1)| · w(e) =

log N−1
∑

i=0

∑

e∈Ei

|Leaves(vi+1)| · w(e) =

log N−1
∑

i=0

2log N−(i+1) · Wi.

This completes the proof.

We are now ready to prove our refined bound on the weight of the SPT T , which was constructed in
Section 2.1.
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Lemma 2.12 Suppose that
∑

v∈V \{rt} dist(rt, v) ≤ α · β, for some pair α ≥ 1, β > 0 of numbers. Then

the weight w(T ) of T = T (H ′) satisfies w(T ) ≤ β + ⌈log α⌉ · w(H ′) + W ∗(M, rt).

Remark: Clearly,
∑

v∈V \{rt} dist(rt, v) ≤ (n − 1) · w(MST (M)). By substituting α = n − 1, β =

w(MST (M)), we get an upper bound of w(MST (M))+⌈log(n−1)⌉ ·w(H ′)+W ∗(M, rt) on w(T ), which
is slightly larger than the upper bound given in Corollary 2.8. On the other hand, we get significantly
better bounds on w(T ) whenever

∑

v∈V \{rt} dist(rt, v) ≪ (n − 1) · w(MST (M)).

Proof: Since w(T ) = w(T ′) + ρ(rt′) ≤ w(T ′) + W ∗(M, rt), it suffices to show that w(T ′) ≤ β + ⌈log α⌉ ·
w(H ′).
Suppose first that ⌈log α⌉ ≥ log N . By Lemma 2.7, we have w(T ′) ≤ log N · w(H ′), and so w(T ′) ≤
log N · w(H ′) ≤ β + ⌈log α⌉ · w(H ′). We henceforth assume that ⌈log α⌉ ≤ log N − 1.

By construction, we have w(T ′) =
∑log N−1

i=0 Wi and
∑

v∈V \{rt} dT (rt, v) ≥∑v∈V \{rt} dT ′(rt′, v). Since T
is an SPT for M , we conclude that

α · β ≥
∑

v∈V \{rt}
dist(rt, v) =

∑

v∈V \{rt}
dT (rt, v) ≥

∑

v∈V \{rt}
dT ′(rt′, v).

Hence, by Claim 2.11,

α · β ≥
∑

v∈V \{rt}
dT ′(rt′, v) =

log N−1
∑

i=0

2log N−(i+1) · Wi ≥
log N−(⌈log α⌉+1)

∑

i=0

2log N−(i+1) · Wi

≥ 2⌈log α⌉ ·





log N−(⌈log α⌉+1)
∑

i=0

Wi



 ≥ α ·





log N−(⌈log α⌉+1)
∑

i=0

Wi



 ,

and so
log N−(⌈log α⌉+1)

∑

i=0

Wi ≤ β.

Also, Lemma 2.7 implies that
log N−1
∑

log N−⌈log α⌉
Wi ≤ ⌈log α⌉ · w(H ′).

Altogether, we have

w(T ′) =

log N−1
∑

i=0

Wi =





log N−(⌈log α⌉+1)
∑

i=0

Wi



+





log N−1
∑

log N−⌈log α⌉
Wi



 ≤ β + ⌈log α⌉ · w(H ′).

Now we proceed to extending our construction of shortest-paths trees from Section 2.1 to a construc-
tion of shallow-light trees. As was discussed above, this construction can be seen as a hybrid of our
construction from Section 2.1 with the construction of [7] of spanning shallow-light trees. Its analysis is
closely related to that of [7], except that it relies on Lemma 2.12 for the analysis of weight.

Consider an n-point metric M = (V, dist), let T = T (M) be an MST of M rooted at an arbitrary des-
ignated point rt ∈ V , and let L = L(M) be a Hamiltonian path for M of weight at most 2 ·w(MST (M)).
By Claim 2.9, such a Hamiltonian path can be computed in O(n2) time.
Fix a parameter θ ≤ 2. The value of θ will determine the values of the root-stretch and lightness of the
constructed tree.
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We start with identifying a set of “break-points” B = {B1, B2, . . . , Bk}, B ⊆ V , k ≥ 2. The break-point
B1 is the vertex v1 = rt. The break-point Bi+1, i ∈ [k − 1], is the first vertex in L after Bi such that

dT (Bi, Bi+1) > θ · dist(rt, Bi+1).

Let MB be the sub-metric of M induced by the point set of B. Also, let L′ = (B2, . . . , Bk} be the sub-path
of L that contains the breakpoints of B\{rt}. By the triangle inequality, w(L′) ≤ w(L) ≤ 2·w(MST (M)).
By Corollary 2.8, we can build a Steiner SPT TB = TB(L′) of MB rooted at rt with small weight. Denote
the set of Steiner points in TB by SB.
Let G̃ = (V ∪ SB, E(T ) ∪ E(TB)) be the graph obtained from the union of the two trees T and TB.
Finally, we define S(T ) to be an SPT over G̃ rooted at rt.

The following claim implies that the sum of distances in T , taken over all pairs of consecutive break-
points, is not too large. It follows from the observation that D visits each edge twice.

Claim 2.13
∑k−1

i=1 dT (Bi, Bi+1) ≤ 2 · w(T ) = 2 · w(MST (M)).

The next lemma bounds the root-stretch of the constructed tree S(T ).

Lemma 2.14 For any vertex v ∈ V \ {rt}, it holds that dS(T )(rt, v) ≤ (1 + 2θ) · dist(rt, v).

Proof: Consider an arbitrary vertex v ∈ V . First, recall that S(T ) is an SPT over G̃ rooted at rt, and
so dS(T )(rt, v) = dG̃(rt, v). Clearly, the lemma holds if v is a breakpoint, as in this case we have

dS(T )(rt, v) = dG̃(rt, v) ≤ dTB
(rt, v) = dist(rt, v).

We henceforth assume that v is not a breakpoint. Let i be the index in [k − 1] such that v is located
between Bi and Bi+1 in L. Since Bi is a break-point, it holds that dG̃(rt, Bi) ≤ dTB

(rt, Bi) = dist(rt, Bi).
Clearly, dG̃(Bi, v) ≤ dT (Bi, v). By the triangle inequality, dG̃(rt, v) ≤ dG̃(rt, Bi)+dG̃(Bi, v). Altogether,

dS(T )(rt, v) = dG̃(rt, v) ≤ dG̃(rt, Bi) + dG̃(Bi, v) ≤ dist(rt, Bi) + dT (Bi, v).

Since v was not identified as a break-point, necessarily

dT (Bi, v) ≤ θ · dist(rt, v), (3)

and so

dS(T )(rt, v) ≤ dist(rt, Bi) + θ · dist(rt, v). (4)

By the triangle inequality and Equation (3),

dist(rt, Bi) ≤ dist(rt, v) + dist(Bi, v) ≤ dist(rt, v) + dT (Bi, v)

≤ dist(rt, v) + θ · dist(rt, v) = (1 + θ) · dist(rt, v). (5)

Plugging Equation (5) in Equation (4), we obtain

dS(T )(rt, v) ≤ (1 + θ) · dist(rt, v) + θ · dist(rt, v) = (1 + 2θ) · dist(rt, v).

Next, we bound the weight of the constructed tree S(T ).

Lemma 2.15 w(S(T )) ≤ 2 ·
(⌈

log
(

2
θ

)⌉

+ 3/2
)

· w(MST (M)).
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Proof: By the choice of break-points, for each index i ∈ [k − 1], dist(rt, Bi+1) < 1
θ · dT (Bi, Bi+1). By

Claim 2.13,
∑k−1

i=1 dT (Bi, Bi+1) ≤ 2 · w(MST (M)). Therefore,

k−1
∑

i=1

dist(rt, Bi+1) <
1

θ
·

k−1
∑

i=1

dT (Bi, Bi+1) ≤ 2

θ
· w(MST (M)).

Consider the metric MB = (B, dist), and set α = 2
θ , β = w(MST (M)). Notice that

∑

B∈B\{rt}
dist(rt, B) =

k−1
∑

i=1

dist(rt, Bi+1) ≤ α · β.

Since θ ≤ 2, we have α ≥ 1. Clearly, β = w(MST (M)) > 0. Hence, by Lemma 2.12, the weight w(TB)
of TB = TB(L′) satisfies

w(TB) ≤ β + ⌈log α⌉ · w(L′) + W ∗(MB, rt)

= w(MST (M)) +

⌈

log

(

2

θ

)⌉

· w(L′) + W ∗(MB, rt)

≤ 2 · w(MST (M)) +

⌈

log

(

2

θ

)⌉

· 2 · w(MST (M))

By construction, w(S(T )) ≤ w(G̃) = w(T ) + w(TB), and so

w(S(T )) ≤ w(MST (M)) + 2 · w(MST (M)) +

⌈

log

(

2

θ

)⌉

· 2 · w(MST (M))

= 2 ·
(⌈

log

(

2

θ

)⌉

+ 3/2

)

· w(MST (M)).

Note also that for any metric M , the weight of the Minimum Steiner Tree for M (denoted SMT (M))
is greater or equal to half the weight of the Minimum Spanning Tree for M , i.e., w(SMT (M)) ≥ 1

2 ·
w(MST (M)). It follows that w(S(T )) ≤ 4 ·

(⌈

log
(

2
θ

)⌉

+ 3/2
)

· w(SMT (M)).
Finally, we analyze the running time of the construction.

Lemma 2.16 The tree S(T ) can be constructed in O(n2) time.

Proof: First, note that the MST T for M can be computed within O(n2) time. Also, as was mentioned
above, Claim 2.9 implies that the Hamiltonian path L can be computed within O(n2) time as well. It is
easy to see that O(n) time suffices to identify the set B = {B1, B2, ..., Bk} of break-points. An additional
amount of O(n) time requires to construct the sub-path L′ of L. By Corollary 2.8, the Steiner SPT
TB = TB(L′) consists of O(k) = O(n) vertices, and given the Hamiltonian path L′ for MB, it can be
computed within O(k2) = O(n2) time. Consequently, the graph G̃ can be constructed in O(n2) time, and
it consists of O(n) vertices and edges. The final step of the algorithm is the construction of an SPT over
G̃, which can be carried out in O(n · log n) time. The lemma follows.

Set ǫ = 2θ. Lemmas 2.14, 2.15 and 2.16 imply the following corollary.

Corollary 2.17 For any n-point metric M = (V, dist), a designated point rt ∈ V and a number 0 < ǫ <
1
2 , there exists a Steiner tree of M rooted at rt, having root-stretch at most (1+ ǫ), lightness O(log 1

ǫ ) and
O(n) vertices. Moreover, this construction can be implemented within O(n2) time.
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3 Lower Bounds for Steiner SLTs

In this section we show that there exist n-point metrics for which any Steiner SPT has lightness Ω(log n).
We then employ this result and show that for any ǫ > 0 there exist metrics for which any Steiner tree
that approximates all distances from a designated root vertex by a factor of at most (1 + ǫ) has lightness
Ω(log 1

ǫ ). In view of our upper bounds from Sections 2, these lower bounds are tight up to constant
factors.

Let Pn be the family of all n-point 1-dimensional Euclidean metrics, such that the distance between
any two consecutive points is at least 1. We denote the diameter of a metric M ∈ Pn by diam(M), and
observe that diam(M) ≥ n− 1. Given a metric M ∈ Pn, a number r ≥ 1

2 ·diam(M) and a number ǫ > 0,
we say that a rooted Steiner tree (T, rt) of M is an r-tree (respectively, (r, ǫ)-tree) for M , if dT (rt, v) = r
(resp., r ≤ dT (rt, v) < (1+ǫ) ·r), for every point v in M . Note that if T is either an r-tree or an (r, ǫ)-tree
for M , for an arbitrary number ǫ > 0, then the root vertex rt of T must be a Steiner point, i.e., rt 6∈ M .

Lemma 3.1 Let M be an arbitrary metric in Pn, and let r ≥ 1
2 ·diam(M) ≥ 1

2 · (n−1). Then any r-tree
T for M has weight w(T ) at least g(n, r) = r − 1

2 · (n − 1) + 1
2 · n · log n.

Proof: The proof is by induction on n, n ≥ 1, for all values of r ≥ 1
2 · diam(M). The basis n = 1 is

trivial, as g(1, r) = r.
Induction Step: We assume that the statement holds for all smaller values of n, n ≥ 2, and prove it for
n. Let (T, rt) be an r-tree for M with a minimum number of Steiner points, taken over all r-trees for M
of minimum weight. Next, we show that w(T ) ≥ r − 1

2 · (n − 1) + 1
2 · n · log n.

Denote the children of rt in T by c1, c2, . . . , ck, with k ≥ 1. Fix an arbitrary index i ∈ [k]. We denote the
subtree of T rooted at ci by Ti and the set of required points in Ti by Vi. Also, we write ni as a shortcut
for |Vi| and wi as a shortcut for dT (rt, ci) = w(rt, ci). (Clearly,

∑k
i=1 ni = n.) We argue that ni ≥ 1;

indeed, otherwise the tree obtained from T by removing from it the subtree Ti is an r-tree for M , having
weight no greater than that of T and less Steiner points, yielding a contradiction. Consider the metric
Mi induced by the point set of Vi. Observe that Mi ∈ Pni

. Also, note that the subtree Ti of T dominates
Mi, and so it must hold that r −wi ≥ 1

2 · diam(Mi). It follows that Ti is an (r −wi)-tree for Mi. Hence,
by the induction hypothesis, we have w(Ti) ≥ g(ni, r − wi) = (r − wi) − 1

2 · (ni − 1) + 1
2 · ni · log ni.

By construction, w(T ) =
∑k

i=1(wi + w(Ti)). Consequently,

w(T ) ≥
k
∑

i=1

(

wi +

(

(r − wi) −
1

2
· (ni − 1) +

1

2
· ni · log ni

))

=
k
∑

i=1

(

r − 1

2
· (ni − 1) +

1

2
· ni · log ni

)

=
k
∑

i=1

(

r − 1

2
· (n − 1) +

1

2
· (n − ni) +

1

2
· ni · log ni

)

≥ r − 1

2
· (n − 1) +

k
∑

i=1

(

1

2
· (n − ni) +

1

2
· ni · log ni

)

= r − 1

2
· (n − 1) +

1

2
·
(

n · (k − 1) +
k
∑

i=1

(ni · log ni)

)

≥ r − 1

2
· (n − 1) +

1

2
·
(

k
∑

i=1

(

ni · log

(

n

ni

))

+
k
∑

i=1

(ni · log ni)

)
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= r − 1

2
· (n − 1) +

1

2
·

k
∑

i=1

(ni · log n) = r − 1

2
· (n − 1) +

1

2
· n · log n.

(The last inequality follows from Lemma A.1 that appears in Appendix A.)

Consider the 1-dimensional Euclidean metric ζn ∈ Pn that consists of n vertices v1, v2, . . . , vn that lie
on the x-axis with coordinates 1, 2, . . . , n, respectively. Now extend the metric ζn to include an additional
vertex rt, such that the distance between rt and vi is equal to n−1

2 , for each i ∈ [n]. Denote the resulting

(n+1)-point metric by ζ̃n+1. Lemma 3.1 implies that any Steiner SPT for ζ̃n+1 rooted at rt has lightness
Ω(log n). We remark that ζ̃n+1 is not a Euclidean metric. However, the same bound of Ω(log n) on the
lightness of Steiner SPTs can be obtained for simple Euclidean 2-dimensional point sets. For example,
with a slight abuse of notation, let Cn denote a set of n points that are uniformly spaced on the boundary
of a circle with radius n

2π (rather than unit radius as in Section 1.3), centered at the origin (0, 0), and

define C̃n+1 = Cn ∪ {(0, 0)}. It is not hard to see that the proof of Lemma 3.1 carries through (with
minor adjustments) also if T is an r-tree for Cn. In other words, any SPT for the point set C̃n+1 rooted
at rt = (0, 0) has lightness Ω(log n).

Theorem 3.2 For any sufficiently large integer n, there exists a Euclidean 2-dimensional n-point metric
M and a designated point rt ∈ M , such that every Steiner SPT rooted at rt has lightness Ω(log n).

We use the following lemma to prove Lemma 3.4, which, in turn, enables us to generalize Theorem
3.2 for Steiner SLTs.

Lemma 3.3 Let M be an arbitrary metric in Pn and let r ≥ 1
2 · diam(M) ≥ 1

2 · (n− 1). Also, let (T, rt)
be an (r, 1

r )-tree for M with a minimum number of Steiner points, taken over all (r, 1
r )-trees for M of

minimum weight. Then: (1) All leaves of T are required points. (2) All inner vertices of T are Steiner
points. (3) There are at most 2n − 1 edges in T .

Proof: The first assertion of the lemma is obvious.
To prove the second assertion of the lemma, suppose for contradiction that there is an inner vertex v

in T that belongs to M , and let l be some leaf in the subtree Tv of T rooted at v. The first assertion of
this lemma implies that l belongs to M . Since T is an (r, 1

r )-tree for M and both v and l belong to M ,
we have dT (rt, v) ≥ r and dT (rt, l) < (1 + 1

r ) · r = r + 1. However, since T dominates M , it must hold
that dT (v, l) ≥ dM (v, l) ≥ 1, and so

dT (rt, l) = dT (rt, v) + dT (v, l) ≥ r + 1,

yielding a contradiction.
To prove the third assertion, it suffices to show that every inner vertex in T , except for maybe the

root vertex rt, has at least two children. Suppose for contradiction that there is an inner vertex v 6= rt
with only one child u, and let π(v) be the parent of v in T . Denote by w(e) the weight of an edge e in
T . The second assertion of this lemma implies that both v and its parent π(v) are Steiner points. Thus,
we can remove v from T by replacing the two edges (π(v), v) and (v, u) that are incident to v in T with
a single edge (π(v), u) of the same weight w(π(v), v) + w(v, u). The resulting tree is an (r, 1

r )-tree for M ,
having less Steiner points than T and the same weight, a contradiction. Lemma 3.3 follows.

Lemma 3.4 Let M be an arbitrary metric in Pn and let r ≥ 1
2 · diam(M) ≥ 1

2 · (n − 1). Then any
(r, 1

r )-tree T for M has weight w(T ) at least g(n, r) − 2n =
(

r − 1
2 · (n − 1) + 1

2 · n · log n
)

− 2n.
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Proof: Let (T, rt) be an (r, 1
r )-tree for M with a minimum number of Steiner points, taken over all

(r, 1
r )-trees for M of minimum weight.
Let w be the weight function of T , and denote by w(e) the weight of an edge e in T . Also, denote the

vertex-set and edge-set of T by V and E, respectively. For a vertex v in V , let π(v) denote the parent of
v in T , let Ch(v) denote the set of children of v in T , and denote by δ(v) the maximum distance between
v and a leaf in the subtree Tv of T rooted at v. Consider an arbitrary edge e = (π(v), v) ∈ E. Observe
that

δ(π(v)) = max{δ(u) + w(π(v), u) | u ∈ Ch(π(v))} ≥ δ(v) + w(π(v), v). (6)

Next, we define a new weight function w′ over the edge-set E of T . Specifically, for each edge
e = (π(v), v) ∈ E, set w′(e) = δ(π(v)) − δ(v). For convenience, we denote by T ′ the tree induced by the
edge-set E of T and the new weight function w′.

Claim 3.5 The tree (T ′, rt) is a δ(rt)-tree for M . Moreover, its weight w′(T ′) is greater by an additive
term of at most 2n than the weight w(T ) of the original tree T , i.e., w′(T ′) ≤ w(T ) + 2n.

Proof: First, Equation (6) implies that for every edge e ∈ E, w′(e) ≥ w(e). Since T dominates M , it
follows that T ′ dominates M as well. Also, note that δ(rt) ≥ r ≥ 1

2 · diam(M).
Next, we prove that for every vertex v ∈ V and any leaf l in the subtree T ′

v of T ′ rooted at v,
dT ′(v, l) = δ(v). The proof is by induction on the depth h = h(v) of v. The basis h = 0 is trivial.
Induction Step: We assume that the statement holds for all children of v, and prove it for v. Let u be the
child of v, such that the leaf l belongs to the subtree T ′

u of T ′ rooted at u. By the induction hypothesis,
dT ′(u, l) = δ(u). Also, by construction,

dT ′(v, l) = w′(v, u) + dT ′(u, l) = δ(v) − δ(u) + δ(u) = δ(v),

which proves the induction step. It follows that dT ′(rt, l) = δ(rt), for every leaf l in T ′. By the first two
assertions of Lemma 3.3, all points of M are leaves in T ′, implying that the distance in T ′ between rt
and every point of M is δ(rt). Hence, T ′ is a δ(rt)-tree for M .

It remains to bound the weight w′(T ′) of T ′. Since T is an (r, 1
r )-tree for M and all leaves of T belong

to M , it follows that r ≤ dT (rt, l) < (1 + 1
r ) · r = r + 1, for every leaf l in T . Consequently, for every

two leaves l1 and l2 in T , |dT (rt, l1)− dT (rt, l2)| < 1. More generally, if l1 and l2 are descendants of some
vertex x in T , then we have

|dT (x, l1) − dT (x, l2)| = |dT (rt, l1) − dT (rt, l2)| < 1. (7)

Consider now an arbitrary edge e = (π(v), v) ∈ E, and let u be a child of π(v), such that δ(π(v)) = δ(u)+
w(π(v), u). Also, let lu (respectively, lv) be a leaf in the subtree Tu (resp., Tv), such that δ(u) = dT (u, lu)
(resp., δ(v) = dT (v, lv)). Notice that both lu and lv are descendants of π(v) in T and dT (π(v), lu) ≥
dT (π(v), lv). Thus, Equation (7) yields dT (π(v), lu) − dT (π(v), lv) < 1. Also, we have dT (π(v), lu) =
δ(u) + w(π(v), u) and dT (π(v), lv) = δ(v) + w(π(v), v). Altogether,

w′(e) = w′(π(v), v) = δ(π(v)) − δ(v) = (δ(u) + w(π(v), u)) − δ(v)

= dT (π(v), lu) − (dT (π(v), lv) − w(π(v), v)) < w(π(v), v) + 1.

We have proved that for any edge e ∈ E, w′(e) < w(e) + 1. (See Figure 5 for an illustration.) By the
third assertion of Lemma 3.3, there are at most 2n − 1 edges in E, and so

w′(T ′) =
∑

e∈E

w′(e) <
∑

e∈E

(w(e) + 1) =
∑

e∈E

w(e) + |E| ≤ w(T ) + 2n − 1,
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Figure 5: The vertex π(v) and its two subtrees Tv and Tu.

which completes the proof of Claim 3.5.

Claim 3.5 implies that T ′ is a δ(rt)-tree for M , with δ(rt) ≥ r ≥ 1
2 ·diam(M) and w′(T ′) ≤ w(T )+2n.

By Lemma 3.1,

w′(T ′) ≥ δ(rt) − 1

2
· (n − 1) +

1

2
· n · log n ≥ r − 1

2
· (n − 1) +

1

2
· n · log n,

and so

w(T ) ≥ w′(T ′) − 2n ≥ r − 1

2
· (n − 1) +

1

2
· n · log n − 2n.

Lemma 3.4 follows.

Lemma 3.4 implies that any Steiner tree for ζ̃n+1 rooted at rt with root-stretch less than 1 + 2
n−1

has lightness Ω(log n). More generally, consider the metric ζ̃k+1 that consists of k + 1 points, for some
parameter k ≤ n. Extend this metric by adding to it n − k points, that are “located” (arbitrarily) at
tiny distances from the already existing points of ζ̃k+1 \ {rt}. Clearly, any Steiner tree for the resulting
(n+1)-point metric rooted at rt with root-stretch less than 1+ 2

k−1 has lightness Ω(log k). Also, similarly

to above, the same bound of Ω(log k) on the lightness of Steiner (1 + 2
k−1)-SPTs can be obtained for

simple Euclidean 2-dimensional metrics. Setting ǫ = 2
k−1 , we obtain the following result.

Theorem 3.6 For any sufficiently large integer n and any parameter ǫ = Ω( 1
n), ǫ ≤ 1

2 , there exists a
Euclidean 2-dimensional n-point metric M and a designated point rt ∈ M , such that every Steiner tree
rooted at rt with root-stretch less than 1 + ǫ has lightness Ω(log 1

ǫ ).

Next, we strengthen Theorem 3.6 in two ways. Specifically, we present a metric ϑ = ϑn,k for which
the same tradeoff of 1+ǫ versus Ω(log 1

ǫ ) between the root-stretch and lightness holds for any root vertex.
Moreover, we demonstrate that this tradeoff cannot be improved even if we consider average root-stretch
rather than (worst-case) root-stretch. For the analysis of this metric, we will use Lemmas 3.1 and 3.4.

Let n, k be an arbitrary pair of integers, such that n ≥ 2k ≥ 4, and let α be some tiny number,
with 0 < α ≪ 1

n . In what follows we assume for simplicity that n is even and k divides n/2, but the

general case can be handled similarly. Let V =
⋃k

ℓ=1 Vℓ and U =
⋃k

ℓ=1 Uℓ, where for each index ℓ ∈ [k],

Vℓ = {v(1)
ℓ , v

(2)
ℓ , . . . , v

( n
2k

)

ℓ } and Uℓ = {u(1)
ℓ , u

(2)
ℓ , . . . , u

( n
2k

)

ℓ }. Define ϑ = ϑn,k = (V, dist) to be the n-point
metric, where V = V ∪U , and the distance function dist is set as follows. (See Figure 6 for an illustration.)
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1. For any index ℓ ∈ [k] and any pair of distinct indices i, j ∈ [ n
2k ], dist(v

(i)
ℓ , v

(j)
ℓ ) = dist(u

(i)
ℓ , u

(j)
ℓ ) = α.

2. For any pair of distinct indices ℓ, q ∈ [k] and any pair of indices i, j ∈ [ n
2k ], dist(v

(i)
ℓ , v

(j)
q ) =

dist(u
(i)
ℓ , u

(j)
q ) = |ℓ − q|.

3. For any pair of indices ℓ, q ∈ [k] and any pair of indices i, j ∈ [ n
2k ], dist(v

(i)
ℓ , u

(j)
q ) = k−1

2 .

Vk−1V2V1 VkV3

11

2

k− 4

1

rt ∈ U3

k−1

2

k−1

2k−1

2

k−1

2

k−1

2

ϑn,k

Uk−1U2U1 UkU3

k− 3

1 1 1

k−1

2

k − 1

Figure 6: An illustration of the metric ϑn,k. For each index ℓ, the circles around Vℓ and Uℓ designate the ( n
2k

)-point sets
corresponding to them. The distance between all pairs of points that belong to the same set Vℓ or Uℓ, ℓ ∈ [k], is equal to some
tiny number 0 < α ≪ 1

n
. All solid lines in the figure have length 1. These lines designate the distance between a point in Vℓ

(respectively, Uℓ) and a point in Vℓ+1 (resp., Uℓ+1), ℓ ∈ [k − 1]. All distances between an arbitrary designated point rt ∈ U3 and
some point in Uℓ, ℓ ∈ [k], |3 − ℓ| ≥ 2, are depicted in the figure by dotted lines. Finally, the distance between a point in V and
a point in U is equal to k−1

2
. All distances between rt ∈ U3 and some point in Vℓ, ℓ ∈ [k], are depicted in the figure by dashed

lines.

A point set W ⊆ V (respectively, W ⊆ U) is called V -elementary (resp., U -elementary), if |W∩Vℓ| ≤ 1
(resp., |W ∩Uℓ| ≤ 1), for each index ℓ ∈ [k]. We say that W is elementary if it is either V -elementary or
U -elementary.

Observation 3.7 For any elementary point set W , the sub-metric ϑ(W ) of ϑn,k induced by W belongs
to P|W |.

Lemma 3.8 Consider the metric ϑn,k, for an arbitrary pair n, k of integers, such that n ≥ 2k ≥ 4, and
let T be a Steiner tree of ϑn,k rooted at an arbitrary point rt ∈ ϑn,k. Then: (1) If the root-stretch of
(T, rt) is less than 1+ 2

k−1 then its weight w(T ) is at least 1
2 ·k · log k−2k. (2) If the average root-stretch

of (T, rt) is at most 1 + 1
2·(k−1) then its weight w(T ) is at least 1

4 · k · log k − k.
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Proof: Suppose without loss of generality that rt ∈ U .
To prove the first assertion, assume that the root-stretch of (T, rt) is less than 1 + 2

k−1 , and consider

an arbitrary V -elementary point set W of size k, for example, take W = {v(1)
1 , v

(1)
2 , . . . , v

(1)
k }. Observation

3.7 implies that ϑ(W ) belongs to Pk. By definition, the distance in ϑn,k between rt and any point in W is
equal to k−1

2 . Also, note that diam(ϑ(W )) ≤ diam(ϑn,k) = k−1, and so k−1
2 ≥ 1

2 ·diam(ϑ(W )). Since the

root-stretch of (T, rt) is less than 1+ 2
k−1 , it follows that (T, rt) is a (k−1

2 , 2
k−1)-tree for ϑ(W ). By Lemma

3.4, the weight w(T ) of T is at least g(k, k−1
2 )−2k = (k−1

2 − 1
2 · (k−1)+ 1

2 ·k · log k)−2k = 1
2 ·k · log k−2k.

Next, we prove the second assertion of the lemma. Assume that the average root-stretch of (T, rt) is
at most 1+ 1

2·(k−1) . Denote by V ′ the set of all points v in V , such that StrT (rt, v) < 1+ 2
k−1 , and define

V ′′ = V \ V ′. Also, write V∗ = V \ {rt}. Clearly, for each point v in V∗ \ V ′′, StrT (rt, v) ≥ 1, and for
each point v in V ′′, StrT (rt, v) ≥ 1 + 2

k−1 . Observe that

1 +
1

2 · (k − 1)
≥ AvgStr(T, rt) =

∑

v∈V∗ StrT (rt, v)

n − 1

=

∑

v∈V∗\V ′′ StrT (rt, v)

n − 1
+

∑

v∈V ′′ StrT (rt, v)

n − 1

≥ |V∗ \ V ′′|
n − 1

+
|V ′′| ·

(

1 + 2
k−1

)

n − 1
=

|V∗|
n − 1

+
|V ′′| · 2

k−1

n − 1
= 1 +

|V ′′| · 2
k−1

n − 1
.

implying that |V ′′| ≤ n/4. Denote by I the set of all indices ℓ in [k], such that V ′ ∩ Vℓ 6= ∅. Observe that
V ′′ ⊇ ⋃ℓ∈[k]\I Vℓ, and so

n/4 ≥ |V ′′| ≥
∑

ℓ∈[k]\I
|Vℓ| =

∑

ℓ∈[k]\I

n

2k
= (k − |I|) · n

2k
.

It follows that |I| ≥ k/2. For each index ℓ ∈ I, let v(ℓ) be an arbitrary point in V ′ ∩ Vℓ. Consider the V -
elementary point set W = {v(ℓ) | ℓ ∈ I}, and remove points from it arbitrarily until |W | = k/2. Note that
StrT (rt, v) < 1 + 2

k−1 , for each point v ∈ W , implying that (T, rt) is a Steiner tree for ϑ(W ) with root-

stretch less than 1 + 2
k−1 . By Observation 3.7, ϑ(W ) belongs to Pk/2. Also, by definition, the distance in

ϑn,k between rt and any point in W is equal to k−1
2 . Finally, note that diam(ϑ(W )) ≤ diam(ϑn,k) = k−1,

and so k−1
2 ≥ 1

2 · diam(ϑ(W )). Consequently, (T, rt) is a (k−1
2 , 2

k−1)-tree for ϑ(W ). By Lemma 3.4, the
weight w(T ) of T is at least

g

(

k

2
,
k − 1

2

)

− 2 · k

2
=

(

k − 1

2
− 1

2
·
(

k

2
− 1

)

+
1

2
· k

2
· log

(

k

2

))

− k =
1

4
· k · log k − k.

Observe that 5
2 · (k − 1) ≤ w(MST (ϑn,k)) ≤ 5

2 · (k − 1) + α · (n − 1) ≤ 5
2 · (k − 1) + 1. Substituting k

with Θ(1
ǫ ) in Lemma 3.8, we obtain the main result of this section.

Corollary 3.9 For any integer n and any parameter 2
n ≤ ǫ ≤ 1

2 , every Steiner tree T of ϑn,k rooted at an
arbitrary point rt ∈ ϑn,k that has average root-stretch at most 1 + ǫ must have lightness at least Ω(log 1

ǫ ),
where k =

⌊

1
2ǫ

⌋

+ 1.

Remarks: (1) Observe that 1 + ǫ ≤ 1 + 1
2·(k−1) . To apply Lemma 3.8, we need to have n ≥ 2k ≥ 4.

Indeed, since ǫ ≤ 1
2 , it holds that 1

2ǫ ≥ 1, and so k =
⌊

1
2ǫ

⌋

+ 1 ≥ ⌊1⌋ + 1 = 2. Also, since 2
n ≤ ǫ ≤ 1

2 ,
we have n ≥ 2

ǫ = 1
ǫ + 1

ǫ ≥ 2 ·
⌊

1
2ǫ

⌋

+ 2 = 2k ≥ 4. (2) The metric ϑn,k is not Euclidean. However,
the same (up to constant factors) lower bound as the one established in this statement can be obtained
also for Euclidean 2-dimensional metrics.
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4 Lower Bounds for Euclidean Spanning SLTs

In this section we address three out of the four open questions posed by Khuller et al. [23]. More
specifically, up to constant factors we settle these questions.

As before, let Cn denote a set of n points that are uniformly spaced around the boundary C of the
unit circle, centered at the origin (0, 0), and define C̃n+1 = Cn ∪ {(0, 0)}.

4.1 (Average) root-stretch 1 + ǫ implies lightness Ω(1
ǫ
)

In this section we establish a tradeoff of (1 + ǫ) versus Ω(1
ǫ ) between the root-stretch and lightness of

spanning SLTs. We show that this tradeoff holds for any choice of root-vertex, even if we consider average
root-stretch rather than (worst-case) root-stretch.

The root-degree of a rooted tree (T, rt), denoted γ(T, rt), is the degree of rt in T .

Lemma 4.1 Let n be a sufficiently large integer, let T be a spanning tree for C̃n+1 rooted at rt = (0, 0),

and write γ = γ(T, rt). Then: (1) rtStr(T, rt) ≥ 1 + ( 2
γ − 2

n). (2) AvgStr(T, rt) ≥ 1 +
(

1
γ − γ

n2

)

.

Proof: Denote the γ neighbors of rt in clockwise order along C by v1, v2, . . . , vγ , and define vγ+1 = v1.

Let Si = (w
(i)
0 = vi, w

(i)
1 , . . . , w

(i)
ni = vi+1) be the sequence of all points that we traverse when going from vi

to vi+1 along C in clockwise order, for each index i ∈ [γ]. We have
∑γ

i=1 ni = n. Fix an arbitrary pair i, j

of indices, i ∈ [γ], j ∈ [0, ni], and consider the point w
(i)
j . Since ni ≤ n, we have min{j, ni − j} ≤ n

2 , and

so the circular distance between w
(i)
j and at least one of the points vi or vi+1 is at most π. Consequently,

min
{

‖vi − w
(i)
j ‖, ‖vi+1 − w

(i)
j ‖
}

≥ 2

π
· min

{

j · 2π

n
, (ni − j) · 2π

n

}

.

Let P = P
(

rt, w
(i)
j

)

be the path from rt to w
(i)
j in T . It is easy to verify that

w (P ) ≥ 1 + min
{

‖vi − w
(i)
j ‖, ‖vi+1 − w

(i)
j ‖
}

≥ 1 +
2

π
· min

{

j · 2π

n
, (ni − j) · 2π

n

}

.

Also, we have ‖rt − w
(i)
j ‖ = 1. It follows that

StrT

(

rt, w
(i)
j

)

=
dT (rt, w

(i)
j )

‖rt − w
(i)
j ‖

= w(P ) ≥ 1 +
2

π
· min

{

j · 2π

n
, (ni − j) · 2π

n

}

. (8)

Since
∑γ

i=1 ni = n, there is an index k ∈ [γ], such that nk ≥ n
γ . By Equation (8),

rtStr(T, rt) ≥ StrT

(

rt, w
(k)

⌊nk
2 ⌋

)

≥ 1 +
2

π
·
⌊nk

2

⌋

· 2π

n
≥ 1 + 2 ·

(

nk − 1

n

)

≥ 1 +

(

2

γ
− 2

n

)

,

which proves the first assertion of the lemma.
Next, we bound the average root-stretch of T .

We argue that
ni−1
∑

j=0

StrT

(

rt, w
(i)
j

)

≥ ni +
n2

i − 1

n
. (9)
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We restrict the attention to the case when ni is odd. (The case when ni is even can be handled similarly.)
By Equation (8),

ni−1
∑

j=0

StrT

(

rt, w
(i)
j

)

≥
ni−1
∑

j=0

(

1 +
2

π
· min

{

j · 2π

n
, (ni − j) · 2π

n

})

= ni +
4

π
·





(ni−1)/2
∑

j=1

j · 2π

n



 = ni +
8

n
·





(ni−1)/2
∑

j=1

j





= ni +
8

n
·
(

n2
i − 1

8

)

= ni +
n2

i − 1

n
,

which proves Equation (9). Recall that
∑γ

i=1 ni = n. Hence, by the Cauchy-Schwarz inequality,
∑γ

i=1 n2
i ≥ n2

γ . By Equation (9),

∑

v∈C̃n+1\{rt}

StrT (rt, v) =

γ
∑

i=1

ni−1
∑

j=0

StrT

(

rt, w
(i)
j

)

≥
γ
∑

i=1

(

ni +
n2

i − 1

n

)

= n +
1

n
·

γ
∑

i=1

(n2
i − 1) = n +

1

n
·

γ
∑

i=1

n2
i −

γ

n

≥ n +
1

n
· n2

γ
− γ

n
= n +

n

γ
− γ

n
.

It follows that

AvgStr(T, rt) =

∑

v∈C̃n+1\{rt} StrT (rt, v)

n
≥

n + n
γ − γ

n

n
= 1 +

(

1

γ
− γ

n2

)

,

which proves the second assertion of the lemma. Lemma 4.1 follows.

Lemma 4.1 implies the following corollary.

Corollary 4.2 Let n be a sufficiently large integer, and let T be an arbitrary spanning tree for C̃n+1

rooted at rt = (0, 0). If the lightness Ψ(T ) of T it at most α, for an arbitrary parameter α ≥ 1, then (1)

rtStr(T, rt) ≥ 1 +
(

2
(2π+1)·α − 2

n

)

, and (2) AvgStr(T, rt) ≥ 1 +
(

1
(2π+1)·α − (2π+1)·α

n2

)

.

Remark: For α ≤ n
2(2π+1) , we obtain (1) rtStr(T, rt) ≥ 1+ 1

(2π+1)·α = 1+Ω
(

1
α

)

, and (2) AvgStr(T, rt) ≥
1 + 3

4·(2π+1)·α = 1 + Ω
(

1
α

)

.

Proof: Note that the weight of every edge in T that is incident to rt is equal to 1. Hence, w(T ) ≥ γ =
γ(T, rt). Also, the weight w(MST (C̃n+1)) of the MST for C̃n+1 is smaller than 2π + 1. Consequently,

α ≥ Ψ(T ) =
w(T )

w(MST (C̃n+1))
≥ γ

2π + 1
,

and so γ ≤ (2π + 1) · α. By Lemma 4.1,

rtStr(T, rt) ≥ 1 +

(

2

γ
− 2

n

)

≥ 1 +

(

2

(2π + 1) · α − 2

n

)

and

AvgStr(T, rt) ≥ 1 +

(

1

γ
− γ

n2

)

≥ 1 +

(

1

(2π + 1) · α − (2π + 1) · α
n2

)

.
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Corollary 4.2 provides a near-optimal tradeoff between the lightness and (average) root-stretch of
spanning SLTs. However, this tradeoff holds for a specific root vertex. Next, we demonstrate that the
same tradeoff also holds when the root vertex is selected at will.

Lemma 4.3 Let n be a sufficiently large integer, let rt be an arbitrary point in Cn, and let T be a spanning
tree for Cn rooted at rt. If the lightness of T is at most α, for an arbitrary parameter 1 ≤ α ≤ 1

8π · n,
then the average root-stretch of (T, rt) is at least 1 + Ω

(

1
α

)

.

Proof: We suppose without loss of generality that rt is the bottom-most point of the circle C, i.e.,
rt = (0,−1). Let U (respectively, D) denote the set of all points in C with y-coordinate at least 1

2 (resp.,
at most −1

2). Also, let VU = U ∩ Cn (respectively, VD = D ∩ Cn) be the set of all points in Cn with
y-coordinate at least 1

2 (resp., at most −1
2). An edge e of T is called semi-vertical if it connects a point in

VU with a point in VD. Denote by SV the set of all semi-vertical edges of T . Clearly, for any semi-vertical
edge e = (u, v) in T , w(e) = ‖u, v‖ ≥ 1, and so the weight w(T ) of T satisfies w(T ) ≥∑e∈SV w(e) ≥ |SV |.
Since the weight w(MST (Cn)) of the MST for Cn is smaller than 2π, it follows that

α ≥ Ψ(T ) =
w(T )

w(MST (Cn))
≥ |SV |

2π
,

and so |SV | ≤ 2π · α. Denote the endpoints of the edges in SV that belong to VU in clockwise order
by u1, u2, . . . , us, and observe that s ≤ |SV |. Let u0 and us+1 be the points of VU that are closest to

the left-most point (−
√

3
2 , 1

2) and the right-most point (
√

3
2 , 1

2) of U , respectively. Since the length of the
arc U is equal to 2π

3 , it follows that |VU | ≈ n
3 . In what follows we assume for simplicity that |VU | = n

3 ,
u0 6= u1 and us 6= us+1; the general case is handled similarly. (See Figure 7 for an illustration.)

y =
1

2

y = 0

x = −

√

3

2
x = 0 x =

√

3

2

U

D

y = −
1

2

u0 us+1 = u5

u1
u2

u3

u4

Figure 7: An illustration of the circle C and the semi-vertical edges of SV . The two arcs U and D of C are marked by bold
lines. The six semi-vertical edges of SV in the figure are depicted by solid lines, whereas the four endpoints u1, u2, u3 and u4 of
these edges that belong to VU , as well as the two boundary points u0 and us+1 = u5 of VU , are depicted by black dots.

Let Si = (w
(i)
0 = ui, w

(i)
1 , . . . , w

(i)
ni = ui+1) be the sequence of all points that we traverse when going

from ui to ui+1 along U in clockwise order, for each index i ∈ [0, s]. Note also that
∑s

i=0 ni = |VU | = n
3 .

Fix an arbitrary pair i, j of indices, i ∈ [0, s], j ∈ [0, ni], and consider the point w
(i)
j . Since the length of
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U is 2
3 · π, it follows that the circular distance between w

(i)
j and at least one of the points ui or ui+1 is at

most π
3 . Consequently, we get

min
{

‖ui − w
(i)
j ‖, ‖ui+1 − w

(i)
j ‖
}

≥ 3

π
· min

{

j · 2π

n
, (ni − j) · 2π

n

}

.

Let P = P
(

rt, w
(i)
j

)

be the path from rt to w
(i)
j in T . Next, we show that the weight w(P ) of P satisfies

w(P ) ≥ ‖rt − w
(i)
j ‖ + c · min

{

j · 2π

n
, (ni − j) · 2π

n

}

, (10)

for some constant 0 < c < 1 to be determined later. It is easy to verify that Equation (10) holds true if P
contains a point in Cn \ (VU ∪VD). We restrict the attention to the complementary case where all points
in P belong to VU ∪ VD, which is more difficult. In this case P must contain at least one semi-vertical
edge e. Denote the endpoint of e that belongs to VU by u, and note that u = uℓ, for some index ℓ ∈ [s].

By the triangle inequality, w(P ) ≥ ‖rt − u‖ + ‖u − w
(i)
j ‖. Simple geometric considerations imply that

‖rt − u‖ + ‖u − w
(i)
j ‖ ≥ ‖rt − w

(i)
j ‖ + c̃ · ‖u − w

(i)
j ‖,

for an appropriate constant 0 < c̃ < 1. Also, observe that

‖u − w
(i)
j ‖ ≥ min

{

‖ui − w
(i)
j ‖, ‖ui+1 − w

(i)
j ‖
}

.

It follows that

w(P ) ≥ ‖rt − u‖ + ‖u − w
(i)
j ‖ ≥ ‖rt − w

(i)
j ‖ + c̃ · ‖u − w

(i)
j ‖

≥ ‖rt − w
(i)
j ‖ + c̃ · min

{

‖ui − w
(i)
j ‖, ‖ui+1 − w

(i)
j ‖
}

≥ ‖rt − w
(i)
j ‖ +

(

c̃ · 3

π

)

· min

{

j · 2π

n
, (ni − j) · 2π

n

}

,

for some constant 0 < c =
(

c̃ · 3
π

)

< 1, which proves Equation (10). Observe that ‖rt − w
(i)
j ‖ ≤ 2 and

define c′ = c
2 . It follows that

StrT

(

rt, w
(i)
j

)

=
dT

(

rt, w
(i)
j

)

‖rt − w
(i)
j ‖

=
w (P )

‖rt − w
(i)
j ‖

≥
‖rt − w

(i)
j ‖ + c · min

{

j · 2π
n , (ni − j) · 2π

n

}

‖rt − w
(i)
j ‖

≥ 1 + c′ · min

{

j · 2π

n
, (ni − j) · 2π

n

}

. (11)

Next, we argue that
ni−1
∑

j=0

StrT

(

rt, w
(i)
j

)

≥ ni +
π · c′ · (n2

i − 1)

2n
. (12)

We restrict the attention to the case when ni is odd. (The case when ni is even can be handled similarly.)
By Equation (11),

ni−1
∑

j=0

StrT

(

rt, w
(i)
j

)

≥
ni−1
∑

j=0

(

1 + c′ · min

{

j · 2π

n
, (ni − j) · 2π

n

})
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= ni + 2 · c′ ·





(ni−1)/2
∑

j=1

j · 2π

n



 = ni +
4π · c′

n
·





(ni−1)/2
∑

j=1

j





= ni +
4π · c′

n
·
(

n2
i − 1

8

)

= ni +
π · c′ · (n2

i − 1)

2n
,

which proves Equation (12).
Recall that

∑s
i=0 ni = n

3 and s ≤ |SV | ≤ 2π · α. Hence, by the Cauchy-Schwarz inequality,

s
∑

i=0

n2
i ≥ (

∑s
i=0 ni)

2

s + 1
=

n2

9 · (s + 1)
≥ n2

9 · (2π · α + 1)
. (13)

By Equations (12) and (13),

∑

v∈VU

StrT (rt, v) =
s
∑

i=0

ni−1
∑

j=0

StrT

(

rt, w
(i)
j

)

≥
s
∑

i=0

(

ni +
π · c′ · (n2

i − 1)

2n

)

=
n

3
+

π · c′
2n

·
s
∑

i=0

(n2
i − 1) =

n

3
+

π · c′
2n

·
s
∑

i=0

n2
i −

π · c′ · (s + 1)

2n

≥ n

3
+

π · c′
2n

· n2

9 · (2π · α + 1)
− π · c′ · (2π · α + 1)

2n
≥ n

3
+ Ω

(n

α

)

.

(The last inequality holds for all α ≤ 1
8π · n.) Notice that the point set W = (Cn \ {rt}) \ VU consists of

2n
3 − 1 points, and for every point v ∈ W , we have StrT (rt, v) ≥ 1. Hence,

∑

v∈W StrT (rt, v) ≥ 2n
3 − 1.

It follows that

AvgStr(T, rt) =

∑

v∈Cn\{rt} StrT (rt, v)

n − 1
=

∑

v∈VU
StrT (rt, v)

n − 1
+

∑

v∈W StrT (rt, v)

n − 1

≥
n
3 + Ω

(

n
α

)

n − 1
+

2n
3 − 1

n − 1
= 1 + Ω

(

1

α

)

.

4.2 Lightness 1 + ǫ implies (average) root-stretch Ω(1
ǫ
)

In this section we establish a tradeoff of (1 + ǫ) versus Ω(1
ǫ ) between the lightness and root-stretch of

spanning SLTs. We show that this tradeoff holds for any choice of root-vertex, even if we consider average
root-stretch rather than (worst-case) root-stretch.

Let k ≥ 1 be an arbitrary integer and let ǫ < 1 be a sufficiently small number. For each index
i ∈ [k +1], define hi to be the horizontal segment connecting point (0, (i− 1) · ǫ) with point (1, (i− 1) · ǫ).
Also, for each index i ∈ [⌈k/2⌉], define ri to be the vertical segment connecting point (1, (2i− 2) · ǫ) with
point (1, (2i− 1) · ǫ), and for each index i ∈ [⌊k/2⌋], define li to be the vertical segment connecting point
(0, (2i−1) ·ǫ) with point (0, 2i ·ǫ). Let Ck,ǫ be the 2-dimensional (ladder) curve obtained by concatenating
h1 ◦ r1 ◦h2 ◦ l1 ◦ . . . ◦ rk/2 ◦hk ◦ lk/2 ◦hk+1, if k is even, and h1 ◦ r1 ◦ h2 ◦ l1 ◦ . . . ◦ r(k−1)/2 ◦ hk−1 ◦ l(k−1)/2 ◦
hk ◦ r(k+1)/2 ◦ hk+1, if k is odd. (See Figure 8 for an illustration.)

Lemma 4.4 Let n be a sufficiently large integer and ǫ be a sufficiently small number, such that 4
n−4 <

ǫ < 1, and write δ1 = δ1(n, ǫ) = 2+ǫ
⌈n/2⌉−1 . There exists a set S′

1 = S′
1,ǫ(n) of n points that lie on the curve

C1,ǫ and a designated point rt ∈ S′
1, such that every spanning tree T of S′

1 rooted at rt with lightness less
than 1 + ǫ−δ1

2+ǫ ≈ 1 + ǫ
2 must have root-stretch at least 2

ǫ and average root-stretch at least 1
ǫ .
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Figure 8: An illustration of the curve Ck,ǫ, when (a) k = 1, (b) k = 2, and (c) k is an arbitrary even integer.
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Proof: Denote the endpoints (0, 0) and (0, ǫ) of the curve C1,ǫ by A and B, respectively. Let S1 =
S1,ǫ(⌈n/2⌉) be a set of ⌈n/2⌉ points that are distributed uniformly on the curve C1,ǫ, so that (1) both
points A and B belong to S1, and (2) the distance between any pair of consecutive points of S1 along
C1,ǫ is equal to δ1. Since 4

n−4 < ǫ < 1, it follows that δ1 < ǫ, and so the distance between any pair
of consecutive points of S1 along C1,ǫ is strictly smaller than the length ǫ of the vertical segment r1.
Consequently, the minimum distance between a pair of points in S1 is equal to δ1, and the weight of the
MST for S1 is equal to the perimeter 2+ ǫ of C1,ǫ. Let S′ = S′

ǫ(⌊n/2⌋) be a set of ⌊n/2⌋ points that reside
arbitrarily close to point B = (0, ǫ). For the sake of simplicity, we view all points of S′ as copies of point
B. Let S′

1 = S′
1,ǫ(n) be the n-point set obtained from the union of S1 and S′, i.e., S′

1 = S1 ∪ S′.

Let T be a spanning tree of S′
1 rooted at rt = A = (0, 0) ∈ S′

1, with Ψ(T ) < 1 + ǫ−δ1
2+ǫ . First, we argue

that there are no edges in T of weight at least ǫ. Indeed, otherwise we have w(T ) ≥ 2 + ǫ + (ǫ− δ1), and
so

Ψ(T ) =
w(T )

2 + ǫ
≥ 2 + ǫ + (ǫ − δ1)

2 + ǫ
= 1 +

ǫ − δ1

2 + ǫ
,

a contradiction.
Observe that B ∈ S′

1. Moreover, B ∈ S1, and by our assumption above, S′ contains ⌊n/2⌋ additional
copies of this point, denoted B′

1, B
′
2, . . . , B

′
⌊n/2⌋. Also, notice that ‖rt − B‖ = ǫ. Consider the path

P (rt, B) = (v1 = rt, v2, . . . , vm = B) from rt to B in T . Let vi be the last vertex in P (rt, B) with
y-coordinate smaller than that of h2. Since there are no edges in T of weight at least ǫ, it follows that
vi belongs to r1. Hence, by the triangle inequality, the weights of the sub-paths P (rt, vi) and P (vi, B)
of P (rt, B) from rt to vi and from vi to B are at least ‖rt − vi‖ ≥ 1 and ‖vi − B‖ ≥ 1, respectively.
Consequently,

dT (rt, B) = w(P (rt, B)) = w(P (rt, vi)) + w(P (vi, B)) ≥ ‖rt − vi‖ + ‖vi − B‖ ≥ 2,

implying that

rtStr(T, rt) ≥ StrT (rt, B) =
dT (rt, B)

‖rt − B‖ ≥ 2

ǫ
.

Also, for each point Bi ∈ S′, StrT (rt, Bi) = StrT (rt, B) ≥ 2
ǫ . Since |S′| = ⌊n/2⌋, it follows that

AvgStr(T, rt) =

∑

v∈S′
1\{rt} StrT (rt, v)

n − 1
≥ StrT (rt, B)

n − 1
+

∑

Bi∈S′ StrT (rt, Bi)

n − 1

≥
2
ǫ

n − 1
+

⌊n/2⌋ · 2
ǫ

n − 1
≥ 1

ǫ
.

The next lemma strengthens Lemma 4.4 in the following sense. Lemma 4.4 provides an example in
which there exists a designated root vertex rt such that any spanning tree with lightness at most 1 + ǫ
has root-stretch Ω(1

ǫ ) with respect to the vertex rt. In the following lemma we provide an example in
which for any choice of the root vertex rt, the above statement holds. On the other hand, while Lemma
4.4 achieves the above tradeoff also for average root-stretch, the following lemma only achieves it for
(worst-case) root-stretch.

Lemma 4.5 Let n be a sufficiently large integer and ǫ be a sufficiently small number, such that 3
n−3 <

ǫ < 1, and write δ2 = δ2(n, ǫ) = 3+2ǫ
n−1 . Also, let S2 = S2,ǫ(n) be a set of n points that are distributed

uniformly on the curve C2,ǫ, so that the distance between any pair of consecutive points of S2 along C2,ǫ is
equal to δ2. Then for any designated point rt ∈ S2, every rooted spanning tree (T, rt) of S2 with lightness
less than 1 + ǫ−δ2

3+2ǫ ≈ 1 + ǫ
3 must have root-stretch at least 2−δ2

2ǫ+δ2
≈ 1

ǫ .
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Proof: Since 3
n−3 < ǫ < 1, it follows that δ2 < ǫ, and so the distance between any pair of consecutive

points of S2 along C2,ǫ is strictly smaller than the length ǫ of the vertical segments r1 and l1. Consequently,
the minimum distance between a pair of points in S2 is equal to δ2, and the weight of the MST for S2 is
equal to the perimeter 3 + 2ǫ of C2,ǫ.

Let T be a spanning tree of S2 rooted at an arbitrary designated point rt ∈ S2, with Ψ(T ) < 1+ ǫ−δ2
3+2ǫ .

First, we argue that there are no edges in T of weight at least ǫ. Indeed, otherwise we have w(T ) ≥
3 + 2ǫ + (ǫ − δ2), and so

Ψ(T ) =
w(T )

3 + 2ǫ
≥ 3 + 2ǫ + (ǫ − δ2)

3 + 2ǫ
= 1 +

ǫ − δ2

3 + 2ǫ
,

a contradiction.
For each index i ∈ [3], decompose hi into two sub-segments hL

i and hR
i , where hL

i connects point
(0, (i− 1) · ǫ) with point (1

2 , (i− 1) · ǫ) and hR
i connects point (1

2 , (i− 1) · ǫ) with point (1, (i− 1) · ǫ). Next,
we define a mapping f : S2 → S2. Consider an arbitrary point v ∈ S2. If v belongs to hL

1 (respectively,
hR

1 ), then f(v) is defined to be the point in hL
3 ∩ S2 (resp., hR

3 ∩ S2) closest to v, and vice versa, if v
belongs to hL

3 (resp., hR
3 ), then f(v) is defined to be the point in hL

1 ∩ S2 (resp., hR
1 ∩ S2) closest to v.

Also, if v belongs to hL
2 (respectively, hR

2 ), then f(v) is defined to be the point in hL
1 ∩S2 (resp., hR

3 ∩S2)
closest to v. Finally, if v belongs to r1 (respectively, l1), then f(v) is defined to be the point in hR

3 ∩ S2

(resp., hL
1 ∩ S2) closest to v. (See Figure 9 for an illustration.)

C2,ǫ
hR
2

hL
1

hL
3

r1

l1

1

2

1

2

hR
1

hL
2

hR
3

2ǫ

Figure 9: An illustration of the mapping f .

Next, we show that for any point v ∈ S2, StrT (v, f(v)) ≥ 2−δ2
2ǫ+δ2

. In particular, by substituting v

with rt we will get rtStr(T, rt) ≥ StrT (rt, f(rt)) ≥ 2−δ2
2ǫ+δ2

, which concludes the proof. We restrict the

attention to the case when v belongs to hL
1 . The other cases can be handled similarly. By definition,

f(v) is the point in hL
3 ∩ S2 that is closest to v. Hence, we have ‖v − f(v)‖ ≤ 2ǫ + δ2. Consider the path

P (v, f(v)) = (v1 = v, v2, . . . , vm = f(v)) from v to f(v) in T . Let vi be the last vertex in P (v, f(v)) with
y-coordinate smaller than that of h2, and let vj be the first vertex that comes after vi in P (v, f(v)) and
has y-coordinate greater than that of h2. Since there are no edges in T of weight at least ǫ, it follows
that vi belongs to r1 and vj belongs to l1. Hence, by the triangle inequality, the weight of the sub-path
P (vi, vj) of P (v, f(v)) from vi to vj is at least ‖vi − vj‖ ≥ 1. Also, the weights of the sub-paths P (v, vi)
and P (vj , f(v)) of P (v, f(v)) from v to vi and from vj to f(v) are at least ‖v − vi‖ and ‖vj − f(v)‖,
respectively. Notice that ‖v − vi‖ + ‖vj − f(v)‖ ≥ 1 − δ2. It follows that

dT (v, f(v)) = w(P (v, f(v))) = w(P (v, vi)) + w(P (vi, vj)) + w(P (vj , f(v)))

≥ ‖v − vi‖ + ‖vi − vj‖ + ‖vj − f(v)‖ ≥ 2 − δ2,
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and so

StrT (v, f(v)) =
dT (v, f(v))

‖v − f(v)‖ ≥ 2 − δ2

2ǫ + δ2
.

The following lemma provides an example that achieves the same (up to constant factors) tradeoff
between the lightness and average root-stretch as Lemma 4.4, for every choice of root-vertex. Therefore
it is stronger than both Lemma 4.4 and Lemma 4.5.

Lemma 4.6 Let n be a sufficiently large integer, let ǫ = Ω( 1√
n
) be a sufficiently small number, define

k = ⌈1
ǫ ⌉, and suppose that k · (k + 2) ≤ n−1

14 . Also, let S = Sk,ǫ(n) be a set of n points that are distributed
uniformly on the curve C = Ck,ǫ. Then for every designated point rt ∈ S, any rooted spanning tree (T, rt)
for S with lightness at most 1 + ǫ

14 has average root-stretch Ω(1
ǫ ).

Proof: In what follows we assume for simplicity that 1
ǫ is an even number, and so k = 1

ǫ is even as well.
The general case is handled similarly. Observe that the perimeter of C is equal to k + 1 + k · ǫ = k + 2.
Since the points of S are distributed uniformly on C, the distance between any pair of consecutive points
of S along C is k+2

n−1 . Also, since k · (k + 2) ≤ n−1
14 , it follows that k+2

n−1 ≤ 1
14 · ǫ < ǫ, and so the distance

between any pair of consecutive points of S along C is strictly smaller than the length ǫ of each of the
vertical segments li and ri, i ∈ [k/2]. Consequently, the minimum distance between a pair of points in S
is equal to k+2

n−1 , and the weight of the MST for S is equal to the perimeter k + 2 of C.
Let T be a spanning tree of S rooted at an arbitrary point rt ∈ S, with Ψ(T ) ≤ 1 + ǫ

14 . An edge
e of T is called heavy if its weight w(e) is at least ǫ. Let H be the set of all heavy edges in T . For an
edge e ∈ E(T ), define f(e) = w(e) − k+2

n−1 . Since the minimum distance between a pair of points in S is

equal to k+2
n−1 , it follows that f(e) ≥ 0, for each edge e ∈ E(T ). Also, since k+2

n−1 ≤ 1
14 · ǫ, it follows that

f(e) ≥ 13
14 · w(e), for each edge e ∈ H. Consequently,

w(T ) =
∑

e∈E(T )

w(e) =
∑

e∈E(T )

(

f(e) +
k + 2

n − 1

)

=





∑

e∈E(T )

f(e)



+ (k + 2)

≥
(

∑

e∈H

f(e)

)

+ (k + 2) ≥ 13

14
·
(

∑

e∈H

w(e)

)

+ (k + 2). (14)

Claim 4.7 (1)
∑

e∈H w(e) ≤ 1
13 + 2ǫ

13 . (2) |H| ≤ 1
13 · (k + 2).

Proof: Equation (14) implies that

1 +
ǫ

14
≥ Ψ(T ) =

w(T )

k + 2
≥ 1 +

13

14 · (k + 2)
·
(

∑

e∈H

w(e)

)

. (15)

It follows that
∑

e∈H

w(e) ≤ ǫ · (k + 2)

13
=

1

13
+

2ǫ

13
,

which proves the first assertion of this claim.
Also, by Equation (15),

ǫ

14
≥ 13

14 · (k + 2)
·
(

∑

e∈H

w(e)

)

≥ 13

14 · (k + 2)
· |H| · ǫ,
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and so |H| ≤ 1
13 · (k + 2). Claim 4.7 follows.

We say that an horizontal segment hi is dirty, i ∈ [k+1], if it intersects at least one edge in H. Otherwise
it is clean

Claim 4.8 (1) The number of dirty segments is bounded above by 2
13 ·(k+2). (2) If the straight segment

s(rt, v) between rt and some point v in S intersects at least M clean segments, disregarding the segments
srt and sv to which rt and v belong, respectively, then dT (rt, v) ≥ M .

Proof: To prove the first assertion, note that each edge e ∈ H intersects at most
⌊

w(e)
ǫ

⌋

+ 1 horizontal

segments. Hence, the number of dirty segments is bounded above by

∑

e∈H

(⌊

w(e)

ǫ

⌋

+ 1

)

≤
(

1

ǫ
·
∑

e∈H

w(e)

)

+ |H| ≤ 1

ǫ
·
(

1

13
+

2ǫ

13

)

+
1

13
· (k + 2) =

2

13
· (k + 2).

(The last inequality follows from Claim 4.7.)
Next, we prove the second assertion of this claim. Denote by P (rt, v) = (v1 = rt, v2, . . . , vm = v)

the path from rt to v in T , and suppose without loss of generality that the y-coordinate of v is greater
than that of rt. Let hi1 , hi2 , . . . , hiM denote the clean segments that intersect s(rt, v) by increasing order
of y coordinate, excluding srt and sv, with i1 < i2 < . . . < iM . Notice that the y-coordinate of hi1

(respectively, hiM ) is larger (resp., smaller) than that of rt (resp., v). Fix an arbitrary index j ∈ [M ].
Denote by pred(ij) the last vertex in P (rt, v) with y-coordinate smaller than that of hij . Also, denote
by succ(ij) the first vertex that comes after pred(ij) in P (rt, v) and has y-coordinate greater than that
of hij . Since hij is clean, no edge of weight at least ǫ intersects it. Consequently, pred(ij) and succ(ij)
belong to the two vertical segments that intersect hij from below and above, respectively. That is, if ij is
even, then pred(ij) belongs to r(ij/2) and succ(ij) belongs to l(ij/2), and if ij is odd, then pred(ij) belongs
to l⌊ij/2⌋ and succ(ij) belongs to r⌈ij/2⌉. Hence, by the triangle inequality, the weight of the sub-path of
P (rt, v) from pred(ij) to succ(ij), denoted Pj , is at least ‖pred(ij) − succ(ij)‖ ≥ 1. Also, note that the
y-coordinate of succ(ij) is smaller than that of hij+1 , for each index j ∈ [M − 1]. Thus, by definition,
either succ(ij) = pred(ij+1) holds, or succ(ij) comes before pred(ij+1) in P (rt, v), j ∈ [M − 1]. Denote
by P̃j the sub-path of P (rt, v) from succ(ij) to pred(ij+1), j ∈ [M − 1]. Also, let P̃0 and P̃M be the
sub-paths of P (rt, v) from rt to pred(i1) and from succ(iM ) to v, respectively. Hence, all paths {Pj}j∈[M ]

and {P̃j}j∈[0,M ] are pairwise edge-disjoint, and we have P (rt, v) = P̃0 ◦ P1 ◦ P̃1 ◦ P2 ◦ P̃2 ◦ . . . ◦ PM ◦ P̃M .
It follows that

dT (rt, v) = w(P (rt, v)) =

M
∑

j=1

w(Pj) +

M
∑

j=0

w(P̃j) ≥
M
∑

j=1

w(Pj)

≥
M
∑

j=1

‖pred(ij) − succ(ij)‖ ≥ M.

Claim 4.8 follows.

Denote by S′ the set of all points v in S, such that the straight segment s(rt, v) between rt and v
intersects at least k/4 − 1 horizontal segments, disregarding the segments srt and sv to which rt and v
belong, respectively. It is easy to verify that |S′| ≥ n/2. By the first assertion of Claim 4.8, at most
2
13 ·(k+2) segments are dirty, implying that s(rt, v) intersects at least k/4−1− 2

13 ·(k+2) clean segments,
disregarding srt and sv. The second assertion of Claim 4.8 implies that dT (rt, v) ≥ k/4− 1− 2

13 · (k + 2).

Also, observe that diam(S) =
√

2, and so ‖rt − v‖ ≤ diam(S) =
√

2. It follows that

StrT (rt, v) =
dT (rt, v)

‖rt − v‖ ≥ k/4 − 1 − 2
13 · (k + 2)√
2

= Ω(k) = Ω

(

1

ǫ

)

.
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Since |S′| ≥ n/2, it follows that

AvgStr(T, rt) =

∑

v∈S\{rt} StrT (rt, v)

n − 1
≥
∑

v∈S′ StrT (rt, v)

n − 1
≥ (n/2) · Ω

(

1
ǫ

)

n − 1
= Ω

(

1

ǫ

)

.

This completes the proof of Lemma 4.6.

5 A Lower Bound for Euclidean Spanners

In this section we provide a tight lower bound of Ω(ǫ−d+1) on the maximum degree of Euclidean spanners.
As before, let Cn denote a set of n points that are uniformly spaced around the boundary C of the

unit circle, centered at the origin (0, 0), and define C̃n+1 = Cn ∪ {(0, 0)}.
Let ǫ = Ω( 1

n) be an arbitrary parameter, and let T be an arbitrary spanning tree of C̃n+1 rooted at
rt = (0, 0). Lemma 4.1 and Corollary 4.2 imply that if the average root-stretch of T is at most 1 + ǫ,
then both its root-degree γ(T, rt) and its lightness are at least Ω(1

ǫ ). We derive the following corollary.

Corollary 5.1 For any sufficiently large integer n and any parameter ǫ = Ω( 1
n), there exists a Euclidean

2-dimensional metric M and a designated point rt ∈ M , such that every spanning tree rooted at rt with
average root-stretch at most 1 + ǫ has both root-degree and lightness at least Ω(1

ǫ ).

The tradeoff 1 + ǫ versus Ω(1
ǫ ) between the (average) root-stretch and maximum degree generalizes

in a natural way to any constant dimension d ≥ 2, with the maximum degree bound becoming Ω(ǫ−d+1).

Specifically, let C(d) be the unit d-dimensional sphere centered at the origin (0, 0), let C
(d)
n denote a set

of n points that are uniformly spaced around C(d), and define C̃
(d)
n+1 = C

(d)
n ∪ {(0, 0)}.

Lemma 5.2 Let n be a sufficiently large integer, let d ≥ 2 be an integer constant, and let ǫ = Ω
(

(

1
n

)1/(d−1)
)

be an arbitrary parameter. Any spanning tree T of C̃
(d)
n+1 rooted at rt = (0, 0) with average root-stretch at

most 1 + ǫ has root-degree Ω(ǫ−d+1).

It is well-known that the path-greedy spanner of [3] provides, for any set of points in R
d, a (1 + ǫ)-

spanner with maximum degree O(ǫ−d+1). (See, e.g., Corollary 15.1.3 in [25].) Lemma 5.2 yields the
following corollary, which implies that the maximum degree of the path-greedy spanner of [3] is optimal.

Corollary 5.3 For any sufficiently large integer n, an integer constant d ≥ 2, and a parameter ǫ =

Ω
(

(

1
n

)1/(d−1)
)

, every (1 + ǫ)-spanner for C̃
(d)
n+1 has maximum degree Ω(ǫ−d+1).

Proof: Suppose for contradiction that there is a (1 + ǫ)-spanner H for C̃
(d)
n+1 with maximum degree

o(ǫ−d+1). Let T be an SPT over H rooted at rt = (0, 0), and denote by γ(H) the maximum degree

of H. Obviously, (T, rt) is a spanning tree for C̃
(d)
n+1, with AvgStr(T, rt) ≤ rtStr(T, rt) ≤ 1 + ǫ and

γ(T, rt) ≤ γ(H) = o(ǫ−d+1), contradicting Lemma 5.2.

6 Steiner Edges Do Not Help

In this section we show that Steiner edges do not help in the context of shallow-light trees.
We start with a few definitions. A graph G is called a metric graph if the edge weights satisfy the

triangle inequality. For a metric graph G = (V, E, w), let MG = (V, dG) be the metric induced by G. In
what follows we view MG as the complete weighted graph (V,

(

V
2

)

, dG) over V , in which for every pair

32



of vertices u, v ∈ V , there is an edge of weight dG(u, v) between u and v in G. (Notice that an MST
for G is also an MST for MG.) An edge that belongs to MG but does not belong to G, i.e., an edge in
(

V
2

)

\ E, is called a Steiner edge. A spanning tree for the metric MG induced by G that may contain
edges that do not belong to G will be called a metric-spanning tree of G. To distinguish metric-spanning
trees from spanning trees of G (that use only edges of G), we will call the latter graph-spanning trees of
G. A graph-spanning shallow-light tree (henceforth, spanning SLT ) of G is a graph-spanning tree of G
that has small lightness and root-stretch (with respect to some designated root vertex rt). (See Section
1.3.) Finally, a metric-spanning SLT of G is a metric-spanning tree of G with the same properties (small
lightness and root-stretch).

In what follows we show that the same tradeoffs between lightness and root-stretch that apply to
graph-spanning SLTs apply to metric-spanning SLTs as well.

Lemma 6.1 Let G = (V, E, w) be an arbitrary metric graph, and let rt ∈ V be an arbitrary designated
vertex. Also, let (T, rt) be a rooted metric-spanning tree of G that contains at least one Steiner edge.
Then T can be transformed into a rooted metric-spanning tree (T ′, rt) of G (that may still contain some
Steiner edges), having the following properties:

• The weight of T ′ is strictly smaller than the weight of T , i.e., w(T ′) < w(T ).

• For every vertex v ∈ V \ {rt}, the stretch between rt and v in T ′ is no greater than the stretch
between them in T . In particular, both the root-stretch and the average root-stretch of (T ′, rt) are
no greater than the root-stretch and the average root-stretch of (T, rt), respectively.

Proof: Let e = (x, y) be some Steiner edge in T , with x = π(y). Since e does not belong to G, there
is a path Pe of weight dG(x, y) in G between x and y, with Pe = (v1 = x, v2 = z, v3, ..., vk = y), k ≥ 3.
Since Pe is a shortest path between x and y in G, it follows that

dG(x, z) + dG(z, y) = w(Pe) = dG(x, y). (16)

Since dG(x, z), dG(z, y) > 0, we conclude that both dG(x, z) and dG(z, y) are strictly smaller than dG(x, y).
The analysis splits into three cases.

Case 1: z is an ancestor of y in T . (Observe that z 6= x, but it is possible that z = π(x).) We transform T
into a metric-spanning tree T ′ of G by removing the edge (x, y) and adding the edge (z, y), with y becoming
a child of z. (See Fig. 1(1) for an illustration.) Observe that w(T ′) = w(T )− dG(x, y)+ dG(z, y) < w(T ).
Note also that dT ′(rt, x) = dT (rt, x) and dT ′(rt, y) < dT (rt, y). More generally, for any vertex v that
belongs to the subtree Ty of T rooted at y, dT ′(rt, v) < dT (rt, v). For other vertices v, dT ′(rt, v) =
dT (rt, v).
Case 2: z is a descendant of y in T . (Observe that it is possible that y = π(z).) We transform
T into a metric-spanning tree T ′ of G by removing the two edges (x, y) and (π(z), z) and adding the
two edges (x, z) and (z, y), with z becoming a child of x and y becoming a child of z. (See Fig. 1(2)
for an illustration.) Observe that w(T ′) = w(T ) − dG(x, y) − dG(π(z), z) + dG(x, z) + dG(z, y). Since
dG(x, z) + dG(z, y) = dG(x, y), it follows that w(T ′) = w(T ) − dG(π(z), z) < w(T ). Note also that for
any vertex v that belongs to the subtree Tz of T rooted at z, dT ′(rt, v) < dT (rt, v). For other vertices v,
dT ′(rt, v) = dT (rt, v).
Case 3: z is neither an ancestor nor a descendant of y. In this case let p denote the least common
ancestor of z and y in T , i.e., p = LCA(z, y). Note that p 6∈ {z, y}. Our analysis splits further into two
subcases.
Case 3.a: In the first subcase we have

dT (p, z) + dG(z, y) < dT (p, x) + dG(x, y). (17)
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This condition implies that p 6= x. Indeed, otherwise we get dT (x, z) + dG(z, y) < dG(x, y), which is
a contradiction to the triangle inequality. As in case 1, we transform T into a metric-spanning tree
T ′ of G by removing the edge (x, y) and adding the edge (z, y), with y becoming a child of z. (See
Fig. 1(3.a) for an illustration.) Exactly as in case 1, it follows that w(T ′) < w(T ). Observe also that
dT (rt, y) = dT (rt, p)+ dT (p, x) + dG(x, y). On the other hand, dT ′(rt, y) = dT (rt, p)+ dT (p, z)+ dG(z, y).
By Equation (17), dT ′(rt, y) < dT (rt, y). It is easy to verify that for all vertices v that belong to the
subtree Ty, dT ′(rt, v) < dT (rt, v), and for all other vertices v, dT ′(rt, v) = dT (rt, v).
Case 3.b: In the complementary subcase, i.e., when Equation (17) does not hold, we have

dT (p, z) + dG(z, y) ≥ dT (p, x) + dG(x, y). (18)

(Observe that it is possible that p = x and/or p = π(z).) Plugging Equation (16) in Equation (18), we
obtain

dT (p, z) + dG(z, y) ≥ dT (p, x) + dG(x, y) = dT (p, x) + dG(x, z) + dG(z, y),

implying that
dT (p, z) ≥ dT (p, x) + dG(x, z). (19)

As in case 2, we transform T into a spanning tree T ′ of MG by removing the two edges (x, y) and (π(z), z)
and adding the two edges (x, z) and (z, y), with z becoming a child of x and y becoming a child of z.
(See Fig. 1(3.b) for an illustration.) Exactly as in case 2, it follows that w(T ′) < w(T ). Also, Equation
(19) implies that dT ′(rt, z) ≤ dT (rt, z). Hence, for all vertices v that belong to the subtree Tz of T rooted
at z, dT ′(rt, v) ≤ dT (rt, v). Other distances from the root stay unchanged.

Lemma 6.1 implies the following corollaries.

Corollary 6.2 Let G = (V, E, w) be an arbitrary metric graph, let rt ∈ V be an arbitrary designated
vertex, and let α ≥ 1 be an arbitrary number. Denote by S1 (respectively, S2) the set of all metric-
spanning trees of G rooted at rt with root-stretch (resp., average root-stretch) at most α. Suppose that S1

(respectively, S2) is non-empty, and let (T ∗
1 , rt) (resp., (T ∗

2 , rt)) be a tree of minimum lightness among
all trees in S1 (resp., S2). Then both T ∗

1 and T ∗
2 are graph-spanning trees of G.

Proof: Indeed, if T ∗
1 contains a Steiner edge, then by Lemma 6.1, there exists a metric-spanning tree

T ′
1 ∈ S1, with w(T ′

1) < w(T ∗
1 ). This contradicts the minimality of T ∗

1 . The proof for T ∗
2 is analogous.

Now are are ready to derive the main result of this section. Informally, it states that Steiner edges do
not help in the context of SLTs.

Corollary 6.3 Let G = (V, E, w) be an arbitrary metric graph, let rt ∈ V be an arbitrary designated
vertex, and let α ≥ 1, β ≥ 1 be an arbitrary pair of numbers. If there is a metric-spanning tree of G
rooted at rt with root-stretch (respectively, average root-stretch) at most α and lightness at most β, then
there is also a graph-spanning tree of G rooted at rt with root-stretch (respectively, average root-stretch)
at most α and lightness at most β.
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Figure 10: An illustration of the four cases that are considered in the proof of Lemma 6.1. In each case it is shown how to
transform the tree (T, rt) into another tree (T ′, rt) that satisfies the conditions of the lemma. Paths that may contain zero or
more edges are depicted by zigzag lines. A path that must contain at least one edge is depicted by a solid zigzag line, whereas
a path that might be empty is depicted by a dash-dotted zigzag line. Single edges are depicted by straight lines. Newly added
edges are depicted by thick lines, whereas removed edges are depicted by crossed lines.
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Appendix

A A Technical Lemma

This appendix is devoted to the proof of the following technical lemma.

Lemma A.1 For any positive integers n1, n2, . . . , nk, k ≥ 1, it holds that
∑k

i=1

(

ni · log
(

n
ni

))

≤ n · (k−
1), where n =

∑k
i=1 ni.

Before we prove this lemma, we state the following useful fact.

Fact A.2 Let n be a fixed positive number. Define f(x) = x · log
(

n
x

)

+ (n− x) · log
(

n
n−x

)

. Then for all

0 < x < n, f(x) ≤ n.

Next, we turn to the proof of Lemma A.1. The proof is by induction on k, k ≥ 1.

Basis: k = 1. In this case we have n = n1, and so
∑k

i=1

(

ni · log
(

n
ni

))

= n · log 1 = 0 = n · (k − 1).

Induction Step: We assume that the statement holds for all smaller values of k, k ≥ 2, and prove it

for k. Define Nk =
∑k

i=1

(

ni · log
(

n
ni

))

and Nk−1 =
∑k−1

i=1

(

ni · log
(

n−nk

ni

))

. We need to show that

Nk ≤ n · (k − 1). Observe that 1 ≤ nk ≤ n − 1, and so

Nk − Nk−1 =
k−1
∑

i=1

(

ni · log

(

n

n − nk

))

+ nk · log

(

n

nk

)

= (n − nk) · log

(

n

n − nk

)

+ nk · log

(

n

nk

)

≤ n.

(The last inequality follows from Fact A.2.) By the induction hypothesis for k − 1, we have Nk−1 ≤
(n − nk) · (k − 2). Consequently,

Nk = (Nk − Nk−1) + Nk−1 ≤ n + (n − nk) · (k − 2) ≤ n + n · (k − 2) = n · (k − 1).
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