
1

Rendezvous Tunnel for Anonymous Publishing

by

Ofer Hermoni, Niv Gilboa, Eyal Felstaine, Yuval Elovici and Shlomi Dolev

Technical Report #10-05

September 2010

2

Rendezvous Tunnel for Anonymous Publishing

Abstract

Many anonymous peer-to-peer (P2P) file sharing systems have been proposed in recent years. One problem
that remains open is how to protect the anonymity of all participating users, namely, reader, server and publisher.
In this work we propose a novel solution for a P2P file sharing system. Our solution provides overall anonymity
to all participating users.

The novelty of this work is threefold. First, we introduce an anonymous key exchange protocol secure against
an honest but curious adversary. The anonymity of the protocol is proved on the basis of the Decisional Diffie
Hellman (DDH) problem. Second, we propose two solutions to build the rendezvous tunnel: basic and advanced.
The basic solution is straightforward, while the advanced solution is based on the key exchange protocol. In the
advanced solution, the key exchange is done between the publisher and each user along the rendezvous tunnel that
preserve anonymity in the presence of limited traffic recording. Third, the rendezvous tunnel is used as a building
block for an anonymous P2P file sharing system that provides anonymity to all participating users.

I. INTRODUCTION

On-line communication occupies a great part of the daily lives of many people. Peer-to-peer (P2P)
systems have recently become more popular, as we use them to chat, talk, share files etc. Anonymous
P2P systems have thus become an important area of research [1], [3], [5], [6], [8], [11], [17], [18] and
implementation [7]. Anonymity in P2P file sharing means that an adversary cannot link participating users
to the content they share. Note that an adversary can act as a user, and thus the users also have to remain
hidden with respect to one another.

A weakness common to many existing anonymity solutions is that they do not provide (or even consider)
anonymity for all participating users, namely, publisher, server and reader. Solutions such as those given
in [3], [16], [19] provide anonymity to the reader but do not protect the server that stores the shared
document. Publishing solutions such as [6], [12] provide publisher and reader anonymity, but do not
protect the servers or the creator of an index.

In our solution, anonymity for all users is achieved by using three anonymity tunnels (Figure 1).
Anonymity tunnels are widely used in theory and in practice, e.g., Tor [7] uses tunnels to provide
anonymity. We use two types of anonymity tunnels. The publishing and reading tunnels are sender
anonymity tunnels. A sender anonymity tunnel is designed to protect the anonymity of the message’s
sender. In a sender anonymity tunnel, the sender knows the identity of the recipient, and anonymity is
achieved by using a Mix [3] based protocol. The rendezvous tunnel is quite different. In this tunnel, the
initiator of the tunnel does not know the identity of the user at the end of the tunnel. This tunnel is built
by using a random walk. The reading and the publishing tunnels protect the anonymity of the reader and
the publisher, respectively, whereas the rendezvous tunnel protects the anonymity of the server.

Fig. 1. Three-tunnels system

3

Servers in our system store shares of documents, and each share is reached through a rendezvous tunnel
between the server and an address given by a hash of the document’s name. To publish a document, the
publisher first divides the document into shares, for each share finds the address of the entrance to the
tunnel by hashing the document’s name. Next, the publisher uses anonymous communication to reach the
entrance of the rendezvous tunnel. We then use a random walk and an anonymous key exchange scheme
to set keys along the rendezvous tunnel. The publisher finishes by inserting the shares into the servers
through the rendezvous tunnels. A reader wanting to retrieve the document operates in a similar manner.
The reader finds the address of the entrance to the rendezvous tunnels by hashing the document’s name.
Then, the reader uses anonymous communication to reach the entrance of the tunnels, retrieves the shares
anonymously and reconstructs the document.

A. Related work
The core concept of providing Internet anonymity goes back to the early days of the public network

and has been extensively studied since then. Chaum [3] proposed to use an intermediary proxy (relay
server or Mix) whose aim is to hide the identity of the reader from the server. Later works developed
Chaum’s approach by deploying predefined or ad-hoc paths.

One can divide previous work into two categories. The first category includes approaches that provide
a high degree of anonymity, but with the cost of high communication overhead [1], [4], [8] ensuring a
predefined traffic statistics. Those solutions require continuous communication in practice, and in many
cases one can assume that the statistics do not reveal activities.

The Dinning Cryptographers network [4] is an anonymous broadcast protocol based on the dining
cryptographers problem. DC-net provides a very strong form of sender and receiver anonymity at the cost
of broadcast. Due to this expensive broadcast communication, the scheme suffers from poor scalability and
hence is unsuitable for large-scale use. Xor-Trees [8] reduces the amount of communication in comparison
to DC-nets.

Buses [1] is an anonymous scheme inspired by the observation that public transit buses hide the
movement patterns of passengers. Passengers are pieces of information that are allocated seats in a bus
that traverses the network. Buses aims at hiding the traffic patterns as so to prevent an external adversary
from linking between two communicating parties. This scheme provides sender-receiver unlinkability in
the cost of traffic even when on information is transferred. However, the sender must know the intended
receiver and vice versa, hence anonymity of both the sender and the receiver with respect to each other
is not supported.

The second category consists of approaches that are based on the assumption that the traffic pattern
does not reveal information. Those works provide different levels of anonymity with different levels of
communication overhead. Onion Routing [19] uses a fixed, predefined path, which is essentially a list
of intermediate proxies leading to the destination. The major advantage of onion routing is that relays
cannot unravel the information received or determine destination address. Tor [7] is an advanced low-
latency scheme that improves the original Onion Routing. Tor is a tunnel-based system that constructs
circuits in stages, extending the circuit one hop at a time. Tor utilizes directory servers to manage available
services and the access to them. Public-key and symmetric key encryption are used to encrypt messages
that traverse the circuits. Tor provides sender anonymity and sender-receiver unlinkability. In addition,
Tor provides receiver anonymity through rendezvous points and hidden services. The main shortcoming
of Tor’s hidden services is that they are provided by the content owner, tor does not consider publishing.
In the present work we address this limitation by publishing the content. Another related solution is the
tunnel based scheme CIAS [18]. CIAS is a low latency P2P scheme that provides anonymity for senders
and receivers while adhering to strict and low bounds of delay, communication and bandwidth overheads.
However, CIAS does not consider publisher anonymity either.

All works described above are aimed to provide anonymity and unlinkability to the reader and the server
in the message. Non of them take into account P2P network with anonymous publishing phase. Freenet

4

[5] is a solution that addresses this problem. Freenet provides some degree of a server and publisher
anonymity. When a user requests a document, it uses a document identifier to send the query without
being aware of the server’s identity or location. The weakness of Freenet is that the length of the tunnel
is not controlled by the users. The tunnel might be as short as one node, and an adversary that controls
the tunnel can revoke the anonymity of the reader, server and publisher.

A different technique used to provide anonymity employs secret sharing schemes to break data items
into several parts and distribute them among different server. In Publius [12], the content is encrypted
by a key and stored in a fixed set of servers. The encryption key is shared by Shamir’s secret sharing
and distributed to the servers. Retrieving is carried out by reconstructing the key, retrieving the encrypted
document and decrypting it. Although Publius does concern publisher anonymity, the documents are stored
in a static list of available servers, and the index is not protected. Another approach that uses secret sharing
is Deniability [11]. This technique takes a different approach: instead of trying to hide the identity of the
users, it blurs the connection between pieces of information and their meaning.

Free Haven [6] is an anonymous publishing system. It is made up of a number of servers, known
as servnets, which agree to store and provide documents for anyone. The identities of these servnets
are publicly known. Communication is carried out over a Mix-based communication layer. Free Haven
provides a certain level of publisher, reader and document anonymity, but lacks in server anonymity.

B. Organization
In Section II we construct the system settings. Section III describes two solutions, and gives a running

example. We give a thorough analysis of the anonymity of our system in Section IV. We conclude our
work in Section V. Through analysis of the solutions appear in the Appendix.

II. SETTINGS AND REQUIREMENTS

A. Participants
In P2P file sharing networks, information is stored in units called documents. The publisher of a

document is the entity which places the document into the system. The server of a document is an entity
that stores and distributes the document. Readers retrieves documents from servers. Retrieving a document
in any system requires name-index mapping. Name-index mapping enables a user to find the location of
a specific document. Usually, the name-index mapping is stored in a database known as index server.
Since the index constitutes a threat to users in P2P system, our system replaces the mapping database by
a publicly known hash function that hash the document name to an index (or several indexes).

B. Anonymity Model
In this paper we design a system that provides anonymity to all participants in P2P file-sharing network

the publishers, the servers and the readers. One may define several types of anonymity with respect to
P2P networks, we adopt the definitions and terms of [6] to define the anonymity of participating users.
Reader anonymity means that an adversary has no way of knowing which reader on the network has
retrieved a particular document. Server anonymity means an adversary has no way of knowing which
server on the network has served this document or currently stores it. Document anonymity means that a
server does not know which documents it is storing. Publisher anonymity means that an adversary has no
way of knowing which user on the network has published a particular document. We also suggest a new
definition for the index problem, Index anonymity means that an adversary has no way of knowing what
was added to or retrieved from the index. Note that the users maintain their anonymity also in respect
to each other. For example, the reader maintains its anonymity even when retrieving a document from a
server, namely, the server does not know who the reader is, and vice versa. In particular, a server that
acts as a reader does not know whether it got the document from itself.

5

According to the terminology of [14], anonymity means that a user is unidentifiable within a group
of users, the anonymity set. Unlinkability of items (e.g., users, messages) means that an attacker cannot
sufficiently distinguish whether these items are related or not. Sender–receiver unlinkability is provided
against an adversary who is neither the sender nor the receiver of the messages.

C. Adversary Model
In anonymous P2P networks, the participating entities, the server, the reader and especially the publisher

do not want their identity to be revealed. The adversary’s goal is to link specific content to a participating
party in the system and thereby to identify the players.

Similarly to other schemes for anonymous P2P networks (e.g. Tor [7]), the adversary in our model is
assumed to be Honest but Curious, which means that the adversary can control nodes in the network, but
is obligated to follow the algorithms.

We assume that the adversary can control at most t network nodes, where t is smaller than the total
number of nodes. We also assume that the communication patterns and statistics do not reveal information.
As the statistics and pattern of message traffic is distributed in a fixed (say normal) distribution. Such
assumption is used when using the well known mixes scheme [3], as for example, when mixes are used
and only one message is sent in the entire network the identities of the sender and the receiver are
obviously revealed.

D. Index
Retrieving a document in any system relies on the name-index mapping. The index mapping enables

a user to find the location of a specific document. Usually, the indexing mapping is stored in a database
or databases called index server(s). On one hand, every network has to have index mapping. In order to
retrieve a document, the reader has to have a way to locate it. On the other hand, index server is of a
threat to anonymity in several ways. First, if the adversary controls or eavesdrops the index server, the
anonymity of the users that communicate with it (the publisher that publishes a new document in the index
and the reader who searches for a document) may be violated. Moreover, if the index mapping includes
controversial content, legal procedures may be invoked against the user that holds the index server. Hence,
our system design has no index server, the index mapping is performed by the users themselves. Each
share in the system has an index entry that includes three parameters. First, the entrance node to a tunnel,
denoted as U1. Second, the reader’s seed (which is used in the collective encryption of the document)
denoted by s0. And U1’s session identity, denoted by ID1. The publisher (and later the reader) calculates
the index mapping according to the document name dname (see Algorithm 4 lines 2-4). The publisher uses
Distributed Hash Table (DHT) and two different known hash functions (or the same hash with different
known keys) to compute the index entry. A DHT receives a key as an input, and outputs an ID of a node
in the system. The hash functions h : {0, 1}α → {0, 1}β receives a variable size input α and outputs, say
128bits, thus ensuring that the probability of a collision is low.

III. SOLUTION ARCHITECTURE

In this Section we propose two solutions. The basic solution is simple, but still provides anonymity to
all participating users. The basic solution appears in Algorithms 1-3. The advanced solution extends the
basic solution. In addition to anonymity for all participating users, this solution provides a certain degree
of traffic analysis resistance to the publisher. Moreover, the advanced solution conceals the content of
the published document from the entrance node during the publishing phase. We explain this solution in
details, we give the algorithms that construct the solution, we use figures to follow a running example.
Later in section IV we prove the anonymity of this solution. Note that in both solutions, documents are
first divided into shares using an (n, k) IDA [15].

6

A. Basic Solution
There are basically two phases in this solution. First, in the publication phase, the publisher sends each

share encrypted to a server. Next, in the retrieval phase, the reader retrieves the shares from the servers
and reconstructs the document.

The overall flow of the basic solution is as follows. First, the publisher divides the document into shares
using an (n, k) IDA. Then, for each share, the publisher uses hash functions to build the index mapping.
Next, the publisher encrypts the share and sends the encrypted share to the entrance node through a sender
anonymity tunnel, the sender tunnel. The entrance node initiates a random walk and builds a rendezvous
tunnel. The publisher then sends the encrypted share along the tunnel. Each node along the rendezvous
tunnel encrypts the share and forwards it to the server. A reader who wants to retrieve the document
operates in a similar manner. For each share, the reader constructs the index in the same way, then the
reader uses sender anonymity tunnel (the reader tunnel) and reaches the entrance node. The entrance node
forwards a query message to the server through the rendezvous tunnel. Then the server sends the share
back along the rendezvous tunnel. Each user along the rendezvous tunnel decrypts the share. The entrance
node uses the reader tunnel and sends the share to the reader. The reader then decrypts the share. As soon
as enough shares are successfully retrieved, the reader reconstructs the document.

Publication: The publication phase is shown in Algorithm 1. First, by using an (n, k) IDA, the publisher
divides the document into shares. Then, for each share, the publisher uses a hash function on the name
of the document concatenated to the number of the share (h(dname||i), the publisher creates the index for
all the shares of the document. The index of each share includes an entrance node - U1, a reader seed -
s0 and an ID for the entrance node - ID1. Then, the publisher encrypts the share sh with the reader seed
obtaining sh⊕G(s0). The publisher finishes by sending the encrypted share to the entrance node of the
rendezvous tunnel via a sender anonymity tunnel. In order to build the rendezvous tunnel, the first node
of the rendezvous tunnel (U1) initiates a random walk (each user chooses randomly, among all network
users, the next node in the tunnel) of length ` (` > t). During the construction of the tunnel, each user
encrypts the document and forwards it to the server. To encrypt the document, each user creates randomly
a session key (si) and XORs the received share with G(si), where G is a pseudo random generator. When
the message arrives at the server, the server saves the encrypted share sh⊕

⊕`
i=0G(si).

In Algorithm 1 line 2, the publisher divides the document into n shares. In lines 4-6, the publisher
creates the index for each share and finds the entrance node - U1. In line 7 the publisher encrypts the
share with the reader seed. In line 8 the publisher sends the insert share message to U1. The insert share
message contains the length of the rendezvous tunnel. Each node along the tunnel receives the insert share
message in line 11. In line 14-15, each internal node creates a session key (si) and encrypts the share by
XORing the received share with G(si), where G is a pseudo random generator. In lines 16-17, the node
chooses the next node along the tunnel and a new identity number for the next node. In line 18, the node
forwards the insert share message to the next node. When the message arrives to the server, it saves the
encrypted document in line 21.

Retrieval: The retrieval process is constructed from two messages - a query message and a response
message (see Algorithm 2 and Algorithm 3 respectively). A reader, who wants to retrieve the document,
creates the index mapping in the same way as the publisher. Note that the reader needs k shares to be
able to reconstruct the document. Then, the reader creates a sender anonymity tunnel, the reading tunnel,
to U1, and sends a query message to the server through the rendezvous tunnel and U1. Each internal node
along the rendezvous tunnel forwards the query message. When the server receives the query message, it
sends the encrypted share back along the rendezvous tunnel. Each internal node XORs the message with
G(si) and forwards the message to the previous node along the rendezvous tunnel. The reader receives
the response message, and decrypts the share with the reader seed. As soon as the reader accumulates k
shares, the reader reconstructs the document.

In Algorithm 2 lines 3-5, for each share, the reader creates the index mapping. Then, the reader creates

7

Algorithm 1 - Publication

1: Publisher:
2: {shares} ← IDA(d) {dividing the document into n shares}
3: for x = 1 to n do
4: U1 ← DHT (dname||x); {entrance node}
5: s0 ← h1(dname||x); {reader seed}
6: ID1 ← h2(dname||x); {entrance node’s ID}
7: ˜shx ← shx ⊕G(s0); {encrypt the the with reader seed}
8: send(insertShareMsg, ID1, ˜shx, length) to U1; {send the encrypted share to U1 through the

publisher tunnel. The rendezvous tunnel is of length of length nodes}
9: end for

10: Node i:
11: receive(insertShareMsg);
12: if length > 0 then
13: lastNode← FALSE; {this is not the last node}
14: si ← h1(random()); {session key}
15: s̃h← s̃h⊕G(si); {encrypt the document with the session key}
16: Ui+1 ← DHT (random()); {choose in random the next node in the tunnel}
17: IDi+1 ← h2(random()); {next node’s session ID}
18: send(insertDocMsg, IDi+1, s̃h, length− 1) to Ui+1; {forward the message along the tunnel}
19: else
20: lastNode← TRUE; {this is the server}
21: save s̃h; {the server saves the encrypted share}
22: end if

Algorithm 2 - Query Message

1: Reader:
2: for each share x do
3: U1 ← DHT (dname||x);
4: s0 ← h1(dname||x);
5: ID1 ← h2(dname||x); {the index entry}
6: send(queryMsg, ID1) to U1; {send a query message along the tunnel through U1}
7: end for

8: Node i:
9: receive(queryMsg);

10: if lastNode == FALSE then
11: send(queryMsg, IDi+1) to Ui+1; {forward the query message to the next node in the tunnel}
12: else
13: GoTo Algorithm 3;
14: end if

a sender anonymity tunnel - the reading tunnel, and sends a query message through the rendezvous tunnel
to U1 in line 6. Each internal node along the rendezvous tunnel forwards the query message in line 11.
The server in line 13 continues according to Algorithm 3.

In Algorithm 3, the server sends the encrypted share to the previous node along the rendezvous tunnel
in line 3. Each internal node in lines 5-7 removes the session key and forwards the message to the previous

8

Algorithm 3 - Share Response Message

1: Node i:
2: if lastNode == TRUE then
3: send(shareRspnsMsg, IDi, s̃h) to Ui−1;
4: else
5: receive(shareRspnsMsg);
6: s̃h← s̃h⊕G(si); {remove the session key si}
7: send(shareRspnsMsg, IDi, s̃h) to Ui−1;
8: end if

9: Reader:
10: receive(shareRspnsMsg);
11: sh← s̃h⊕G(s0); {the reader reconstructs the shares}
12: insert sh to {shares} {the reader collects the shares}
13: if |{shares}| = k then
14: d← IDA−1({shares}) {the reader reconstructs the document}
15: end if

node along the rendezvous tunnel. The reader, in lines 10-14, receives the share response message, decrypts
the share with the reader seed, collects k shares and reconstructs the document.

Discussion on the Basic Solution: The basic solution provides anonymity to all participating entities.
The anonymity of the publisher and the reader is provided by the publishing tunnel and reading tunnel,
respectively. The anonymity of the server is provided by the rendezvous tunnel. The main problem inherent
in the basic solution is that the shares are sent to the entrance node U1 encrypted with a key that is
associated with the document’s name. Hence, if U1 is controlled by an active adversary, it can perform a
brute force attack on all documents’ names and find that U1 is the entrance node of a specific share.

The advanced solution deals with this drawback.

B. Advanced Solution
The advanced solution extends the basic solution with two main modifications. First, we use a new key

exchange protocol to securely exchange keys between the publisher and nodes along the rendezvous
tunnels. After the key exchange is complete, the publisher encrypts the shares with the exchanged
symmetric keys and sends them to the servers through the rendezvous tunnels. The second modification
is that the publisher sends the encrypted shares through node U2, the second node along the tunnel, and
not through U1. In this way, the brute force attack is not applicable during publication. Some time after
the share is safe and securely encrypted in the server, the publisher binds U1 to U2 and the rest of the
rendezvous tunnel. Another issue that the advanced solution solves is that in order to link between the
document and the publisher, the traffic analyzer has to save the traffic analysis information throughout the
publishing and the binding process. The time interval between the publishing and the binding may be long
enough to frustrate the traffic analyzer. For example, in the basic solution, a traffic analyzer may locate
the publisher if the traffic analyzer stores information regarding the traffic during the publication phase.
However, in the advance solution, we separate the insertion of the shares and the ability of any user in
the system to understand their content. Hence, the traffic analyzer has to store much more information in
order to be able to trace the publisher using the stored traffic.

The overall flow of the algorithm is as follows. First, similarly to the basic solution, the publisher
divides the document into shares, and uses hash functions over the document name to build the index
mapping. Next, for each share, the publisher selects in random the second node along the tunnel, U2. Then

9

we use random walk and computational theoretic scheme to set symmetric keys between the publisher
and each user along the rendezvous tunnel (excluding U1). After the keys exchange is over, the publisher
inserts the document to the server through U2. Later, after a while, the publisher binds U1 to the tunnel
and the document becomes available to other peers to read. The retrieval process is exactly the same as
in the basic solution. The reader who wants to retrieve the document constructs the index in the same
way. Then the reader uses anonymous communication to reach U1, the entrance of the rendezvous tunnel.
The reader then retrieves enough shares and reconstructs the document.

In the remaining of this Section, we begin with a general description to the key exchange protocol.
Then, for each step we give a brief description followed by a pseudo code and an example. The example
follows the Algorithms. In this example, a publisher builds a tunnel of four users (see Figure 2) three of
them are participating in the publishing phase U2 − U4, and U1 which is binded to the tunnel after the
publishing phase. The publisher publishes a share anonymously in the tunnel. We continue the example
describing how a reader retrieves the share anonymously through the tunnel. For every algorithm we show
a figure containing the important information about the algorithm. For simplicity, we omit the IDA phase,
and assume that documents are published in one piece.

Fig. 2. Example of anonymity tunnel of length four

Anonymous Key Exchange Protocol: The goal of the key exchange protocol is to create symmetric keys
in a way that two non-contiguous users along the tunnel will not know that they are taking part of the
same key exchange. The key exchange protocol is designed under the assumption of an honest but curious
adversary and is based on the Decision Diffie-Hellman (DDH) problem [2]. Alice exchanges keys with
Bob, Carol and David, (Figure 3). We assume that each node knows only its immediate neighbors. To
exchange keys, Alice sends a message, throw a sender anonymity tunnel, the message containing three
segments, with each segment destined to a different node. We now focus on the last segment sent from
Alice to David (the other segments are built in the same way). Alice generates a random number R3

(R3 ∈R q), and calculates gR3 mod p, where p is a large prime number, and q is another large prime such
that q|p − 1 and g is a generator of a multiplicative group of size q modulo p. Alice sends gR3 mod p
to Bob. Bob selects a random number S1, calculates gR3·S1 mod p and forwards the message to Carol.
Carol does the same as Bob and forwards the message to David. David as well selects a random number
S3 and calculates gR3·S1·S2·S3 mod p. The result is used as the symmetric key of David and Alice. David
calculates and sends gS3 mod p to Carol. Carol calculates and sends gS3·S2 mod p to Bob. Bob calculates
and sends gS3·S2·S1 mod p to Alice. Alice calculates gS3·S2·S1·R1 mod p. Now only David and Alice know
the symmetric key.

Fig. 3. Alice exchanges symmetric keys

In order to exchange keys the publisher has to send the preliminary message and receive the confirmation
message we describe these algorithms in Algorithm 4 and Algorithm 5 respectively. We describe the
algorithms according to Figure 2. Note that when we use the notation of gk we actually mean gk mod p.

Preliminary Message - The goal of the preliminary message is to build the tunnel. Moreover, the

10

preliminary message is the first message of two messages that used to replace symmetric keys between
the publisher and the users along the tunnel. The preliminary message is constructed from several segments,
each segment is destined to a different user along the tunnel. The content of a segment is a generator g
raised in the power of a random number: {gR2 , gR3 , · · · }, where gR2 is destined to U2, gR3 is destined
to U3 and etc. Then, the publisher selects U2 in random and sends a preliminary message to U2. Note
that the communication between the publisher and U2 is anonymous by using a sender anonymity tunnel.
Node U2 initiates a random walk in the network, and forwards the message along the rendezvous tunnel
to the server. A user along the tunnel that receives the preliminary message extends the random walk
and generates keys. These keys are used in the symmetric key exchange protocol. Then the user forwards
the preliminary message to the next node along the tunnel. Note that user i forwards only segments that
are not destined to it, since they did not arrive at their destination yet. When the server receives the
preliminary message, it adds a key and continues according to the confirmation message in Algorithm 5.

Algorithm 4 - Preliminary Message

1: Publisher:
2: U1 ← DHT (dname); {entrance node}
3: s0 ← h1(dname); {reader seed}
4: ID1 ← h2(dname); {entrance node’s ID}
5: U2 ← DHT (random()); {second node in the tunnel}
6: s1 ← h1(random()); {U1’s seed}
7: ID2 ← h2(random()); {U2’s ID}
8: Msg ←Message[length]; {an empty array of messages}
9: for i = 2 to length do

10: Ri ← random(); {random for key exchange}
11: mi ← gRi; {g is a generator}
12: Msg[i]← mi;
13: end for
14: index← 2; {the position of the message along the tunnel}
15: send(plmryMsg,Msg, ID2, length, index) to U2;

16: Node i:
17: receive(plmryMsg);
18: i← index {this is the i-th node along the tunnel}
19: for j = i to length do
20: ki,j ← random(); {random key}
21: Msg[j]← m

ki,j
j ; {raise mj to the power of ki,j}

22: end for
23: Si ← h1(mi); {symmetric session key of user i}
24: if i < length then
25: lastNode← FALSE; {this is not the last node}
26: Msg[i]← NULL; {the message in this position need not to be forward}
27: Ui+1 ← DHT (random()); {choose in random the next node in the tunnel}
28: IDi+1 ← h2(random()); {next node’s session ID}
29: send(plmryMsg,Msg, IDi+1, length, index+ 1) to Ui+1; {forward the preliminary message

along the tunnel}
30: else
31: lastNode← TRUE; {this is the server}
32: GoTo Algorithm 5;
33: end if

11

Fig. 4. Example of preliminary message

Example for the use of the content of the preliminary message is shown in Figure 4. Assume that
publisher P wants to publish document d in a tunnel of a size four (see the tunnel in Figure 2). According
to Algorithm 4, P generates the index (lines 2-4) and finds that U1 is the entrance node. Then in lines
4-7, P finds in random the second node along the tunnel (U2). The publisher in lines 8-12, creates a
preliminary message. The message has three segments: {gR2 , gR3 , gR4}, one generator in the power of a
random number to each user along the tunnel. gR2 is destined to U2, gR3 to U3 and gR4 to U4. Then (line
15) the publisher sends the message along the tunnel. User U2 receives (line 17) the message from the
publisher (since the message was sent through a sender anonymity tunnel, U2 does not know the identity
of the publisher) and generates (lines 19-21) three random keys {k2,2, k2,3, k2,4}, then U2 uses those keys
to raise the preliminary messages by the power of the keys: {gR2·k2,2 , gR3·k2,3 , gR4·k2,4}. U2 saves (line 23)
the symmetric key s2 = h1(g

R2·k2,2). Then in lines 25-29, since U2 removes the segment from the message.
U2 finds the next node U3 and forwards the message to U3. Node U3 does the same and forwards the last
segment of the preliminary message to U4. In Figure 4, the content of the preliminary message sent from
U2 to U3 appears on the left side, and the content sent from U3 to U4 appears on the right side. Node U4

receives the last segment of the message, generates key, raise the message in the power of the symmetric
key and continues according to Algorithm 5.

Confirmation Message - The second step in the initiation of the anonymous tunnel is sending back the
confirmation message (see Algorithm 5). The server initiates the confirmation message. When the message
leaves the server it contains only the last segment with the server’s key. When the message arrives to
an internal node in the rendezvous tunnel, the node add its keys to the received segments, then the user
returns its segment to the message and forwards the message back along the tunnel. Node U2 forwards
the message to the publisher. The publisher adds its key to the message and recovers the symmetric keys.
Then, the publisher continues according to Algorithm 6.

Fig. 5. Example of confirmation message

Example for the use of the content of the confirmation message is shown in Figure 5. The server (U4

in this example) changes in lines 3-4 the last segment of the previous message to m4 = {gk4,4} and sends
the confirmation message to U3. When the message arrives to U3, node U3 (lines 6-11) adds its key to
the last segment m4 = {gk4,4·k3,4}, creates its segment m3 = gk3,3 and forwards the message to U2. The
message that sent from U4 to U3 and message U3 sends to U2 are shown in Figure 5. Node U2 does the
same and forwards the message to the publisher. In lines 14-19 the publisher recovers the symmetric keys

12

Algorithm 5 - Confirmation Message

1: Node i:
2: if lastNode == TRUE then
3: Msg[i]← gki,i;
4: send(cnfrmMsg,Msg, IDi, index− 1) to Ui−1; {send a confirmation message back along the

tunnel}
5: else
6: receive(cnfrmMsg);
7: for j = i+ 1 to length do
8: Msg[j]← m

ki,j
j ; {add the random key to the messages}

9: end for
10: Msg[i]← gki,i; {adding the message to change keys}
11: send(cnfrmMsg,Msg, IDi, index− 1) to Ui−1; {forward the confirmation message back along

the tunnel, note that U2 forwards the message back to the publisher}
12: end if

13: Publisher:
14: receive(cnfrmMsg);
15: for i = 2 to length do
16: Msg[i]← mRi

i ; {this removes the random from the messages and reveals the shared key}
17: Si ← h1(mi); {symmetric session key of user i}
18: end for
19: GoTo Algorithm 6;

and continues according to Algorithm 6.

Publication: After the tunnel is built, the publisher can insert (publish) the document in the tunnel (see
Algorithm 6). The publisher encrypts the document using one symmetric session key per user along the
tunnel and two additional keys - the reader key (s0) and U1’s key. Then the publisher sends the document
to the server through U2. Each internal node along the rendezvous tunnel removes the symmetric session
key, adds new key and forwards the message to the server. The server saves the encrypted document.
After the document was inserted to the tunnel, the publisher binds between U1 to U2 and the rest of the
rendezvous tunnel.

Fig. 6. Example of insert document message

Example for the use of the content of the insert document is shown in Figure 6. In Algorithm 6 lines
2-6, the publisher encrypts the document with the reader’s and U1’s session keys: d̃← d⊕G(s0)⊕G(s1).
Then the publisher encrypts the message with the keys of the users and sends the document along the
tunnel. Each user along the tunnel (lines 10-15) receives the message, XORs it with the symmetric session
key, for example, U2 does d̃← d̃⊕G(S2). Then U2 creates new session key s2 and encrypts the message

13

Algorithm 6 - Insert Document

1: Publisher:
2: d̃← d⊕G(s0)⊕G(s1); {encrypt the document with reader’s and U1’s session keys}
3: for i = 2 to length do
4: d̃← d̃⊕G(si,i); {encrypt the document with symmetric keys}
5: end for
6: send(insertDocMsg, ID2, d̃) to U2; {insert the encrypted document into the tunnel}
7: wait random time;
8: send(bindMsg, ID1, U2, ID2, s1) toU1; {the publisher send anonymously the binding message to
U1}

9: Node i:
10: receive(insertDocMsg);
11: d̃← d̃⊕G(si,i); {remove the symmetric key}
12: if lastNode == FALSE then
13: si ← h1(random()); {new session key}
14: d̃← d̃⊕G(si); {add new session key}
15: send(insertDocMsg, IDi+1, d̃) to Ui+1;
16: else
17: save d̃; {the server saves the encrypted document}
18: end if

with it: d̃← d̃⊕G(s2). Then U2 forwards the message to U3. Node U3 does exactly the same, removes its
symmetric key from the message, and adds a new key. In Figure 6 the content of the messages sent from
U2 to U3 and U3 to U4 are shown. As soon as the server (U4) receives the encrypted document (line 17), it
saves it in its machine. After a random period of time, (lines 7-8) the publisher sends a binding message
anonymously to U1, this message contains the information needed to bind U1 to U2 and the tunnel. At
this point, the document and the tunnel are ready, and readers can download the document.

Retrieval: The retrieval of a document is done with two messages in the same way as in the basic
solution. First, the reader uses the tunnel and sends a query message to the server (see Algorithm 2).
Then the server sends back the document in the tunnel in a document response message (see Algorithm
3).

Query Message - In Algorithm 2 the reader creates the index entry, and sends anonymously a query
message to U1. Each internal user along the tunnel forwards the message to the next node. When the
message arrives to the server, it continues according to Algorithm 3).

Fig. 7. Example of query message

Example for the use of the content of the query message is shown in Figure 7. In Algorithm 2 lines
2-5, the reader creates the index entry, and sends a query message that includes ID1 to U1. Each internal
user (lines 7-9) changes the ID in the message and forwards the message to the next node (U1 changes

14

the ID to ID2 and forwards to U2 which in its turn changes the ID to ID3 and forwards to U3). As soon
as the server receives the message (line 11), it continues according to Algorithm 3.

Document Response Message - In Algorithm 3 the server sends the encrypted document along the
tunnel to the reader. Each node in the tunnel removes its session key and forwards the message. When
the reader receives the document it removes the reader key and reconstructs the document.

Fig. 8. Example of document response message

Example for the use of the content of the document response message is shown in Figure 8. The server
(U4) in line 3 send the encrypted document d̂ to U3. While the message arrives at U3 (lines 5-7) U3

removes its session key: d̂ ← d̂ ⊕ G(s3) and forwards the message to U2. Node U2 removes its session
key and forwards the message to U1. Node U1 removes its session key and forwards the message to the
reader. The content of the message the reader receives is d⊕G(s0). Then the reader (lines 10-11) XORs
the message with the reader seed (G(s0)) and reconstructs the document d.

Throughout the algorithms, any adversary that holds less than the entire tunnel can not link between
the messages and document they store. In the next Section we prove the anonymity of our system.

Remarks:
Circles in the tunnel - Essentially the length of the tunnel in our system is t + 1, where t is the

number of nodes that are potentially held by the adversary. An important observation is that regardless
the length of the tunnel, the number of distinct nodes must be t+1, otherwise the anonymity of the server
is revoked. Since nodes along the tunnel are chosen in random, there is a possibility that the same node
appears more than once along the tunnel. If a node appears more than once along the tunnel we have a
circles tunnel with less than t+ 1 distinct nodes. Hence we will construct a tunnel with more than t+ 1
nodes such that the probability that we have less than t+ 1 distinct nodes tends to zero.(

N

t

)
t` >> α⇒

(
N

t

)
t`

β
>> α/β

Note that α/β is the probability to have a tunnel with less than t + 1 distinct nodes. We show that
the expression on the left hand in the above equation (which is greater than our probability) decreases
exponentially with the growth of `, this implies that the probability that the tunnel has less than t + 1
nodes decreases exponentially (or faster) with the growth of `.(

N

t

)
t`

β
=

(
N

t

)
t`

N `
=

(
N

t

)
(
t

N
)`

Since
(
N
t

)
is constant and t << N , we have expression that decreases exponentially in `. Note that for

real life situation, the number of nodes in the system N can be as high as millions and a strong adversary
can control about dozens nodes. If we calculate the equation for N = 1M, t = 20, ` = 23 the result is
that the probability to have less than t+ 1 distinct nodes is 3.4 · 10−7.

Fault Tolerance - Let us assume that nodes are expected to leave the network with probability P . If a
node leaves the network, all the shares that this node is part of their rendezvous tunnels become unavailable.

15

Hence, the probability that a tunnel is active is Pt = (1 − P)`, where ` is the tunnel length. Assuming
that N >> ` · n (where N is the number of nodes in the network and n is the number of shares created
for each document), for simplicity we can say that with a good approximation there is no intersection
between different tunnels. Since we use an (n, k) IDA, unless at least k out of n tunnels are active, the
document is not available. Hence, the probability that the document is available is

∑n
i=k

(
n
i

)
Pt

i(1−Pt)n−i.
With careful selection of n and k, we can achieve a high probability for document’s availability.

IV. ANONYMITY ANALYSIS

In this Section we define the anonymity of the participating users and prove their anonymity in the
settings of the advanced solution. The anonymity definitions are derived from Pfitzmann at al. [14].
Anonymity set is the set of all possible subjects. For example, the anonymity set of the publisher is the
group of all publishers in the system.

Publisher Anonymity - The publisher is anonymous if it is not identifiable1 within the set of the
publishers (its anonymity set) in the system.

Reader Anonymity - The reader is anonymous if it is not identifiable within the set of the readers (its
anonymity set) in the system.

Server Anonymity - The server is anonymous if it is not identifiable within the set of the servers (its
anonymity set) in the system.

Document Anonymity - The server has document anonymity if it can not know the content of the
document it stores.

Publisher and reader anonymity are naturally derived from the sender anonymity tunnels they use. The
publisher and the reader that communicate with the entrance node U1, always do so behind the protection
of a sender anonymity tunnel.

We prove sender anonymity tunnel based on Theorem 1 (see Appendix). Roughly speaking, Theorem 1
claims that an adversary that does not control the entire tunnel, can not distinguish between the messages
of two different documents. Hence, assuming that the adversary does not control the entire tunnel, the
identity of the server remains hidden. We obtain server anonymity.

Document anonymity is proved by Theorem 1 and Theorem 2. Theorem 2 claims that the adversary
does not obtain any knowledge about the document during the publication phase. Since the server obtains
server anonymity, the anonymity of the server is preserved even with respect to itself. Therefore, the
server can not obtain more information about the document. Hence we have document anonymity.

A. Limitations
Server anonymity is not maintained in a special case that the adversary control both the publisher and

the last node before the publisher. E.g., in Figure 2 the publisher controls the publisher and U3. In this
case, the key that U3 holds can be matched to the key that the publisher holds. Hence, since U3 knows
the document, and knows that the server is U4, the server does not obtain server anonymity. To address
this problem we can enhance the symmetric key exchange protocol, and use it to change keys between
every pair of nodes in the tunnel.

V. CONCLUSION AND FUTURE WORK

In this work we introduced a new anonymous key exchange protocol under the assumption of an
honest but curious adversary. We showed how to build a rendezvous tunnel. We presented two solutions
to anonymous P2P networks. The first solution is simple, as it uses the rendezvous tunnel without
key exchange. The second solution enhances the first solution by using the rendezvous tunnel with the
symmetric key exchange protocol. Our solutions thus provide overall anonymity to all participating users.

1By not identifiable we mean that the probability that this is the publisher that published document d, is not higher than the probability
of other publishers to be the publishers of the document

16

The following paragraphs discuss future research directions.
Decoy path - In our system the server knows that it holds a document (although it does not know the

content of document). A decoy path is an extension of the original path length ` by Λ nodes (a total of
`+ Λ nodes in the tunnel). Some of the additional nodes are selected as decoy servers, where each decoy
server receives a dummy data item. The size of the dummy data is equal to the size of the document.
When a server receives a document in the document response message, it replaces the document received
with the document held by it. Neither of the servers knows whether it plays a role of a real or decoy
receiver.

Tunnel length - The tunnel length in our tunnel is greater than the number of nodes that the adversary
controls. In case of strong adversary we get a very long tunnel. We suggest to build shorter tunnels in
a cautious way. The user can calculate the probability that the adversary holds more than t nodes for a
parameter `, where ` is the tunnel length. According to a threshold probability the user can choose the
tunnel length.

Distributed entrance - The Achilles heel of our system is U1, the entrance node of the rendezvous
tunnel. Node U1 can perform a brute force attack and find the document that was published and is served
by it. The problem arises from very basic fact that an independent reader has to have a way to find
the entrance node of a specific document. Therefore, if an independent peer can, U1 can. Although the
anonymity of the participating users is not revoked, U1 can effect the availability of the document. Hence,
a different approach is needed. Instead of holding one node as the entrance to the tunnel, we can think
of a cloud of nodes that can compute the tunnel together. In this way, the responsibility and hence the
ability of a specific user to harm the system is reduced.

Adversary model - The adversary in our model is honest but curious. This assumption limits the
capabilities of the adversary. A more powerful system might provide anonymity with a more powerful
adversary. An approach that was considered in shadowWalker [13] might be suitable to cope with a more
powerful adversary.

17

REFERENCES

[1] A. Beimel and S. Dolev. Buses for anonymous message delivery. Journal of Cryptology, 16(1):25–39, 2003.
[2] D. Boneh. The decision diffie-hellman problem. In Lecture Notes in Computer Science, pages 48–63. Springer-Verlag, 1998.
[3] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 4(2), February 1981.
[4] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untranceability. Communication of the ACM, 24(2),

1988.
[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous information storage and retrieval system. In Workshop

on Design Issues in Anonymity and Unobservability, pages 46–66, 2000.
[6] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project: Distributed anonymous storage service. In Proceedings of

Designing Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobservability. Springer-Verlag, LNCS
2009, July 2000.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In Proceedings of the 13th USENIX Security
Symposium, August 2004.

[8] S. Dolev and R. Ostrovsky. Xor-trees for efficient anonymous multicast and reception. ACM Transactions on Information and System
Security, 3(2):63–84, May 2000.

[9] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, New York, NY, USA, 2000.
[10] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY, USA, 2004.
[11] O. Hermoni, N. Gilboa, E. Felstaine, and S. Shitrit. Deniability - an alibi for users in p2p networks. In COMSWARE, pages 310–317,

2008.
[12] A. R. Marc Waldman and L. Cranor. Publius: A robust, tamper-evident, censorship-resistant and source-anonymous web publishing

system. In Proceedings of the 9th USENIX Security Symposium, pages 59–72, August 2000.
[13] P. Mittal and N. Borisov. Shadowwalker: peer-to-peer anonymous communication using redundant structured topologies. In E. Al-Shaer,

S. Jha, and A. D. Keromytis, editors, ACM Conference on Computer and Communications Security, pages 161–172. ACM, 2009.
[14] A. Pfitzmann and M. Hansen. A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability,

unobservability, pseudonymity, and identity management. http://dud.inf.tu-dresden.de/literatur/Anon Terminology v0.34.pdf, Aug.
2010. v0.34.

[15] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM, 36(2):335–348, 1989.
[16] M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions. ACM Transactions on Information and System Security,

1(1):66–92, 1998.
[17] A. Serjantov. Anonymizing censorship resistant systems. In Proceedings of the 1st International Peer To Peer Systems Workshop

(IPTPS 2002), March 2002.
[18] S. Shitrit, E. Felstaine, N. Gilboa, and O. Hermoni. Anonymity scheme for interactive p2p services. Journal of Internet Technology,

10:299–312, 2009.
[19] P. Syverson, D. Goldsclag, and M. Reed. Anonymous connections and onion routing. In Proceedings of the IEEE 18th Annual

Symposium on Security and Privacy, pages 44–54, Oakland, California, 4–7 1997.

18

APPENDIX

We prove that our publishing scheme provides anonymity to publisher, reader and server in the following
sense. Assume that an adversary controls at most t nodes along the path between the publisher (or reader)
and the server, while the path between the publisher (or reader) and U1 has at least t + 2 nodes and
the path between U1 and the server has at least t + 2 nodes. Assume that the adversary is honest but
curious and static. In other words, the adversary follows protocol specifications exactly and controls the
same subset of parties throughout the execution of a protocol. Assume further, that the adversary obtains
information only through the execution of the protocols of Section III.

Given such an adversary, we prove the anonymity of a publisher (or reader) even if the adversary
controls t nodes, including the server, and we prove the anonymity of the server even if the adversary
controls t nodes, including the publisher (or a reader). We prove anonymity by showing that all the traffic
that adversarial nodes receive from uncorrupted nodes is computationally indistinguishable from traffic
that is sampled uniformly at random from an appropriate domain. Since an adversary can generate such
traffic itself, it obtains no information by receiving it from other nodes.

Note that a more powerful adversary, e.g. one that correlates the timing of packets in different parts of
a path between publisher, reader and server may be able to learn information that is unavailable to our
limited adversary.

Regarding which nodes the adversary controls, consider several nodes which are contiguous along the
tunnel. The protocol ensures that if the adversary controls these nodes then it knows that they are part of
the same tunnel. However, the tunnel has at least t+ 2 nodes on each of its legs (publisher to U1, reader
to U1 and U1 to server). If all the nodes that an adversary controls are contiguous then the adversary
can not be sure that two users (either publisher and server or reader and server) are communicating and
thus can not link them. Furthermore, in this case the adversary does not have any information on a user
beyond the fact that it is acting as a publisher or a reader or a server. Thus, if all corrupted nodes are
contiguous then anonymity is maintained.

If the adversary’s nodes are not contiguous then there exist at least two nodes that the adversary
controls Ui and Uj , i < j, such that there is an uncorrupted node, U` between them, that is i < ` < j.
We show below that in this case it seems to the adversary that the traffic flowing through Uj is random
and independent of the traffic flowing through Ui.

A. Formal Cryptographic Framework
Let Π be a protocol for T parties to compute a function g. The input of the i-th party is denoted xi

and the output of the i-th party is gi(x1, . . . , xT). An adversary controls a set I of parties and receives the
“view” of every party in I . The view of a party includes its input, output and all intermediate messages
that it receives.

In the case we investigate, T ≥ 2t + 4, the publisher’s input is D,Dname, the reader’s input is Dname

and all other parties do not have an input. The output of a reader is D, the output of Ui is si for all tunnel
nodes Ui and the output of the server is D

⊕
iG(si). Each tunnel node Ui has as additional output the

identification tags, IDi and IDi+1, the length of the tunnel and its position in the tunnel, i.
Our formal definitions follow the full framework set in [9] and [10]. We use only those elements of

the definition framework that are necessary in our setting.
Definition 1: We say that a function µ : IN −→ IN is negligible if for every polynomial p : IN −→

[0, 1], there exists N such that µ(n) < 1
p(n)

for every n > N .
Two distribution ensembles are computationally indistinguishable if no efficient algorithm can decide

with good probability, whether its input is chosen according to the first distribution or the second
distribution. We regard a distribution ensemble as a collection of distributions that are indexed by two
parameters: a binary string a and a security parameter n represented in unary form. In our setting, a is
the input for a protocol, the distribution is over all the messages of a protocol (for a subset of parties)

19

and is induced by coin tosses of each party as it executes its part of the protocol. The security parameter
1n determines the required length of cryptographic keys to ensure privacy of the protocol. Formally:

Definition 2: Let X = {X(a, 1n)}n∈IN,a∈{0,1}∗ and let Y = {Y (a, 1n)}n∈IN,a∈{0,1}∗ be two distribu-
tion ensembles. We say that X and Y are computationally indistinguishable if for every probabilistic,
polynomial time algorithm DIS , there exists a negligible function µ such that for every a ∈ {0, 1}∗:

|Pr[DIS(X(a, 1n)) = 1]− Pr[DIS(Y (a, 1n)) = 1]| < µ(n).

We denote computational indistinguishability of two ensembles by X
c≡ Y .

We use two cryptographic tools to prove that the adversary can’t distinguish between real traffic from
uncorrupted nodes and random elements of an appropriate domain. The first tool is a Pseudo-Random
Generator (see [9] and [10] for formal definitions and constructions). Such a generator G takes as input
a string x ∈ {0, 1}n for any n and outputs a string G(x) ∈ {0, 1}nc for a constant c ≥ 1. If Unin and
Uninc denote the uniform distribution over {0, 1}n and {0, 1}nc respectively then

{G(Unin)}n
c≡ {Uninc}n .

In other words, an efficient algorithm can’t tell whether a string is chosen uniformly from the uniform
distribution over nc bits or whether it is generated by the pseudo-random generator from a short (n bit)
random string.

The second tool we use is the Decision Diffie-Hellman (DDH) problem (see [2] for formal definitions
and a general survey). The DDH problem states that given a large prime number p, another large prime
q such that q|p − 1 and an element g that is a generator of multiplicative group of size q modulo p,
it is computationally hard to distinguish between the ensembles: {gx mod p, gy mod p, gz mod p} and
{gx mod p, gy mod p, gxy mod p}, where x, y and z are chosen uniformly at random from the domain
0, . . . , q − 1. In other words, any efficient algorithm can’t tell whether the third element has a random
exponent c or a product of the first two exponents xy.

B. Anonymity Claims
We begin by by analyzing the view of a block of nodes that is preceded by an uncorrupted node. We

prove that the view of such nodes can be simulated efficiently without access to the actual messages that
these nodes receive. That means that the nodes do not learn any information from the protocol, in the
same sense that privacy is proved in multi-party protocols [10].

Let Bi, Bj be two blocks of contiguous nodes that the adversary controls such that Ui ∈ Bi and Uj ∈ Bj .
Denote by RealiD and RealjD the views of all nodes of Bi and Bj respectively after the execution of all
protocols in Section III for a document D.

Let Idealj be a view for Bj that is induced by choosing uniformly at random from an appropriate domain
and independently any element that uncorrupted nodes generate or have as input and then constructing
appropriate messages for the protocol. In the following we assume that the server is corrupt (and thus
its messages do not add to the information that the adversary has). Our proofs work with with minor
modifications when the server is not controlled by the adversary. Combining all the data elements into
one view, we have that RealjD is given by:

gRjαjβj mod p, . . . , gRsαsβs mod p,

gkj,jαjβj mod p, . . . , gks,sαsβs mod p,

D ⊕ γj ⊕ δj ⊕ γj,j ⊕ δj,j, D ⊕ γj ⊕ δj
While Idealj is given by

gcj mod p, . . . , gcs mod p,

gCj mod p, . . . , gcs mod p,

D1 ⊕ γj,j ⊕ δj,j, D1

20

The elements cj, . . . , cs and cj, . . . , cs are chosen uniformly at random and independently from {0, . . . , q − 1}.
D1 is chosen uniformly at random among all binary strings of the same length as D.

Lemma 1: Assume the existence of pseudo-random generators. Let an adversary control at most t
nodes in a tunnel to publish a document D and let there be three nodes Ui, U` and Uj , i < ` < j, such
that the adversary controls Ui and Uj , but does not control U`. Assume that the adversary does not control
the publisher. Then,

(RealiD, Real
j
D)

c≡ (RealiD, Ideal
j)

Lemma 2: Assume the existence of pseudo-random generators. Let an adversary control at most t′

nodes up to Ui in a tunnel to publish a document D and at most t′′ nodes from Uj in a tunnel to publish
a document D. Let t′ + t′′ ≤ t and assume let assume that i < `j. Assume that the adversary does not
control the publisher. Then,

(RealiD, Real
j

D
)
c≡ (RealiD, Ideal

j)

Theorem 1: Assume the existence of pseudo-random generators. Let an adversary control at most t
nodes in a network. For any two nodes that the adversary controls, which are not connected by contiguous
corrupt nodes in a single tunnel, the adversary can not distinguish whether the nodes are part of the same
publishing tunnel for document D or part of two tunnels for a document D and a document D.

Proof: The theorem is an immediate consequence of Lemma 1 and Lemma 2. The adversary can’t
distinguish between the view along a single tunnel, (RealiD, Real

j
D) and (realiD, Ideal

j). Similarly, it
can’t distinguish between the view along two tunnels, (RealiD, Real

j

D
) and (realiD, Ideal

j). Thus, it can’t
distinguish between the view from a single tunnel and the view from two tunnels, when Ui and Uj are
not connected by contiguous adversarial nodes.

Theorem 2: Assume the existence of pseudo-random generators and assume the hardness of the DDH
problem. Assume that h1 uniformly maps elements from {0, . . . , q − 1} to seeds for a pseudo-random
generator G2. Let an adversary control at most t nodes in a network. Given the view of its nodes during
the Preliminary, Confirmation and Insert Document messages for a document D, the adversary does not
obtain any information on D beyond the information it had prior to the protocol.

2By uniform mapping we mean that for any x and y in the range of h2 we have that
∣∣h−1

1 (x)
∣∣ = ∣∣h−1

1 (y)
∣∣

