
Efficient Private Multi-Party Computations of Trust
in the Presence of Curious and Malicious Users

∗

(Preliminary Version)

Shlomi Dolev
Ben-Gurion University

Beer-Sheva, 84105, Israel
dolev@cs.bgu.ac.il

Niv Gilboa
Ben-Gurion University

Beer-Sheva, 84105, Israel
niv.gilboa@gmail.com

Marina Kopeetsky
Sami Shamoon College

Beer-Sheva, 84105, Israel
marinako@sce.ac.il

ABSTRACT
Schemes for multi-party trust computation are presented. The schemes
do not make use of a Trusted Authority. The schemes are more effi-
cient than previous schemes by the number of messages exchanged
which is proportional to the number of participants rather than to a
quadratic number of the participants. We note that in our schemes
the length of each message may be larger than the message length
of previous schemes. The calculation of a trust, in a specific user
by a group of community members, starts upon a request of an
initiating user. The trust computation is provided in a completely
distributed manner, while each user calculates its trust value pri-
vately. Given a community C and its members (users) U1, ... , Un,
we present computationally secure schemes for trust computation.
The first Accumulated ProtocolAP computes the average trust in a
specific user Ut upon the trust evaluation request initiated by a user
Un. The exact trust values of each queried user are not disclosed to
Un. The next Weighted Accumulated protocol WAP protocol gen-
erates the average weighted trust in a specific user Ut taking into
consideration the unrevealed trust that Un has in each user partic-
ipating in the trust process evaluation. The Vector Protocol V P
outputs a set of the exact trust values given by the users without
linking the user that contributed a specific trust value to the trust
this user contributed. The obtained vector of trust values assists in
removing outliers. Given the set of trust values, the outliers which
provide extremely low or high trust values, can be removed from
the trust evaluation process. We extend our schemes to the case
when the initiating user Un can be compromised by the adversary,
and we introduce the Multiple Private Keys MPKP and the Mul-
tiple Private Keys Weighted MPWP protocols for computing av-
erage unweighted and weighted trust, respectively. The computa-
tion of all our algorithms requires the transmission of O(n) (large)
messages.

∗Supported by Deutsche Telekom Laboratories at Ben-Gurion Uni-
versity of the Negev, Israel.
Partially supported by Rita Altura Trust Chair in Computer Sci-
ences, the ICT Programme of the European Union under contract
number FP7-215270 (FRONTS), Lynne and William Frankel Cen-
ter for Computer Sciences, and the internal research program of the
Sami Shamoon College of Engineering.

1. INTRODUCTION
The purpose of this paper is generating new schemes for the de-
centralized reputation systems. These schemes do not make use
of a Trusted Authority to compute trust in a particular user by the
community of users. Our purpose is to compute trust while pre-
serving user privacy. The use of the homomorphic cryptosystems
in general Multiparty Computation (MPC) model is presented in
[5]. In [5] it is demonstrated that given keys for any sufficiently
efficient homomorphic cryptosystem, general MPC protocols for n
players can be devised which are secure against an active adversary
that corrupts any minority of the players. The problem stated and
solved in [5] is as follows: given encryptions of two numbers, say
a and b (where each player knows only its input), compute securely
an encryption of c = ab. The correctness of the result is verified.
The total number of bits sent is O(nkC), where k is a security pa-
rameter and C is the size of a Boolean circuit computing the func-
tion to be securely evaluated. An earlier scheme proposed in [8]
with the same complexity was only secure for passive adversaries.
Earlier protocols had complexity at least quadratic in n. In [5]
two examples of threshold homomorphic cryptosystems that lead
to the claimed communication complexity are presented. The pro-
posed schemes are based on public key infrastructure and use Zero
Knowledge proofs (ZKP) as building blocks. When compared to
[5], our schemes privately compute the average unweighted (addi-
tive) and weighted (non additive) characteristics, respectively with-
out using such relatively complicated to implement techniques as
ZKP.
The closest works to our work are [18] and [13]. In [18] sev-
eral privacy and anonymity preserving protocols are suggested for
Additive Reputation System. A decentralized reputation system
is defined as additive/non additive ([18]) if feedback collection,
combination, and propagation are implemented in a decentralized
way, and combination of feedbacks provided by agents is calcu-
lated in an additive/non additive manner, respectively. The authors
state that supporting perfect privacy in decentralized reputation sys-
tems is impossible, nevertheless they present alternative probabilis-
tic schemes for preserving privacy. A probabilistic “witness se-
lection” method is proposed in [18] in order to reduce the risk of
selecting dishonest witnesses. Two schemes are proposed. The
first scheme is very efficient in terms of communication overhead,
nevertheless this scheme is vulnerable to collusion of even two wit-
nesses. The second scheme is more resistant toward curious users,
but still vulnerable to collusions. It is based on a secret splitting
scheme. This scheme provides secure protocol based on the ver-
ifiable secret sharing scheme ([19])) derived from Shamir’s secret
sharing scheme ([20]). The number of dishonest users is heavily
restricted and must be no more than n

2
, where n is the number of

contributing users. The communication overhead of this scheme is



rather high and requires O(n3) messages.
Enhanced model for reputation computation that extends the results
of [18] is introduced in [13]. The main enhancement of [18] is that
non additive (weighted) trust and reputation can be computed pri-
vately in Non Additive Reputation System. Three algorithms for
computing non additive reputation are proposed in [13]. The algo-
rithms have various degrees of privacy and different level of protec-
tion against adversarial users. These schemes are computationally
secure regardless the number of dishonest users.
We propose new efficient trust computation schemes that can re-
place any of the above schemes. Our schemes enable the initiat-
ing user to compute unweighted (additive) and weighted (non ad-
ditive) trust with low communication complexity of O(n) (large)
messages.
Our contribution. We present new efficient schemes for calcu-
lating a trust in a specific user by a group of community mem-
bers upon a request of initiating user. The trust computation is
provided in a completely distributed manner, while each user cal-
culates its trust value privately. The user privacy is preserved in
a computationally secure manner. Assume a community of users
C = {U1, U2, ..., Un}. Let Un be an initiating user. The goal
of Un is to get the assessment of the trust in a certain user, Ut
by a group consisting of U1, U2, ..., Un−1 users from C. The
first Accumulated Protocol AP calculates the average trust (or the
sum of trust levels) in the user Ut. The AP protocol is based
on a computationally secure homomorphic cryptosystem, e.g., the
Paillier cryptosystem [17] which provides homomorphic encryp-
tion of the secure trust levels T1, . . . , Tn−1 calculated by each
user U1, U2, ..., Un−1 from C. The AP protocol satisfies the
features of the Additive Reputation System [18] and does not take
into consideration U ′ns subjective trust values in the queried users
U1, U2, ..., Un−1. The Weighted Accumulated Protocol WAP car-
ries out non additive trust computation. WAP outputs the weighted
average trust which is based on the trust given by the initiating user
Un in each C member participating in the feedback. The WAP pro-
tocol is the enhanced version of the AP protocol. The AP and
WAP protocols cope with curious adversary and are restricted to
the case of uncompromised initiating user Un. The Multiple Pri-
vate Keys MPKP and Multiple Private Keys Weighted MPWP
protocols use additional communication to relax the condition that
the initiating user Un is uncompromised and provide average un-
weighted and weighted trust private computation, respectively.
Compared with the recent results in [18] and [13], our schemes
have several advantages.
Private Trust scheme is resistant against either curious or semi-
malicious users. TheAP and WAP protocols preserve user privacy
in a computationally secure manner. Our protocols cope with any
number of curious but honest adversarial users. Moreover, the V P
protocol is resistant against semi-malicious users which return false
trust values. The V P protocol supports outliers removal. The gen-
eral case when the initiating user Un can be compromised by the
adversary is addressed by MPKP and MPWP protocols. Un-
like our model, [18] suggests protocols resistant against curious
agents which only try to collude in order to reveal private trust in-
formation. Moreover, the reputation computation in some of the
algorithms of [13] contains a random parameter that reveals infor-
mation about the reputation range of the queried users.
Low communicational overhead. The proposed schemes require
onlyO(n) large messages sent, while the protocols of [18] and [13]
require O(n3) communication messages.
No limitations on the number of curious users. The computa-
tional security of the proposed schemes does not depend on the
number of the curious users in the community. Moreover, the pri-

vacy is preserved regardless of the size of the coalition of the curi-
ous users. Note that the number of the curious users should be no
greater than half of the community users in the model presented in
[18].

Paper organization. The formal system description appears in
Section 2. The computationally resistant against curious but hon-
est adversary private trust protocol AP , is introduced in Section
3. The enhanced version of AP , WAP is presented in Section 4.
The resistant against semi-malicious users V P protocol, and the
scheme for removing outliers are presented in Section 5. The gen-
eralizedMPKP protocol and the weightedMPWP protocol are
introduced in Section 6. Conclusions appear in Section 7.

2. PRIVATE TRUST SETTINGS
The purpose of this paper is to generate the new schemes for the
private trust computation within a community. The contribution of
our work is as follows: (a) The trust computation is performed in a
completely distributed manner without involving a Trusted Author-
ity. (b) The trust in a particular user within the community is com-
puted privately. The privacy of trust values, held by the commu-
nity users is preserved given standard cryptographic assumptions,
when the adversary is computationally bounded. (c) The proposed
protocols are resistant against curious but honest poly-bounded k-
listening adversary Ad [7]. Such an adversary, Ad may perform
the following: Ad may trace all the network links in the system
and Ad may compromise up to k users, k < n.
We require that an adversary Ad compromising an intermediate
node can only learn the node’s trust values and an adversary Ad
compromising the initiating node Un can learn the output of the
protocol, namely the average trust.
We distinguish between two categories of adversaries: honest but
curious adversaries, and semi-malicious adversaries [18]. An hon-
est but curious k-listening adversary follows the protocol by pro-
viding correct input, nevertheless it might try to learn trust values
in different ways, including collusion by at most k compromised
users. While an honest but curious adversary does not try to mod-
ify the correct output of the protocol, a semi-malicious adversary
may provide dishonest input in order to bias the average trust value.
A Vector Protocol that can cope with such an adversary in the cost
of larger message is omitted from this extended abstract.
Let C = U1, . . . , Un be a community of users such that each pair
of users is connected via an authenticated channel. Assume that
the purpose of a user Un from C is to get the unweighted T avrt or
weighted average trust wT avrt in a specific user Ut evaluated by
the community of users.
Denote by T i, i = 1..n the trust of user Ui in Ut, and by T avrt =∑n
i=1 T

i

n
and wT avrt = 1/10

∑n
i=1 wiT

i the unweighted and
weighted average trust inUt, respectively. Herewi = 1, 2, . . . , 10
is the subjective trust of the initiating user Un in Ui in the form of
an integer that facilitate our secure computation. In the sequel we
always assume that wi is an integer in this range. Denote by Mt

the message sent by Uinit to the first member of the community C.
Our definitions of computational indistinguishability, simulation
and private computation follow the definitions of [10]. Informally
speaking, two probability ensembles are computationally indistin-
guishable if no polynomial time, probabilistic algorithm can decide
with non-negligible probability if a given input is drawn from the
first or the second ensemble. A distributed protocol computes a
function f privately if an adversary cannot obtain any information
on the input and output of other parties, beyond what is implicit in
the adversary’s own input and output. The way to prove that a pro-
tocol is private is to show that there exists a polynomial time, prob-



abilistic simulator that receives as input the same input and output
as an adversary and generates a string that is computationally indis-
tinguishable from the whole view of the adversary, including every
message that the adversary received in the protocol. Intuitively, the
existence of a simulator implies that the adversary learns nothing
from the execution of the protocol except for its input and output.
The main tool we use in our schemes is public-key, homomorphic
encryption. In such an encryption scheme there is a modulus M
and an efficiently computable function φ that maps a pair of en-
crypted values (EK(x), EK(y)), where 0 ≤ x, y < M , to a single
encrypted element φ(EK(x), EK(y)) = EK(x + y mod M). In
many homomorphic encryption systems the function φ is multipli-
cation modulo some integer N . Given a natural number c and an
encryption EK(x), it is possible to compute EK(c · x mod M),
without knowing the private key. Set β = EK(1) and let the bi-
nary representation of c be c = ckck−1 . . . c0. Go over the bits
ck, . . . , c0 in descending order. If cj = 0 set β = φ(β, β) and if
cj = 1 set β = φ(φ(β, β), EK(x)). If φ is modular multiplica-
tion, this algorithm is identical to standard modular exponentiation.
There are quite a few examples of homomorphic encryption schemes
known in the cryptographic literature, including [12, 3, 15, 16] and
[17]. There are also systems that allow both addition and multi-
plication of two encrypted plaintexts, e.g. [4] where only a single
multiplication is possible for a pair of ciphertexts, and [9]. All of
these examples of homomorphic cryptosystems are currently as-
sumed to be semantically secure [12].

3. ACCUMULATED PROTOCOL AP
The AP protocol may be based on any homomorphic encryption
scheme such that the modulus N satisfies N >

∑n
i=1 Ti. We il-

lustrate the protocol by using the semantically secure Paillier cryp-
tosystem [17]. This cryptosystem possesses a homomorphic prop-
erty and is based on the Decisional Composite Residuosity assump-
tion.
Let p and q be large prime numbers, and N = pq. Let g be some
element of Z∗N2 . Note that the base g should be chosen properly
by checking whether gcd(L(gλmod N2), N) = 1, where λ =
lcm(p − 1, q − 1), and the L function is defined as L(u) = u−1

N
.

The public key is the (N, g) pair, while the (p, q) pair is the secret
private key. The ciphertext c for the plaintext message m < N is
generated by the sender as c = gmrN mod N2, where r < N
is a randomly chosen number. The decryption is performed as
m = L(cλ mod N2)

L(gλ mod N2)
mod N at the destination.

Our schemes are based on the homomorphic property of the Paillier
cryptosystem. Namely, the multiplication of two encrypted plain-
texts m1 and m2 is decrypted as the sum m1 +m2 mod N of the
plaintexts. Thus, E(m1) · E(m2) ≡ E(m1 +m2 mod m) mod
N2 and E(m1)

m2 ≡ E(m1 ·m2 mod N) mod N2.
The AP protocol is described in Figures 1 and 2.

Mt = E(T1)...E(Tn−1)

Un

U1

Ui

Un−1

Mt

Mt = E(T1)

Mt = E(T1)...E(Ti)

Figure 1: Accumulated protocol AP .

Assume that the initiating user Un has generated a pair of its public
and private keys as described above, and it has shared its public

key with each community user. Then, Un initializes to 1 the single
entry trust message Mt and sends it to the first U1 user (lines 1-3).
Upon receiving the message Mt each node Ui encrypts its trust in
Ut asE(Ti) = gTirNi mod N2. Here Ti is a secretU ′is trust level
in Ut, and ri is a randomly generated number. The U ′is output is
accumulated in the accumulated variable A multiplying its current
value by the new encryptedUi−th trustE(Ti) from the i−th entry
as A = A · (E(Ti)). Then Ui sends the updated Mt message to
the next user Ui+1. This procedure is repeated until all trust values
are accumulated in A (lines 4-9). The final Mt message received
by the the initiating user Un is Mt = A =

∏n
i=1E(Ti) mod N2.

As a result, the Un user decrypts the value accumulated in the M
message as the sum of trusts St = D(Mt) =

∑n
i=1 Ti. Hence the

average trust is T avrt = St
n−1

(Figure 2, lines 10-12). Proposition
1 proves that AP is a computationally private protocol to compute
the trust of a community in Ut. 1: AP Initialization :

2: Un setsA = 1 andMt =
A

3: Un sends Mt to U1

4: AP Execution :
5: for i = 1 . . . n− 1
6: A = A · E(Ti) mod

N2

7: Mt = A
8: Ui sends Mt to Ui+1

9: end for
10: Upon Mt receipt at Un
11: St = D(Mt) =∑n−1

i=1 Ti
12: T avrt = St

n−1

Figure 2: Accumulated Protocol.

Proposition 1. Assume
that an honest but cu-
rious adversary corrupts
at most k users out of a
community of n users,
k < n. Then, AP pri-
vately computes T avr ,
the average trust in user
Ut.
Proof:
In order to prove the
proposition, we have to
prove that for every ad-
versary there exists a
simulator that given only
the adversary’s input and output, generates a string that is compu-
tationally indistinguishable from the adversary’s view in AP .
Let I = {Ui1 , Ui2 , . . . , Uik} denote the set of users that
the adversary controls. Let viewAPI (XI , 1

n) denote the com-
bined view of all users in I . viewAPI includes the in-
put, XI = {Ti1 , . . . , Tik}, of all users in I , and a se-
quence of messages E(

∑i1
j=1 Tj), . . . , E(

∑ik
j=1 Tj) received by

users in I . A simulator cannot generate the exact sequence
E(

∑i1
j=1 Tj), . . . , E(

∑ik
j=1 Tj), since it does not have the input

of uncorrupted users. Instead, the simulator chooses a random
value αj for any user Uj 6∈ I from the distribution of trust values
D. The simulator denotes αi1 = Ti1 , . . . , αik = Tik and com-
putes E(αj) for j = 1, . . . , n − 1. The simulator now computes:∏i1
j=1E(αj) ≡ E(

∑i1
j=1 αj) mod N2, . . . ,

∏ik
j=1E(αj) ≡

E(
∑ik
j=1 αj) mod N2. Hence, a simulator replaces E(

∑ik
j=1 Tj)

by E(
∑ik
j=1 αj).

Assume towards a contradiction that there exists an algorithm
DIS that distinguishes between the encryption of partial sums
E(

∑i1
j=1 Tj), · · ·E(

∑ik
j=1 Tj) of the correct trust values and the

values E(
∑i1
j=1 αj), · · · E(

∑ik
j=1 αj) randomly produced by a

simulator. We construct an algorithm B that distinguishes between
the two sequences E(T1), · · · E(Tn−1) and E(α1), · · · , E(αk),
contradicting the semantic security property of E. The input to
algorithm B is a sequence of values E(x1), · · · E(xn−1) and it
attempts to determine whether the values x1, . . . , xn−1 are equal
to the value T1, . . . , Tn−1 that the users provide, or is a sequence
of random value chosen from the distribution D. The algorithm B



computes for every ` = 1, . . . , k

i∏̀
j=1

E(xj) ≡ E(

i∑̀
j=1

xj) mod N2,

and provides the encryption of partial sums
E(

∑i1
j=1 xj), . . . E(

∑ik
j=1 xj) as input to DIS. B returns as out-

put the same output as DIS. Since the input of DIS is
E(

∑i1
j=1 Tj), . . . E(

∑ik
j=1 Tj) if and only if the input of B is

E(T1), . . . E(Tn−1), we have thatB distinguishes between its two
possible input distributions with the same probability thatDIS dis-
tinguishes between its input distributions.

AP uses O(n) messages.

4. WEIGHTED ACCUMULATED PROTOCOL
WAP

The Weighted Accumulated WAP protocol, in addition to the AP
protocol, generates the weighted average trust in a specific user Ut
by the users in the community. The WAP protocol is based on an
anonymous communications protocol proposed in [1] and on the
homomorphic cryptosystem, e.g., Paillier cryptosystem [17]. It is
described in Figures 4 and 3.

The initiating node Un generates n − 1 weights w1, ..., wn−1.
Each wi value reflects the U ′ns subjective trust level in Ui user.
Un initializes the accumulated variable, A, to 1, encrypts each wi
value by means of, e.g., the Paillier cryptosystem([17]) asE(wi) =
gwihrn,i(mod N2), composes a Trust Vector
TV = [E(w1)..E(wn−1)] and sends the message Mt = (TV,A)
toU1. Here, as in theAP case, p, q are large prime numbers which
compose the Paillier cryptosystem, N = (p−1)(q−1), and g and
h are properly chosen parameters of the Paillier cryptosystem. rn,i
is a random degree of h chosen by Un for each Ui from C. Note
that the AP protocol is the private case of the WAP protocol while
all weights wi are equal to 1.

1: WAP Initialization:
2: Un generates TV = [w1..wn−1]
3: Un sets A = 1 and Mt = (TV,A)
4: WAP execution:
5: Un sends Mt to U1

6: for i = 1 . . . n− 1
7: A = AE(wi)

TiE(0) mod (N2)
8: Delete TV [i]
9: Ui sends Mt to Ui+1

10: end for
11: Upon Mt reception at Un:
12: St = D(A) =

∑n
i=1 wiTi

13: wT avrt = 1
10

St
n−1

Figure 4: Weighted Accumulated Protocol
WAP.

As in theAP
case the Mt

message is re-
ceived by the
community users
in the pre-
scribed order.
Each Ui user
encrypts its
weighted trust
inUt asE(Ti) =
E(wi)

TiE(0)
and accumu-
lates it in the
accumulated vari-
able A (lines 6-10).
Note that the multiplying by the random encryption of zero E(0)
ensures semantic security of the WAP protocol since the user’s
output cannot be distinguished from a simulated random string. As
a result, the initiating user Un receives the Mt message and de-
crypts the value accumulated in A as the weighted sum of trust
St = D(A) =

∑n−1
i=1 wiTi. Hence, the average trust is equal to

wT avrt = 1/10
∑n
i=1 wiT

i. Proposition 2 proves the privacy of
the weighted average trust wT avrt in the Ut user by the community
users in a computationally secure manner.
Proposition 2. WAP protocol performs computationally secure

anonymous computation of the weighted average trust wT avr un-
der the assumption of uncompromised initiating userUn in the Non
Additive Reputation System.
Proof:
The proof is similar to the proof of Proposition 1. View of adver-
sary includes the input of compromised users Ti1 , . . . , Tik , trust
vector TV , and the accumulated variable A. Each compromised
user Uij from I receives TV = [E(wij ), E(wij+1) . . . , E(wn)]

and A =
∏ij
i=1E(wi)

TiE(0).
A simulator for the adversary simulates viewWAP

I as follows. The
simulator input Ti1 , . . . , Tik is the same as the input of the com-
promised users. A simulator chooses at random v1, . . . , vn ac-
cording to a distribution W of weights, and T̃1, . . . , T̃n according
a distribution D of trust values. Here T̃i1 = Ti1 , . . . , T̃ik = Tik .
Due to the semantic security of the homomorphic cryptosystem, the
encrypted random values E(v1), . . . , E(vn) are indistinguishable
from the encrypted correct weights E(wi1), . . . , E(win).
The randomization of any Ui − th user output is performed by
multiplying its secret wTii by the random encryption of zero string
E(0). Given E(w), the two values E(w)T and E(u), where u is
chosen at random from the distribution ofwT , can be distinguished
since T is chosen from a small domain of trust values. GivenE(w),
the values E(w)TE(0) are distributed identically to an encryption
E(w)T = E(wT mod N). Based on the semantic security of the
homomorphic cryptosystem, E(u) and E(wT ) cannot be distin-
guished even given E(w).
WAP uses O(n) messages each of length O(n).

5. VECTOR PROTOCOL VP
The Vector Protocol V P is performed in two rounds (Figure 5).
At the initialization stage Un initializes the n − 1-entry vector
TV [1..n − 1] and sends it to the community of users in the pre-
scribed order in the Mw

t = (TV [1..n]) message (lines 1-2).
At the first round upon message Mw

t reception each user Ui en-
crypts its trust Ti in the corresponding TV [i]′s entry as E(Ti) =
gTihri(modN2), and sends the updated message Mw

t to the next
user (lines 3-7).
The second round of the V P protocol is performed when the up-
dated TV [1..n−1] vector returns from the last querying userUn−1

to the first user U1. Note that the TV vector does not visit the ini-
tiating node Un after the first round execution. Each user Ui act
as follows at the second round: (a) Ui performs a permutation of
its i − th entry with the randomly chosen ij − th entry, (b) Ui
updates all entries by multiplying them by a random encryption
of zero E(0) = hr0,i . After that the newly updated Mw

t vector-
message is sent to the next Ui+1 user (lines 8-14).

1: Initialization:
2: Un initializes TV = [1..n− 1]
3: Round 1:
4: Un sends Mt = TV [1..n− 1] into C
5: for i = 1 . . . (n− 1)
6: TV [i] = E(Ti)
7: end for
8: Round 2:
9: for i = 1 . . . (n− 1)

10: swap(TV [i], TV [ij ])
11: end for
12: for j = 1 . . . (n− 1)
13: TV [j] = TV [j]E(0)
14: end for
15: Upon Mt = (TV [1..n − 1]) reception at

Un:
16: D(M) = [T1, .. Tn−1]

Figure 5: Vector Protocol V P .

As a re-
sult of the
second round
execution,
the initi-
ating node
Un receives
the TV [1..n]
vector while
each of its
TV [ij ] en-
try is equal
to theUi−
th encrypted
trust Ti in



D(Mt) = 1
10 (w1T1 + ... + wn−1Tn−1)

Un−1

TV [1] = E(w1)
T1E(0)

TV [1] = E(w1)
T1E(0)E(w2)

T2E(0)

E(w1)E(w2) E(wn−1)

E(w2) E(wn−1)

U1

Ui

Un Mt = TV [1] = E(w1)
T1E(0)...E(wn−1)

Tn−1E(0)

Mt = TV [1 ..(n − 1)]

Figure 3: Weighted Accumulated protocol WAP .

Round 2

Un−1

Mt = TV [1 ..(n − 1)]

U1

Ui

Un

TV [1]

TV [1]TV [2] TV [n − 1] = E(Tn−1)

TV [2] = E(T2)

TV [1] = E(T1)

Round 1

E(Ti)

Ui

E(Ti)

∗E(0)

Figure 6: Vector Protocol V P .



Ut. Hence,
by applying
the decryption
procedure, all encrypted trust values T1, . . . , Tn−1 are revealed
(lines 15-16). Moreover, the random permutation performed at the
second round, preserves the unlinkability of the user identity.
The Proposition 3 states the correctness of the V P protocol.
Proposition 3. V P protocol performs computationally secure
computation of the exact private trust values under the assumption
of the non compromised initiating user Un in the Additive Reputa-
tion System.
The suitable for the Non Additive Reputation system weighted
V P protocol can be implemented, as well. In order to generate
the average weighted private trust, the initialized TV [1..n] vec-
tor sent by Un to the community of users in Mt message (Fig-
ure 5, lines 1-4) must be replaced by the vector of the encrypted
weights TV [1..n] = [E(w1)..E(wn−1)] as in the WAP proto-
col. Moreover, the encryption performed by any user Ui should
be W [i] = E(wi)

Ti as in the WAP protocol. The computationally
secure privacy of the weighted V P protocol is a derived extension
of the Proposition 3.

6. MULTIPLE PRIVATE KEYS PROTOCOL
MPKP

The AP and WAP protocols introduced in the previous sections
carry out private trust computation assuming that the initiating node
Un is not compromised and does not share its private key with other
users. In the rest of this work we assume now that any commu-
nity user, including Un may be compromised by a poly-bounded
k-listening curious adversary.

1: MPKP Initialization:
2: Un generates TV = [1..1]
3: Un sets AV = [1..1], A = 1 and

Mt = (TV,AV,A)
4: Un sends Mt to U1

5: Round 1:
6: for i = 1 . . . (n− 1)

7: Ti =
∑n−1
j=1 r

i
j

8: for j = 1 . . . (n− 1)
9: AV [j] = AV [j]Ej(r

i
j)

10: end for
11: Ui sends Mt to Ui+1

12: end for
13: Round 2:
14: for i = 1 . . . (n− 1)

15: Di(AV [i]) =
∑n−1
j=1 r

j
i

16: A = AEn(
∑n−1
j=1 r

j
i )

17: Delete AV [i]
18: end for
19: Upon Mt = (A) reception at Un:
20: A =

∏n−1
i=1 En(

∑n−1
j=1 r

j
i )

21: St = Dn(A)
22: T avrt = St

n−1

Figure 7: Multiple Private Keys Protocol
MPKP.

The generalized
Multiple Private
Keys Protocol
MPKP copes
with this prob-
lem and out-
puts the aver-
age trust. The
idea of theMPKP
protocol is as
follows. Dur-
ing the initial-
ization stage the
Un user initial-
izes all entries
of trust vector
TV and accu-
mulated vector
AV to 1, sets
the accumulated
variable A to
1, and sends
Mt = (TV,AV,A)
message to the
first community
user U1 as in the
previous protocols. During the first round of the MPKP protocol
execution each user Ui randomly fragments its secret trust
Ti to a sum of n−1 shares, encrypts corresponding share by public
key of each Uj , j = 1..n − 1 user and accumulates its encrypted
shares (multiplying each of them with the corresponding entries) in

the accumulated vector AV . After the first round execution the up-
dated AV vector does not return to the initiating user Un. The AV
vector visits each community user, while each Ui opens the i− th
entry (that is encrypted by Ui − th public key) revealing a sum of
decrypted shares, encrypts this sum by the public key of the initiat-
ing user Un, accumulates this sum in the accumulated variable A,
and deletes the i− th entry of the AV vector.
The detailed description of the MPKP protocol follows. Assume
that each community user Ui, i = 1..n − 1 generates its personal
pair (P+

i , P
−
i ) of private and public keys. Denote byEi andDi the

encryption and decryption algorithms produced by Ui. The private
key (P+

i ) is kept secret, while the public key P−i is shared with
all other users U1, . . . , Ui−1, Ui+1 . . . Un. As in the previous
schemes, the cryptosystem must be homomorphic. An additional
requirement is that the homomorphism modulus,m, must be identi-
cal for all users. One possibility is to use the Benaloh cryptosystem
([2, 3]) for which many different key pairs are possible for every
homomorphism modulus.
The system works as follows. Select two large primes p, q such

that: N
4
= pq, m|p− 1, gcd(m, (p− 1)/m) = 1 and gcd(m, q −

1) = 1, which implies that m is odd. The density of such primes
along appropriate arithmetic sequences is large enough to ensure
efficient generation of multiple p, q (see [2] for details). Select
y ∈ Z∗N such that yφ(N)/m 6≡ 1 mod N . The public key is
N, y, and encryption of M ∈ Zm is performed by choosing a
random u ∈ Z∗m and sending yMum mod N . In order to de-
crypt, the holder of the secret key computes at a preprocessing stage

TM
4
= yMφ(N)/m mod N for everyM ∈ Zm . Hence,m is small

enough that m exponentiations can be performed. Decryption of
z is by computing zφ(N)/n mod N and finding the unique TM to
which it is equal.
The MPKP protocol is performed in two rounds (Figure 7). The
initialization procedure is shown in lines 1-4. The first round is
the accumulation round while all users share their secret trust Ti
values with other users. Upon a reception of a message Mt each
user Ui proceeds as follows: (a) Ui chooses ri1, . . . , rin−1 uni-
formly at random such that Ti =

∑n−1
j=1 r

i
j ; (b) Ui encrypts each

rij , j = 1.. n − 1 by the public key P−j of the Uj user and multi-
plies it by the current value stored in j−th entry ofAV . Hence, the
output AV vector contains the accumulated product

∏n−1
k=1 Ej(r

k
j )

in each j − th entry (lines 5-12).
Upon Mt message reception at the second round each Ui user de-
crypts the corresponding i − th entry by its private key P+

i , com-
putes the

∑n−1
j=1 r

j
i sum, encrypts it by the U ′ns public key P−n

as En(
∑n−1
j=1 r

j
i ), accumulates this sum in the accumulated vari-

able A, deletes i − th entry and sends the updated TV vector to
the next Ui+1 user. Note that the partial sum

∑n−1
j=1 r

j
i that Ui

decrypts reveals no information about correct trust values. As a
result of the second round the initiating user Un receives A =∏n−1
i=1 En(

∑n−1
j=1 r

j
i ) (lines 13-19). Un decrypts

∏n−1
j=1 En(rji ),

and computes the sum of trusts as St =
∑n−1
i=1

∑n−1
j=1 r

j
i . Actu-

ally, the average trust T avr is equal to St
n

(lines 20-22). Proposi-
tion 4 states the privacy of MPKP protocol. The communication
complexity ofMPKP protocol, isO(n) messages, each of length
O(n).
Proposition 4. MPKP protocol performs computationally secure
computation of the exact private trust values in the Additive Repu-
tation System. No restriction is imposed on the initiating user Un.

The last introduced protocol is the MPWP for the weighted aver-



age trust wT avrt computation. The idea of the MPWP is as fol-
lows. During the initialization stage the Un user generates a vector
TV such that each i − th entry contains Ui − th weight wi en-
crypted byUn−th public key. Un sends TV and a (n−1)×(n−1)
matrix SM with all entries initialized to 1 to the first community
user U1 as in the previous protocols. During the first round of the
MPWP execution each Ui computes its encrypted weight in the
power of its secret trustEn(wi)

Ti , multiplies it by a randomly cho-
sen number (bias) zi, and accumulates the product in the accumu-
lated entry (by multiplying the entry by the obtained result). In
addition, Ui fragments its bias zi into n − 1 shares, encrypts each
j − th share by the public key of Uj , and inserts it in the j − th
location of i − th matrix row. At the end of the first round Un
decrypts the total biased weighted trust. The total random bias is
removed during the second round of the MPWP execution when
each Uj decrypts the entries of j − th matrix column, encrypts
the sum of these values by the public key of the initiating user,
accumulates it in an accumulation variable A, and deletes j − th
column. The details follow. The initiating user Un starts the first
round by generating the encryption of the n− 1 entries trust vector
TV = [En(w1)..En(wn−1)]. Note, that each weight wi is en-
crypted by Un − th public key P−n . In addition, Un initializes to 1
each entry of the (n−1)× (n−1) matrix of shares SM . TheMw

t

message sent by Un to the community users is M = (TV, SM).
Upon the TV vector reception each Ui user proceeds as follows:
(a) Ui computes En(wi)

Ti · zi. Here zi is a randomly generated
by Ui number that provides the secret bias. (b) Ui accumulates its
encrypted weighted trust in the accumulated variable A by setting
A = A · En(wi)

Ti · zi. After that, the i − th entry of TV is
deleted. (c) Ui shares zi in the i − th row of the SM shares ma-
trix as SM [i][] = [E1(z

1
i )..En−1(z

n−1
i )]. At the end of the first

round Un receives the TV [] entry that is equal to the encrypted by
its public key biased product BT =

∏n
j=1En(wi)

Tizi and the
updated shares matrix SM while SM [i][j] = Ej(z

j
i ). Actually,

the decryption procedure applied on the TV [] vector outputs the
decrypted sum D(TV []) =

∑n−1
i=1 wiTi +

∑n−1
i=1 zi.

A second round is performed in order to subtract the random bias∑n−1
i=1 zi from the correct weighted average trust wT avr . The sec-

ond round of the MPWP protocol is identical to the correspond-
ing round of the MPKP protocol. Upon reception of the SM
matrix each user Ui decrypts the corresponding i − th column
Ei(z

i
1) Ei(z

i
2) . . . Ei(z

i
n−1), encrypted by all community users

by Ui − th public key P−i . Each Ui, i = 1.. n − 1 computes the
sum of the partial shares PSSi =

∑n−1
j=1 z

i
j , encrypts it byUn−th

public key P−n , and accumulates it in the accumulated variable A.
After that i−th SM ′s column SM [][i]is deleted. As a result of the
second round, the initiating user Un receives the accumulated vari-
able A =

∏n−1
i=1 Ei(PSSi). The encrypted bias BT is decrypted

as D(A) =
∑n−1
i=1

∑n−1
j=1 z

i
j . Finally, the weighted average trust

wT avr is equal to wT avr = TV −A.
The private trust computation carried out by the MPKP and the
MPWP protocols is preserved in the computationally secure man-
ner due to the following reasons:
(a) Each community user Ui fragments its trust Ti randomly into
n− 1 shares (Figure 7, lines 6-8).
(b) Each rji encrypted by Ui by Uj − th public key P−j , shared
with each Uj , j = 1, . . . , n− 1 user and accumulated in the TV
vector, reveals no information about the exact Ti value to Uj (lines
9-14).
(c) The decryption performed by each Ui, i = 1, . . . , n−1 by its
private key P+

i at the second round, outputs the sum of the partial
shares Di(TV [i]) =

∑n−1
j=1 r

i
j of all community users. In essence,

the
∑n−1
j=1 r

i
j value reveals no information about the secret trust

values T1, . . . , Ti−1, Ti+1, . . . , Tn−1.
(d) The encryption En(

∑n−1
j=1 r

i
j) of the partial shares sum per-

formed by each Ui with the initiating node Un public key P−n and
accumulated in A, can be decrypted by Un only.
(e) Assume a coalition Uji , . . . , Uji+k−1 of at most k < n curious
adversarial users, possibly including the initiating user Un. Then
the exact trust values revealed by the coalition, are the coalition
members trust only. The privacy of the uncorrupted users is pre-
served by the homomorphic encryption scheme which generates
for each user its secret private key, and by the random fragmenta-
tion of the secret trust.
In MPWP O(n) messages of length O(n2) are sent.

7. CONCLUSIONS
We derived a number of schemes for private computation of trust
in a given user by community of users. Trust computation is per-
formed in a fully distributed manner without involving a Trusted
Authority. The AP and WAP protocols are computationally se-
cure under the assumption of uncompromised initiating user Un.
The AP and WAP protocols compute the average unweighted and
weighted trust, respectively. The generalizedMPKP andMPWP
protocols relax the assumption of the non compromised Un. They
carry out the private unweighted and weighted trust computation,
respectively without limitations imposed on Un. The number of
messages sent in the proposed protocols is O(n) (large) messages.
The schemes proposed in this paper are not restricted to trust com-
putation only. They might be extended to other models that com-
pute privately sensitive information with only O(n) messages.
In case the trust is represented by several values rather then a single
value, one can apply our techniques to each such value indepen-
dently.

8. REFERENCES
[1] A. Beimel, S. Dolev, “Buses for Anonymous Message

Delivery”, Journal of Cryptology, Vol. 16, No. 1, pages
25-39, 2003.

[2] J. Benaloh, “Verifiable Secret-Ballot Elections”, Ph.D.
thesis, Yale University, 1987.

[3] J. Benaloh, “Dense Probabilistic Encryption”, Proceedings
of the Workshop on Selected Areas of Cryptography, pages
120-128, Kingston, May 1994.

[4] D. Boneh, Eu-Jin Goh, K. Nissim, “Evaluating 2-DNF
Formulas on Ciphertexts”, TCC, pages 325-341, 2005.

[5] R. Cramer, I. B. Damgard, J. Buus Nielsen, “Multiparty
Computation from Threshold Homomorphic Encryption”,
EUROCRYPT ’01: Proceedings of the International
Conference on the Theory and Application of Cryptographic
Techniques, pages 280-299, 2001.

[6] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, W. E.
Weihl, “Reaching Approximate Agreement in the Presence
of Faults”, Journal of the Association for Computing
Machinery, Vol. 33, No. 3, pages 499-516, 1986.

[7] S. Dolev, R.Ostrovsky, “Xor-Trees for Efficient Anonymous
Multicast and reception”, ACM Transactions on Information
and Systems Security, Vol. 3, No. 2, pages 63-84, 2000.

[8] M. Franklin, S. Haber, “Joint Encryption and
Message-Efficient Secure Computation”, Journal of
Cryptology, Vol. 9, No. 4, pages 217-232, 1996.

[9] C. Gentry, “Fully homomorphic encryption using ideal
lattices”, STOC, pages 169-178, 2009.



[10] O. Goldreich, “Foundations of Cryptography: Volume 1,
Basic Tools”, Cambridge University Press, New York, NY,
USA, 2000.

[11] O. Goldreich, “Foundations of Cryptography: Volume 2,
Basic Applications”, Cambridge University Press, New
York, NY, USA, 2004.

[12] S. Goldwasser, S. Micali, “Probabilistic encryption”,Journal
of Computer and systems science, Vol.28, pages 108-119,
2004.

[13] E. Gudes, N. Gal-Oz, A. Grubshtein, “Methods for
Computing Trust and Reputation while Preserving Privacy”,
Accepted for publication in Proceedings of 23rd Annual IFIP
WG 11.3 Working Conference on Data and Applications
Security, 2009.

[14] A. Josang, R. Ismail “The Beta Reputation System”, 2002.
[15] D. Naccache and J. Stern, “A New Public Key Cryptosystem

Based on Higher Residues”, ACM Conference on Computer
and Communications Security, pages 59-66, 1998.

[16] T. Okamoto, S. Uchiyama, “A New Public-Key
Cryptosystem as Secure as Factoring”, EUROCRYPT 1998,
pages 308-318, 1998.

[17] P. Paillier, “Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes”, EUROCRYPT 1999, pages
223-238.

[18] E. Pavlov, J. S. Rosenschein, Z. Topol, “Supporting Privacy
in Decentralized Additive Reputation Systems”, “iTrust
2004”, LNCS 2995, pp. 108-119, 2004.

[19] T. P. Pedersen, “Non-Interactive and Information Theoretic
Secure Verifiable Secret Sharing”, 1991.

[20] A. Shamir, “How to Share a Secret”, Commun. ACM, No. 22,
Vol. 11, pages 612-613, 1979.


