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The recent increase in the generated polygonal dataset sizes has outpaced the perfor-
mance of graphics hardware. Several solutions such as multiresolution hierarchies and
level-of-detail rendering have been developed to bridge the increasing gap. However, the
discrete levels of detail generate annoying popping effects, the preliminaries multireso-
lution schemes cannot perform drastic changes on the selected level of detail within the
span of small number of frames, and the current cluster-based hierarchies suffer from the
high-detailed representation of the boundaries between clusters. In this paper, we are
presenting a novel approach for multiresolution hierarchy that supports dual paths for
run-time adaptive simplification — fine and coarse. The proposed multiresolution hier-
archy is based on the fan-merge operator and its reverse operator fan-split. The coarse
simplification path is achieved by directly applying fan-merge/split, while the fine sim-
plification route is performed by executing edge-collapse/vertex-split one at a time. The
sequence of the edge-collapses/vertex-splits is encoded implicitly by the order of the
children participating in the fan-merge/split operator. We shall refer to this multireso-
lution hierarchy as fan-hierarchy. Fan-hierarchy provides a compact data structure for
multiresolution hierarchy, since it stores 7/6 pointers, on the average, instead of 3 point-
ers for each node. In addition, the resulting depth of the fan-hierarchy is usually smaller
than the depth of hierarchies generated by edge-collapse based multiresolution schemes.
It is also important to note that fan-hierarchy inherently utilizes fan representation for
further acceleration of the rendering process.

Keywords: Geometric simplification; levels of detail; multiresolution hierarchies; view-
dependent rendering.

1. Introduction

Polygonal mesh representations dominate the three-dimensional modeling from
computer games and entertainments to modeling of aircrafts and submarines. The
simplicity and compactness (compare to other representations) play a major rule
in this dominance. In addition, the advances in computer graphics hardware have
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been geared toward rendering polygonal meshes. Current graphics hardware on a
commodity PC can render millions of polygons per second. However, the advances
in three-dimensional shape acquisition, simulation, and design technologies have led
to the generation of large polygonal datasets that exceed the interactive rendering
capabilities of current graphics hardware. Several software algorithms and tech-
niques, such as level-of-detail rendering and occlusion culling, have been developed
to bridge the increasing gap between the currently available datasets and hardware
rendering capabilities by reducing the complexity of the graphics datasets while
keeping their visual appearance similar to the original.

Multiresolution hierarchies and view-dependent rendering enable the selection
of various levels of detail over different regions of the model surface based on view
parameters, such as viewpoint, illumination, and speed of motion. However, most
of these multiresolution hierarchies are based on edge-collapse, which is inadequate
for drastic change on the selected level of detail within the span of small number
of frames. In addition, edge-collapse cannot adapt easily to the rate of changes
between the various levels of detail. These limitations generate severe artifacts when
the adapt process fails to select the appropriate level of detail quickly (to match
the changing view parameters). For example, a fast fly over a large terrain could
result in a high level of detail behind the viewer instead of his/her front.

Cluster-based multiresolution schemes try to overcome the above mentioned
limitations by using aggressive simplification operators to quickly select the appro-
priate level of detail. These approaches start by dividing the dataset into dis-
joint regions, called clusters or patches, in a hierarchical manner and then sim-
plify each cluster independently. To avoid generating cracks and fold-overs at real-
time, the boundaries of the clusters are not simplified until they become internal
to an ancestor cluster up the hierarchy. Therefore, some boundary regions may
remain in the original resolution even in coarse levels of detail. These boundaries
could account for large fraction of the triangle budget for coarse levels of detail.
One could simplify these boundaries in real-time by performing edge-collapses,
however such an approach could harm the frame rates and usually requires com-
plex dependencies among vertices and clusters. In addition, most of cluster-based
multiresolution schemes do not support view-dependent rendering within clusters
(clusters are represented either in discrete levels of detail or linear progressive
meshes). For that reason popping artifacts are not completely inevitable. Fur-
thermore, some subdivision schemes could generate clusters that include discon-
nected regions that could not be simplified during the off-line construction pro-
cess. The same problem arises when the dataset consists of large number of small
objects.

To overcome these severe drawbacks we have developed a dual-paths adaptive
operator, which enables fine as well as coarse changes on the selected level of detail
(as shown in Fig. 1). The simplification rate is chosen based on view parameters
and the difference between current and target levels of detail while maintaining a
smooth change of the resolution over the model.
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Fig. 1. The distribution of the fine (in black color) and coarse changes (in gray color) over
a selected level of detail, and unchanged areas (in white color) of the Horse model. The view
direction is near the head looking toward the body of the horse.

Our adaptive scheme is based on the fan-merge simplification operator which is
performed by merging fan of vertices into one vertex (the fan center). This oper-
ation eliminates more triangles than the edge-collapse operator in one execution.
To support fine changes, our fan-merge operator has an alternative path, which is
performed by executing a sequence of edge-collapses one at a time. It is important
to notice that the two paths generate the same mesh upon the completion of the
operation.

The fan-based multiresolution hierarchy is constructed bottom-up by iteratively
performing fan-merge on the vertices of the mesh. The resulting data structure
encodes the various levels of detail of the original mesh in a hierarchal manner. We
shall refer to this multiresolution hierarchy as fan-hierarchy.

In the rest of this paper, we first overview related work in the area of level-
of-detail rendering and multiresolution hierarchies. Then, we discuss the fan-
hierarchy data structure, its off-line construction, and its real-time processing.
We present implementation details and experimental results followed by some
conclusions.

2. Related Work

In this section, we shall briefly overview related work in the fields of polygonal mesh
simplification, multiresolution hierarchies, and view-dependent rendering.
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Adaptive level-of-detail rendering has been developed to select an appropri-
ate level of detail in a view-dependent manner by utilizing temporal coherence.
Such a scheme has been widely used in terrain rendering by Cignoni et al.,1

Duchaineau et al.,2 Gross et al.,3 and Lindstrom et al.4

View-dependent rendering approaches usually rely on multiresolution hierar-
chies that encode various levels of detail of the original mesh. Progressive meshes
have been introduced by Hoppe5 to provide continuous resolution representations of
polygonal meshes. Merge trees have been introduced by Xia et al.6 as a data struc-
ture built upon progressive meshes to enable real-time view-dependent rendering.
Hoppe7 has developed a view-dependent simplification algorithm that works with
progressive meshes. His algorithm uses the screen-space projection and orientation
of the polygons to guide the run-time view-dependent simplification.

Several data structures have been employed to efficiently support view-
dependent approaches. Luebke and Erikson8 have defined a tight octree over the
vertices of the given model to generate hierarchical structure. De Floriani et al.9

have introduced Multi-Triangulation (MT). Decimation and refinement in MT
are achieved through a set of local operators that affect fragments of the mesh.
Guéziec et al.10 have demonstrated a progressive encoding scheme for surfaces
in the form of a directed acyclic graph (DAG). Klein et al.11 have developed an
illumination-dependent refinement algorithm for multiresolution meshes. Pajarola12

has introduced an efficient hierarchical multiresolution triangulation framework
based on a half-edge triangle mesh data structure.

The real-time selection of level of detail is performed on the CPU and could be
expensive for large datasets. For that reason several approaches have been developed
to reduce the real-time CPU overhead. Kim and Lee13 have managed to remove the
dependency limitation of the split and merge operations. In their refinement scheme,
each vertex-split or edge-collapse can be performed without incurring additional
vertex-split and/or edge-collapse transformations. El-Sana et al.14 have developed
a data structure SkipStrip that efficiently maintains triangle strips during view-
dependent rendering. For further reduction of the rendered mesh El-Sana et al.15

and Yoon et al.16 have integrated occlusion culling within the view-dependent ren-
dering framework.

Different schemes for multiresolution hierarchies are based on various simplifi-
cation operators, such as edge-collapse,6,7,10,17 half-edge collapse,12 cell-collapse,8

and vertex-removal.9 The above operators belong to the category of fine operators
that affect small regions of the selected mesh.

View-dependent rendering schemes usually require the existence of the entire
dataset in main memory. To overcome the memory size drawback El-Sana
and Chiang18 and DeCoro and Pajarola19 have developed an external memory
view-dependent simplification. Shamir et al.20 have developed a view-dependent
approach that handles dynamic environments with arbitrary internal deformation.

View-dependent rendering often fails to select the appropriate level of detail
within the span of one frame. To overcome this limitation recently developed
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approaches support aggressive operators on the selected level of detail. They divide
the model into disjoint regions, called clusters or patches, which are simplified
independently and stored in a hierarchical manner. For example, Erikson and
Manocha21 have used a hierarchy of static levels of detail, Cignoni et al.22 have
developed the adaptive TetraPuzzles for out-of-core view-dependent rendering, and
Yoon et al.23 have introduced Quick-VDR for interactive view-dependent rendering
of large models.

3. Our Approach

Smooth changes on the selected level of detail are achieved by fine-change operators
which update a small number of triangles. However, to carry out coarse changes we
have to perform multiple passes over the active nodes (or recursively refine/simplify
nodes). For that reason, fine-change operators fail to perform coarse changes on the
selected level of detail within the span of one frame without compromising frame
rates. Replacing these operators by more aggressive ones would generate undesired
popping artifacts at close-to-viewer regions. Therefore, in view-dependent rendering
approaches there is a need to support fine and coarse operators.

In this paper, we present the fan-hierarchy — a novel multiresolution hierarchy
for view-dependent rendering. Our approach uses fan-merge operator for coarse
changes on the selected level of detail and utilizes the advantages of aggressive
simplification operators (similar to cluster-based schemes). In addition, it supports
fine changes on the selected level of detail by providing a dual path for fan-merge
as a sequence of edge-collapses. Thus, our approach provides smooth changes on
the level of detail over the visualized surface.

Next, we discuss the fan-merge operation followed by the construction of the
fan-hierarchy and the real-time rendering.

3.1. Fan-merge

The fan of vertex v is defined as the set of triangles adjacent to v, and the link of
vertex v is defined as the set of vertices directly adjacent to v. We shall use the
notation fan(v) and link(v) for the fan and link of vertex v, respectively.

We define the fan-merge operation for a vertex v as the merge of all the vertices
in the link of v to the vertex v (as shown in Fig. 2). A fan-merge operation on

Fan-Split

Fan-Merge

vv

Fig. 2. The fan-merge and its dual operator fan-split.
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a vertex v degenerates all the triangles which have two vertices in link(v), and
modifies all the triangles that have only one vertex in link(v). The degenerated
triangles are removed and the modified triangles are extended to cover the area of
the degenerated ones. We shall refer to the set of modified triangles as modified(v)
and the removed degenerate triangles as removed(v). We could mathematically
represent these two sets as:

removed(v) = {t|t ∈ fan(v) or t ∈ adjacent(fan(v))}
modified(v) = ∪u∈link(v)fan(u)−removed(v).

The number of triangles removed by the fan-merge operation is equal to 2deg(v)
(twice the degree of the vertex v). The fan-merge operation removes more triangles
than edge-collapse upon the completion of one execution (edge-collapse usually
removes two triangles). However, edge-collapse allows finer changes on the level
of detail, which is often required for close-to-viewer regions. The fine changes are
achieved by performing the fan-merge operation as a sequence of edge-collapses. In
such a scheme, we provide two choices to perform fan-merge that result in the same
simplified mesh.

3.2. Error metric

The execution of a fan-merge on a mesh usually introduces geometrical errors.
For better mesh representation we perform fan-merges in a decreasing order of the
introduced errors. To estimate these errors we use the quadratic-error metric24 with
small modifications for the fan-merge structure.

The quadratic-error metric provides a very good estimation of the distance
between a point and a set of planes. According to this metric, a vertex u is associated
with a set of planes and its error δ(u) is defined as the sum of squared distances
to these planes, as shown in equation Eq. (1), where p = [a b c d]T represents the
plane defined by equation ax + by + cz + d = 0 and a2 + b2 + c2 = 1.

δ(u) =
∑

p∈planes(u)

(pT v)2 (1)

During the fan-merge operation on vertex v the position of v remains constant
while vertices of link(v) are removed. Therefore, to estimate the introduced error
∆(v) of fan-merge of v we extend the previous metric by applying it on each vertex
u ∈ link(v) and accumulating the results, as shown in equation Eq. (2).

∆(v) =
∑

u∈link(v)

δ(u) (2)

Recall that the modified triangles are extended to cover the area of the degener-
ated ones and for that reason they play a major role in determining the introduced
geometrical error. Therefore, the changes on the modified triangles are used to
estimate the quadratic error. To clarify that, let us consider the case where each



Dual Adaptive Paths for Multiresolution Hierarchies 279

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

Percentage of Original Model

D
eg

re
e

Fig. 3. These graphs show the behavior of maximum and average vertex degrees (marked with [∗]
and [+], respectively) as a function of the simplification percentage using the Bunny model. The
solid-line and dotted-line graphs show the results of the fan-merge and edge-collapse operators,
respectively.

removed triangle is coplanar with an extended triangle, then the introduced geo-
metric error is zero. Such a case occurs when the modified triangles are coplanar
with the fan’s central vertex.

The error metric we use is practically the quadratic-error metric on the modified
triangles of the merged fan. This metric is also used to order the vertices of the
mesh for fan-merge execution during the off-line construction process.

According to our experimental observation on various datasets, the fan-merge
simplification based on quadratic error does not generate vertices with high degree.
It is usually comparable to the degree of vertices in an edge-collapse simplification
(see Fig. 3). Nevertheless, one could reduce the degree of vertices by assigning
for each vertex a weight according to the number of its adjacent triangles. Such
approach merges fans with small degrees earlier than those with high degrees among
similar quadratic-error fans. It is important to select the weight carefully to comply
with the principal of the quadratic-error metric.

3.3. Fan-hierarchy

The fan-merge operator is used to construct multiresolution fan-hierarchies that
support view-dependent rendering for triangle meshes. Fan-hierarchies are con-
structed off-line by iteratively applying fan-merge operator in a bottom-up fashion.

To construct a fan-hierarchy H for a polygonal mesh M our algorithm starts
by ordering the vertices of M in a priority heap based on the modified quadratic-
error metric. Then, it iteratively extracts the vertex v from the top of the heap
and performs two procedures: one on the simplified mesh and the other on the
constructed fan-hierarchy (see Fig. 4). On the simplified mesh it merges the fan
of v, updates the error value for the vertices in the newly created link(v), and
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Fig. 4. The geometric fan (left) and its representation on the fan-hierarchy (right).

rearranges the priority heap accordingly. On the constructed fan-hierarchy H our
algorithm performs the following steps:

• creates a node Nv that represents v,
• stores in Nv the relevant changes on the mesh as a list of modified triangles and

a list of removed triangles,
• inserts Nv into H as the parent of the nodes which represent the vertices in

link(v),
• and orders the children of Nv by the introduced error as an appropriate sequence

of edge-collapses (that forms the alternative path of simplification).

The algorithm stops when the priority heap becomes empty, the number of
vertices reaches a predefine threshold, or the introduced error exceeds an upper limit
(the pseudo-code of the construction algorithm is shown in Fig. 5). The resulting
data structure has the form of a forest since not all the fans can merge. Each node
of the fan-hierarchy stores the error value of the fan-merge, pointer to the list of
children, pointer to the parent node, and two lists of indexes that correspond to
the modified and removed triangles, respectively.

buildFanHierarchy(Mesh mesh, Metric metric){

mesh.computeErrorMetric(metric);

Heap heap = generateVerticesHeap(mesh);

while (!heap.isEmpty()){

Vertex v = heap.extract();

node(v).setChildren(link(v));

mesh.fanMerge(v);

heap.updateErrorMetric(link(v), metric);

}

}

Fig. 5. Fan-hierarchy construction algorithm.
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To prevent the occurrence of fold-overs we have used the scheme of implicit
dependences17 with minor changes to adapt to the structure of fan-hierarchy. We
use the same enumeration strategy during the off-line construction process and the
same rules to prevent fold-overs at real-time.

The fan-hierarchy differs from previous multiresolution schemes in following
ways:

• It can handle multiple simplification paths that perform different change rates.
• Its average depth is log6(n) for n vertices comparing to log2(n) for edge-collapse

based multiresolution hierarchies.a Such a small depth enables quick coarse
changes on the selected level of detail.

• It is compact as a result of storing less pointers for each node: 7/6 pointers, by
average, instead of three pointers in view-dependence trees.17 In our implemen-
tation each node has a pointer to an array of its children (six in average). The
children nodes have a common pointer to their parent.

Similar to previous multiresolution schemes, fan-hierarchy encodes the various
levels of detail of the original mesh. Regions that are close to the top of the hierarchy
correspond to coarse levels of detail (low resolution) and regions that are close to
the bottom of the hierarchy correspond to fine levels of detail (high resolution).

3.4. Real-time traversal

The fan-hierarchy, which is constructed off-line, is used at real-time to guide the
selection of appropriate level of detail in an adaptive manner. A valid level of
detail forms a breadth cut on the multiresolution fan-hierarchy. We shall refer
to this cut as the active-nodes list. Note that active-nodes list can pass through
regions with different levels of detail while maintaining smooth and transparent
transition.

Our real-time traversal utilizes temporal coherence among consecutive frames
by traversing only the active nodes (at each frame) and updates the selected level
of detail to match the current view parameters. At each frame and for each active
node the algorithm verifies the appropriateness of its level of detail and determines
if there is a need to increase, decrease, or keep the current resolution. The decrease
and increase of the resolution are performed by moving the slice up or down the
fan-hierarchy, respectively.

In real-time interactive visualization, the visual error tolerance varies across
different regions of the visualized surface based on view parameters, such as view-
point, view direction, and illumination. Thus, the visual error in vertex v is com-
puted using the equation Eq. (3), where dist(v, C) is the distance between v and
the viewpoint C, Nv is the normal at v, and Dv and DL are the view and light

aAccording to the Euler’s Formula the average degree of a vertex in planner graph is six.
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directions, respectively. Note that the case where |Nv · Dv| < ε in the equation is
designed to emphasize the silhouette of the model.

error(v) =
{

dist(v, C) ∗ |Nv · Dv| ∗ |Nv · DL| if |Nv · Dv| > ε

dist(v, C) ∗ |Nv · DL| if |Nv · Dv| < ε
(3)

The visual error tolerance is small for close-to-viewer regions and large for far-
from-viewer regions. In addition, the visual error tolerance also varies with respect
to the speed of motion. We could tolerate larger error for a fast flight over a terrain
than for a slower one. Consequently, the visual error tolerance is usually propor-
tional to the speed of motion. Fine changes are required for low visual error tolerance
and could be performed by edge-collapse (the execution of the operator removes two
triangles). Coarse changes on the selected level of detail are possible for high visual
error tolerance and could be executed by the fan-merge operation that manages to
remove about 12 triangles by average (if we consider six as the average degree in a
typical triangle mesh).

The real-time traversal selects the rate of changes over the different regions of
the active level of detail based on the various error tolerances. The rate of changes
is controlled by selecting the appropriate number of edge-collapses for fine rates
and fan-merges for coarse rates. In such a scheme, the execution of a fan-merge as a
sequence of edge-collapses can spread over several frames. To maintain the quality
of the simplified mesh the edge-collapses are performed in an increasing order of
the introduced error. At run-time the state of each fan is maintained by storing an
index that marks the last collapsed edge (as shown in Fig. 6).

The switch between the two paths depends on the difference between the current
level of detail and the target level of detail. If the difference is large we use the fan-
merge, otherwise we execute several edge-collapses until we reach the appropriate
level of detail (as shown in Fig. 7).

For further optimization, we use heuristics to estimate the selection of the adap-
tive path without testing the difference between current and appropriate levels of
detail. The heuristics are based on the following observations:

v

v0v2

v4

v2 v4 v3v1v0 v5

v.. ..
parent

children

Merge Pointer

Fig. 6. Fine-rate changes on a fan through a sequence of edge-collapses (left) and the reflection of
these changes on the fan-hierarchy (right). The merged nodes are marked by a white background.
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Fig. 7. The same simplification is performed either directly by a fan-merge or through a sequence
of edge-collapses.

• Far-from-viewer regions have coarse level of detail and close-to-viewer regions
have fine level of detail.

• We would like to perform fine changes on the level of detail for close-to-viewer
regions and coarse changes for regions which are far from the viewer.

4. Implementation Details

We have implemented our algorithm in C++, performed several tests on various
datasets, and received encouraging results for our implementation.

Each fan-hierarchy node includes one pointer to its parent, one-byte merge
pointer, an error value, two lists of pointers to the modified and removed triangles,
and an array of pointers to its children nodes. In addition, each node includes a
pointer to its represented vertex properties, such as coordinates, color, and normal.
To perform an edge-collapse we need to determine the modified and removed trian-
gles. To extract these triangles, we use the lists of modified and removed triangles
in the parent node and rely on the index of the node (on the children array).

The fan-merge operation is performed based on the error value of the parent
node, and the fan-split operation depends on the error value in the last child (the
one with the highest error value). Currently, the selection of the level of detail for
each node is determined based on the distance from the viewpoint, view-direction,
and the stored error.
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To accelerate the scanning of the active-nodes list at real-time, we have adopted
a linked list of blocks where each block includes an array of 256 pointers. In addition,
the activated nodes are added to the end of the array, and the deactivated nodes
are replaced with the last active node (and the last block counter is decremented).

The rendering is performed either at the end of the scanning of active nodes
or at the expiration of the adapt time budget which is a predefined time slice that
aims to maintain interactive rates. Our multiresolution fan-hierarchy inherently
maintains the mesh as a collection of triangle fans. Therefore, we accelerate the
rendering of the selected level of detail by sending the mesh as a set of fans with
no overhead cost. The incomplete fans (as results of the fine rate of changes) are
treated separately.

5. Experimental Results

We have performed several experimental tests on various datasets of different types.
In this paper, we present some of these results that were achieved on a Pentium4
with 2.4 GHz, 512 MB of memory, and nVidia GeForce4 FX 5200 graphics hardware
with 64 MB texture memory.

Table 1 shows the running time of the off-line construction algorithm for fan-
hierarchy (the FH column) and view-dependence tree (the VDT column). As can
be seen our preprocessing algorithm runs more than 10 times faster than the one
for view-dependence tree. In addition, our algorithm runs in nearly linear time with
respect to the number of vertices of the model.

Table 2 shows the size of the fan-hierarchy and view-dependence trees for various
datasets. The number of internal nodes of the view-dependence trees is 4–6 times
the number of the fan-hierarchy’s internal nodes for the reported datasets. It is
important to notice that the small number of internal nodes is valuable to external
memory view-dependent rendering algorithms. Even if we compare the total size of
the hierarchies (the internal and leaf nodes), the size of the view-dependence tree is
1.3–1.7 times the size of the fan-hierarchy as shown in the last column of Table 2.

The fan-hierarchy approach accelerates the selection of adaptive levels of detail
as well as the rendering of the selected levels. The run-time performances of fan-
hierarchy and view-dependence tree are reported in Table 3. These results were

Table 1. Preprocessing time for various datasets.

Vertices Triangles Preprocessing time (sec)

Dataset (K) (K) FH VDT

Terrain 262 522 8:20 92:52
Hand 327 654 11:45 125:37
Buddha 543 1087 16:23 182:21
Scene 872 2449 12:34 134:33
A. Dragon 3609 7218 34:02 413:23
Armadillo 3390 7500 47:15 472:47
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Table 2. Fan-hierarchy size versus view-dependence tree size.

Fan-Hierarchy View-Dependence Tree

Int. Nodes Size Int. Nodes Size Saving
Dataset (K) (KB) (K) (KB) Factor

Terrain 52 23800 262 32000 1.35
Hand 60 30200 327 47700 1.58
Buddha 85 45100 543 72100 1.60
Scene 174 91500 1224 142500 1.60
A. Dragon 520 263900 3609 419200 1.59
Armadillo 553 289400 3750 479200 1.66

obtained over a sequence of frames with a screen error of two pixels. The run-time
comparison between fan-hierarchy and view-dependence tree is performed by mea-
suring the average number of adapt operations per frame, the average adaptation
time per frame, and the generated frame rates using the same camera path and
illumination for each dataset. In the section of the average number of adapt opera-
tions (Adapt Operations) we report for the fan-hierarchy the number of fan-merge
(the left number) and edge-collapse (the right number) operations. For the view-
dependence trees we report the number of edge-collapse operations. As can be seen
by using fan-hierarchy we have managed to achieve 3–5 improvement in the number
of adapt operations, 2–3.25 reduction in average adaptation time, and 1.2–2 frame
rate acceleration comparing to view-dependence tree. It is important to note that
the frame rate acceleration is increased as the datasets grow larger. This behavior
is an immediate result of the fan-hierarchy’s efficient adapt processing. The last col-
umn of the Table 3 shows the average number of triangles sent to graphics hardware
every frame.

Figures 8, 9, and 10 show images generated by our system. The arrow in Fig. 8(a)
and Fig. 9(a) marks the view-direction. Figure 8 shows three images of the same
selected level of detail of the Armadillo model. The left image (Fig. 8(a)) shows
the distribution of coarse (fan-merge) and fine (edge-collapse) rate of changes that

Table 3. Adaptive operators number and time performance for
fan-hierarchy (FH) and view-dependence trees (VDT).

Adapt Operations Adapt Time Frames
Number

FH VDT FH VDT FH VDT of trian.
Dataset Fan:Edge (ms) (ms) (K)

Terrain 312:101 1875 6 21 65 46 95
Hand 438:95 2462 8 25 59 38 92
Buddha 600:67 2607 12 36 47 26 107
Scene 1036:362 6654 17 67 41 18 113
A. Dragon 513:32 2992 8 28 51 24 287
Armadillo 632:134 4810 11 57 44 21 342



286 Y. Livny, N. Sokolovsky & J. El-Sana

were performed to generate the image. The black, dark gray, and light gray colors
depict the edge-collapse, fan-merge, and no-adapt operations, respectively. As can
be seen from Fig. 8(a) the density of fine changes is high in close-to-viewer regions
and low in far-from-viewer regions. The distribution of the fan-merge operations is
the highest in regions nearby but not very close to the viewer (in a kind of a second
layer) and fades out as regions become far from the viewer. It is important to notice
that the vast majority of the adapt operations are performed nearby the viewer.
Figure 8(b) shows the Armadillo model in wire-frame to depict the distribution of
the resolution over the surface of the model. Figure 8(c) shows the surface of the
selected level of detail. The images in Fig. 9 were obtained as the images in Fig. 8
for the Dragon model.

Figure 10(a) shows the image of a selected level of detail of the Terrain model.
The three images in Fig. 10(b), Fig. 10(c), and Fig. 10(d) show three snapshots
from the same geographical position during three different-speed flights over the

(a) Adaptive operations (b) Wire frame (c) Selected level of detail

Fig. 8. Armadillo model: original size 320K.

(a) Adaptive operations (b) Wire frame (c) Selected level of detail

Fig. 9. Dragon model: original size 202K.
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(a) Selected level of detail (92K)

(b) Slow camera motion (c) Medium camera motion (d) Fast camera motion

Fig. 10. Terrain model: original size 522K.

Terrain model using the same route. This route is a straight line that starts from
the lower-left corner and ends at the middle of the model. The flight speed is
measured by the number of frames at the same frame rates over the same route.
The slow-speed flight takes 100 frames, the medium-speed flight takes 50 frame,
and the fast-speed flight takes 10 frames. The images in Fig. 10(b), 10(c) and
10(d) show the distribution of the edge-collapse (black color), fan-merge (dark-gray
color), and no-adapt operations (light-gray color). As can be seen in these images
the number of edge-collapse operations decreases and the number of fan-merge
operations increases as the speed of motion increases. Such an adaptive behavior
reduces the adaptation time by increasing the number of fan-merge operations to
quickly provide an appropriate level of detail for the changing view parameters.
It is important to note that appearance of the boundaries between the fine and
coarse operations is resulted from categorizing (and thus the same coloring) of any
sequence of edge-collapses as an edge-collapse operator.

6. Conclusion

We have presented a framework for multiresolution hierarchy — fan-hierarchy —
which is based on the fan-merge operation. The fan-hierarchy data structure encodes
the various levels of detail to support real-time view-dependent rendering. The fan-
merge operator provides a dual-paths adaptive operation, which enables fine as well
as coarse changes on the selected level of detail. The selection of the appropriate
change rate is chosen based on view parameters and the difference between current
and target levels of detail. We have shown that the fan-hierarchy is more compact
than previous multiresolution hierarchies. In addition, it has achieved a respected
improvement in adapt time and the overall frame rates. Furthermore, it accelerates
the rendering process by sending the selected level of detail as a collection of fans
with no extra overhead.
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Our fan-hierarchy could be plugged into other multiresolution schemes includ-
ing the cluster-based hierarchies to improve the rendering performance and image
quality.
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