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Abstract

The problem of finding an optimal back-to-front airplane boarding
policy is explored, using a mathematical model introduced by Bach-
mat et al. Optimal back-to-front policies with 2 boarding groups are
presented. These lead to a nearly 8% improvement in boarding time
over random (no policy) boarding. For policies with more groups a
recursive procedure for calculating the optimal policies is described.
The results indicate that the improvement beyond 2-group policies is
negligible.

1 Introduction

Airlines and their passengers alike have a mutual interest in minimizing the
time spent at the gate while the passengers are boarding the airplane. For
the airlines and airport infrastructure, reducing the boarding time means
decreased operational costs and increased passenger throughput capacity.
The passengers, in their turn, benefit from reducing the boarding time,
because waiting, either in the line at the gate or aboard the airplane is a
contributing factor to the overall fatigue and dissatisfaction from the trip.

A common airline strategy aimed at decreasing the boarding time is
to employ an announcement policy. The boarding is performed in stages,
by means of announcements such as, “passengers from row number 40 and
above are now welcome to board the airplane; all other passengers, please re-
main seated”. Typically, such policies try to board passengers from the back
of the airplane first announcing groups of rows whose passengers are allowed
to board at the same time. We call such policies back-to-front policies. We
will study such policies using a mathematical model which was introduced
in [6]. The model is based on two dimensional Lorentzian (space-time) ge-
ometry. The model was validated against detailed computer simulations in
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[7]. The validation shows that the estimated boarding time produced by the
model is a very good predictor for ranking boarding policies. We will use
the estimate as our measure of boarding efficiency.

A key parameter of the model is the congestion factor k, the formal defi-
nition of which will be given later in Section 2. Intuitively, 1/k measures the
fraction of passengers that can stand along the aisle. This is best measured
when passengers are preparing to exit the plane. This parameter depends
on the aircraft design, namely, on the inter-row distance and the number
of passengers per seat. modern airplanes have a congestion factor around
k = 4.

Mathematically, the set of all back-to-front boarding policies is para-
metrized by the infinite dimensional simplex ∆∞ consisting of all partitions
0 < r1 < r2 < ... < rm < 1 of the unit interval. For a given policy, m is the
number of announcements, or passenger groups. If the airplane has n rows,
the corresponding announcements first call passengers in rows m through
[rm]n + 1, then rows [rm]n through [rm−1]n and so on. Estimated board-
ing time is normalized so that for random boarding (no policy), estimated
boarding time is 1. In this way, estimated boarding time is a non-negative
continuous function on ∆∞. Since this space is not compact there is a priori
no reason to think that estimated boarding time achieves a minimal value
and in fact it does not. Instead we would like to consider the infimum of the
function and near optimal policies whose estimated boarding time is close
to the infimum. It is not clear a priori that the infimum is positive. Indeed,
in the unrealistic case where k ≤ 1 (all passengers can stand in the aisle
at the same time), boarding policies can be arbitrarily good. A detailed
analysis of the rate in which boarding time approaches 0, over a larger class
of back-to-front boarding policies, when k = 0, (cardboard thin passengers)
was presented in [5].

The situation changes dramatically in the realistic case where k > 1.
Bachmat and Elkin, [8], established an upper bound on the performance
of any announcementback-to-front boarding policy. They showed that the
infimum of the estimated boarding time is at least

√
k − 1√

k + 1−ln 2√
k

. (1)

In particular, with a congestion factor k ≈ 4, a back-to-front policy can
be at most 20% better than random boarding.

Given this bound, two questions remain. First, what is the exact saving
achieved by an optimal m-group boarding policy over random boarding,
and what does a near optimal policy look like? In particular, what is the
maximal number of groups that can be justified by non-negligible additional
savings over a boarding policy with less groups?

In the course of the present work, which can be viewed as the culmina-
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tion of this line of study, the following results on back-to-front policies are
established:

• A combined analytical and numerical solution, describing the optimal
2-group policy, was found for any k > 0. When k = 4, the optimal
2-group policy achieves approximately 8% savings over random board-
ing. The policy first boards roughly 15% of the passengers from the
back of the airplane, followed by all other passengers.

• Near optimal policies with at most 4 passenger groups were found for
various congestion factors.

• Based on the calculated savings as achieved by these near optimal
policies, any further partitioning beyond 2 groups was found to be
impractical.

The calculations are conducted inductively on the number of groups m in a
policy. The computation is similar to dynamic programming, however, each
stage has a continuous family of states and possible transitions. One of the
technical difficulties involved in the analysis, is that the stage transitions are
subject to various combinatorial constraints, thus the optimization problem
has a mixture of continuous and discrete aspects. The key for maintaining
control over the amount of computations is to take advantage of the scaling
structure of the problem.

The remainder of this work is organized as follows. In Section 2 we de-
scribe the mathematical model of airplane boarding which we use. We then
proceed to calculations of an optimal 2-group back-to-front boarding pol-
icy in Section 3, further generalizing this approach to policies with m > 2
groups in Section 4. The m-group case involves a recursive computation
which comes from a dynamical programming approach. Further on in Sec-
tion 5 we present the numerical portion of the obtained results, including
the actual optimal policies found. We end with some conclusions and future
work.

1.1 Related work

Researchers have mostly been studying boarding policies through discrete
event simulations, see [13, 19, 17, 12, 16]. In addition, mathematical pro-
gramming formulations appeared in [17, 18, 9]. The target function, to be
minimized, in these studies is not an estimate of the boarding time, but
rather a related function which counts instances of passengers blocking each
other. Computer software is then applied to the mathematical program-
ming problem in order to find efficient boarding policies. The model of [17]
emphasizes blocking instances which relate to the internal ordering of pas-
sengers within a row leading to policies which board window passengers,
followed by middle passengers and finally aisle passengers. Such policies
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are not within the scope of the present paper, see [7] for further discussion.
The model of [9] essentially corresponds to the case where the congestion
parameter k is zero, a setting which we consider to be much less realistic.
The results in this case markedly differ from those of the various simulation
studies.

It is important to note that all these studies consider policies where all
groups have roughly equal size. The simulation studies have found that in
this case back-to-front policies are not necessarily effective and might, in
fact, be detrimental when compared with random boarding. For example,
[12] shows that, in some cases, disturbances of the back-to-front scenario
caused by passengers boarding outside the time slot assigned for their group
will actually shorten the boarding time. In contrast we show that with
unequal group sizes it is possible to mildly improve upon random boarding
using back-to-front policies.

The study, [13] by Marelli et al. of Boeing Corp. emphasizes the effect
of airplane interior design on boarding time, again using discrete event sim-
ulation methods. The paper describes a commercial simulation product,
and simulation results are only sketched, making it difficult to analyse or
compare to the results of other studies.

We note that the simulation-based models and the mathematical pro-
gramming models offer a black-box approach. Every new potential strategy
has to be evaluated from scratch as a dedicated simulation scenario or pro-
gram, without any advance performance estimates, nor any clue as to how
much a given policy might be further improved. On the other hand, our
approach, which is more analytic, treats large families of possible policies in
a single computation.

The mathematical model that we use describes the boarding process
as a “wave propagation” in a discrete spacetime. As explained in [4], air-
plane boarding shares this description with discrete processes such as the
polynuclear growth process in statistical mechanics, [15], the patience sorting
algorithm for finding the longest increasing subsequence of a permutation,
[1, 11] and the Andrews-Bender-Zhang algorithm for optimal I/O scheduling
in a disk drive [2, 3]. Other connections of this model with combinatorics,
physics, random matrix theory, and other applications are further mapped
out in [10].

2 The mathematical model of airplane boarding

We shall introduce the mathematical model of [6, 7]. We shall only summa-
rize the parts that pertain to back-to-front boarding. Since only back-to-
front boarding policies are the subject of this work, we shall omit the words
“back-to-front” henceforth.

Let
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n be the number of passengers,

R — the number of rows in the airplane,

m — the number of boarding groups, whose queueing times are announced.

k — the congestion factor. The parameter k is the number of passengers
per row, times the average aisle length occupied by a passenger when
boarding, divided by the distance between successive rows in the air-
plane.

The passengers will be represented as points (q, r) in the unit square
[0, 1]2. The q coordinate will represent the position of a given passenger in
the boarding queue, divided by n, while the r coordinate will represent the
assigned row number, divided by R. An m-group boarding policy F will be
represented by a partition of the unit interval 1 = ρ0 > ρ1 > . . . > ρm = 0.
For more compact computations, it will be more convenient to consider
the equivalent partition in the queue coordinate. We shall denote this as
F = (x0, . . . , xm), where xi = 1− ρi. Passengers in the i-th boarding group,
1 ≤ i ≤ m, will have their normalised row numbers satisfy ρi−1 ≥ r ≥ ρi.
To implement such a policy, an airline would first announce the boarding
of the passengers with row numbers R · ρ1 and above, then — R · ρ2 to
R · ρ1, etc. We say that a policy is uniform if all boarding groups are of
equal size, i.e., ρi = i

m . We denote such a policy with m groups by Fm.
The boarding policy F1, has just one group consisting of all passengers, and
therefore represents random boarding with no airline control policy. This is
the yardstick against which we will measure all other policies.

The choice of a policy F leads to a joint probability distribution

pF (q, r) dq dr

on the row and queue location coordinates of passengers. The density func-
tion p(q, r) = p(q, r)F associated with a policy is defined by

p(q, r) =

{
1

ρi−1−ρi
, ρi−1 ≥ r ≥ ρi, 1− ρi−1 ≤ q ≤ 1− ρi, i = 1, . . . ,m;

0, otherwise.

When restricted to a given boarding group, it induces a uniform distribution
since the ordering of passengers within a group is uniformly random. Let

α(q, r) = αF (q, r) =

∫ 1

r
p(q, z) dz.

Let Ψ = ΨF,k be the set of all piecewise differentiable functions ϕ(q)
defined on an interval [q0, q1] ⊂ [0, 1] and with values in [0, 1], such that

ϕ′(q) + k · α(q, ϕ(q)) ≥ 0. (2)

5



Such curves ϕ are legitimate.

For a policy F we define

T (F, k) = max
ϕ∈Ψ

L(ϕ), (3)

where

L(ϕ) = LF,k(ϕ) =

∫ q1

q0

√
p(q, ϕ(q)) · (ϕ′(q) + k · α(q, ϕ(q))) dq.

The functional L(ϕ) on the set of legitimate curves coincides with the
length (proper time) functional on causal curves in a compact domain of
a Lorentzian (space-time) manifold, see [14] for definitions. As such, it has
been studied extensively in the context of Lorentzian geometry, among oth-
ers. In particular, it is known that L(ϕ) attains a finite maximal value on
the set of legitimate curves ψ, see [11, 14, 7]. We call a legitimate curve
which maximizes the functional L over the set of legitimate curves, a max-

imal curve. According to the model which will be used in this paper, the
estimated boarding time of n passengers, with policy F and congestion pa-
rameter k is

T (F, k)
√
n (4)

We therefore consider T (F, k) to be our target function when comparing
policies.

the non-negative value L(ϕ), for a legitimate curve ϕ is the length of the
curve. In the context of Lorentzian geometry, legitimate curves are causal.
The border case legitimate curves, namely, the ones for which L(ϕ) = 0, are
called lightlike. Curves which locally maximize T (F, k) are called geodesics.

For the random policy F1, the length functional takes the form

L(ϕ) =

∫ q1

q0

√
ϕ′ + k(1 − ϕ) dq. (5)

The general solution for the corresponding Euler-Lagrange equation has
the form

ϕ(q) = c1e
2kq + c2e

kq + 1, (6)

and its length is

L(ϕ) =
(
ekq1 − ekq0

)√
c1
k
. (7)

Using these formulas and an examination of boundary conditions one
gets

T (F1, k) =





√
ek−1
k , 0 < k ≤ ln 2;√

k + 1−ln 2√
k
, k ≥ ln 2.

(8)
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Figure 1: An example of a maximal curve for a 2-group policy. Darker shade
indicates higher joint probability density p(q, r).

According to [8], for an airplane model with the congestion factor k ≥ 1,
the savings of any policy F over the random policy F1 is at most

1− T (F, k)

T (F1, k)
≤ 1−

√
k − 1√

k + 1−ln 2√
k

. (9)

3 An optimal 2-group policy

We are looking for a 2-group boarding policy that would be optimal for a
given congestion factor k. A 2-group policy is given by a single parameter
ρ1 = x. We compute the boarding time as a function of x and minimize.
Until further notice, we fix some value of x.

Figure 1 shows the situation for a typical value of x. The maximal curve
ϕ is drawn in black.

We first consider the non-degenerate case when the maximal curve spans
both square cells L1 and L2 as shown in the figure.

In this case, it is shown in [7], that the maximum length curve must
consist of a horizontal line segment between (0, 1 − x) and (q0, 1 − x), for
some 0 ≤ q0 ≤ 1, then a straight-line segment sloping down to (x, r1) with
slope −k, and then the maximal curve in the lower-right square L2, ending
at (1, 1 − x). The three possibilities for the portion of the curve which is
contained in L2 are shown (in a rescaled version) in figure 2. Each segment
of the maximal curve ϕ must either be of the form in equation (6) or be a
boundary component of a cell. The three cases shown in figure 2 correspond
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(0, 0)

(1, 1)

δ∗

q̃1

(I)

(II)

(III)

Figure 2: Three possible cases for the maximal curve in L2.

to the case in which ϕ restricted to L2 has no boundary component, is
tangent to the boundary or contains a boundary component. Possibility
(III), where a boundary component exists, is the one shown in figure 1.

Let L be the length of the maximal curve and let L̃1 and L̃2 denote the
lengths of the portions of the maximal curve in the corresponding cells L1

and L2. Since the density distribution is uniform on each cell we can apply
equations (5-8) after scaling to a unit size square. Let us call L1 and L2 the
lengths of the resulting scaled curves. A simple computation reveals that
scaling the density distribution and coordinates introduces a square root
factor, so L̃1 =

√
xL1 and similarly L̃2 =

√
1− xL2, leading to

L =
√
xL1 +

√
1− xL2 (10)

since the maximal curve in L1 is a horizontal line segment we have by (3)

L1 =
√
k · q0

x
(11)

Next, we compute r1 as a function of (q0, x). As
a
b = k; a = 1− x− r1;

b = x− q0, we have

r1 = 1− x− a = 1− x− kb = 1− x− k(x− q0) = 1− (k + 1)x+ kq0. (12)

Now let us compute L2. Consider the second cell scaled to unit size, the
maximal curve enters the square at

δ =
r1

1− x
(13)
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By equation 12, δ is constrained by the inequality δ ∈ (1−x−xk
1−x , 1) ∩ (0, 1),

i.e.,

1 > δ >

{
1−x−xk

1−x , 0 < x < 1
k+1 ;

0, 1
k+1 ≤ x < 1.

(14)

We would like to express L1 via x and δ. (See Figure 1.)

δ(1 − x) = r1 = 1− (k + 1)x+ kq0, (15)

kq0 = δ(1 − x) + (k + 1)x− 1. (16)

Therefore

q0 =
1

k
(δ(1 − x) + (k + 1)x− 1) . (17)

Substituting (17) into (11) we obtain

L1 =
√
k · 1

xk
(δ(1− x) + (k + 1)x− 1) =

δ(1 − x) + (k + 1)x− 1

x
√
k

. (18)

We compute the value of δ for case (II) of tangency. We do it by applying
to the general solution (6) the tangency condition





r(0) = δ = c1 + c2 + 1,

r(q̃1) = 0 = c1e
2kq̃1 + c2e

kq̃1 + 1,

r′(q̃1) = 0 = 2kc1e
2kq̃1 + kc2e

kq̃1 ,
r(1) = 1 = c1e

2k1 + c2e
k1 + 1.

We introduce the notation X ≡ ekx, Q = ekq, Q0 = ekq0 , etc.
Under this notation,

r′ =
dr

dq
= 2kc1e

2kq + kc2e
kq = 2kc1Q

2 + kc2Q.

The tangency condition r′ = 0 then implies

Q = − c2
2c1

, (19)

i.e., the solution is tangent to the axis q = 0 at

q̃1 ≡ q =
1

k
ln

(
− c2
2c1

)
. (20)

Also, from (3),

− c2
2c1

=
ek

2
,

and thus

c1 =
1− δ

ek − 1
, (21)

c2 =
−ek
ek − 1

(1− δ). (22)

9



So

q̃1 =
1

k
ln

(
ek

2

)
=

1

k
(ln ek − ln 2) =

1

k
(k − ln 2) = 1− ln 2

k
.

Plugging c1, c2, and q̃1 into (3), we have

r(q̃1) = 0 = c1

(
ek

2

)2

+ c2

(
ek

2

)
+ 1 =

=
1− δ

ek − 1
· e

k2

4
− ek

ek − 1
(1− δ)

ek

2
+ 1 =

= (1− δ) · e2k

ek − 1

(
1

4
− 1

2

)
+ 1

and

(1− δ) · e2k

4(ek − 1)
= 1,

which gives

δ∗ ≡ δ = 1− 4(ek − 1)

e2k
=

=
1

e2k
(e2k − 4ek + 4) =

1

e2k
(ek − 2)2 =

= (1− 2e−k)2.

Thus, for δ ≥ δ∗, by equation (7) and (21)

L2 =
(
ek − 1

)√
c1
k

=
(
ek − 1

)√
1− δ

ek − 1
· 1
k
=

√
(1− δ)(ek − 1)

k
. (23)

The case of equality δ = δ∗, is depicted by case (I) of Figure 2, while case
(II) describes the situation when δ > δ∗.

In the remaining case (see Figure 2, case (III)) of δ < δ∗ we have by [7]

L2 =

√
1

k

(√
δ + ln

(
1−

√
δ
)
+ k + 1− ln 2

)
. (24)

We shall denote by L2(δ) the maximal length of a legitimate curve in
the unit square, constrained to pass through the boundary point (0, δ). The
length L2(δ) was computed, in equations (23) and (24), to be

L2(δ) =

√
1

k
·
{√

(1− δ)(ek − 1), δ ≥ δ∗;√
δ + ln

(
1−

√
δ
)
+ k + 1− ln 2, δ < δ∗.

(25)
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Combining (10), (18), (25) and rescaling, we get a formula for the length
of the maximal curve, ϕ conditioned to pass through the point (x, δ(1−x)).

L(δ) =
√
x · δ(1− x) + (k + 1)x− 1

x
√
k

+
√
1− x · L2(δ) =

=
δ(1 − x) + (k + 1)x− 1√

kx
+

+

√
1− x

k
·
{√

(1− δ)(ek − 1), δ ≥ δ∗;√
δ + ln

(
1−

√
δ
)
+ k + 1− ln 2, δ < δ∗.

(26)

Given x ∈ (0, 1), we seek to maximize L as a function of δ. For this, we
need to explore the derivative

dL

dδ
=

1− x√
kx

+

√
1− x

k
·




−
√

ek−1

2
√
1−δ

, δ ≥ δ∗;
1

2
√
δ
− 1

2(1−
√
δ)

√
δ
, δ < δ∗.

As

1

2
√
δ
− 1

2
(
1−

√
δ
)√

δ
=

1

2
√
δ

(
1− 1

1−
√
δ

)
=

=
1

2
√
δ
· 1−

√
δ − 1

1−
√
δ

=
−1

2
(
1−

√
δ
) ,

thus we obtain

dL

dδ
=

1− x√
kx

− 1

2
·
√

1− x

k
·





√
ek−1√
1−δ

, δ ≥ δ∗;
1

1−
√
δ
, δ < δ∗.

(27)

For δ ≥ δ∗ we get

dL

dδ
= 0 ⇐⇒

⇐⇒ 1√
1− δ

=
1− x√
kx

· 2 ·
√

k

(1− x)(ek − 1)
= 2

√
1− x

x(ek − 1)
⇐⇒

⇐⇒ 1− δ =
x(ek − 1)

4(1 − x)
⇐⇒

⇐⇒ δ =
4− 3x− ekx

4(1 − x)
, (28)

We now check the condition δ ≥ δ∗ for the critical value. Assume

4− 3x− ekx

4(1 − x)
≥ δ∗
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as x < 1

4− 3x− ekx ≥ 4(1− x)δ∗

4xδ∗ − 3x− ekx ≥ 4δ∗ − 4

x(4δ∗ − 3− ek) ≥ 4(δ∗ − 1)

Compare the l.h.s. to 0:

4δ∗ − 3− ek = 4(1− 2e−k)2 − 3− ek = 4(1 − 4e−k + 4e−2k)− 3− ek =

= 1− 16e−k + 16e−2k − ek ≥ 0 ⇐⇒
∗e2k⇐⇒ −e3k + e2k − 16ek + 16 ≥ 0 (29)

Letting t ≡ ek (which is strictly positive), we may transform (29) into an
equivalent form

−t3 + t2 − 16t+ 16 = (t− 1)(−t2 − 16) = −(t− 1)(t2 + 16) ≥ 0

which implies

ek ≤ 1

and

k ≤ 0

which never holds. we conclude that there is no extremal value of L in the
open interval (δ∗, 1). The second derivative for δ ≥ δ∗ is

d2L

dδ2
= −1

2
·
√

(1− x)(ek − 1)

k
·
(

1√
1− δ

)′
=

= −1

2
·
√

(1− x)(ek − 1)

k
· −1

2 (1− δ)3/2
· (−1) < 0

so the function is decreasing and hence its maximal value is at δ∗. We
conclude that the maximal value of L is obtained when δ ≤ δ∗.
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when δ < δ∗, let δcrit denote the value for which dL
dδ = 0.

dL

dδ
= 0 ⇐⇒

⇐⇒ 1− x√
x

=
1

2
(
1−

√
δ
) ·

√
1− x ⇐⇒

⇐⇒ 2
(
1−

√
δ
)
=

√
x

1− x
⇐⇒

⇐⇒
√
δ = 1− 1

2
·
√

x

1− x
⇐⇒

⇐⇒ δ = 1−
√

x

1− x
+

x

4(1 − x)
⇐⇒

⇐⇒ δ =
4(1− x)− 4

√
x(1− x) + x

4(1− x)
⇐⇒

⇐⇒ δcrit =
4− 3x− 4

√
x− x2

4(1 − x)
.

also

d2L

dδ2
= −1

2
·
√

1− x

k
·
(

1

1−
√
δ

)′
= −1

2
·
√

1− x

k
· −1
(
1−

√
δ
)2 · −1

2
√
δ
< 0.

We need to check the admisiblity conditions for the critical point, namely

δcrit < δ∗ and δcrit > max
{
0, 1−x−xk

1−x

}
. We consider the first constraint

4− 3x− 4
√
x− x2

4(1 − x)
< δ∗,

4− 3x− 4
√
x− x2

(0<x<1)
< 4(1− x)δ∗,

4− 3x+ 4(x− 1)δ∗︸ ︷︷ ︸
a

< 4
√
x− x2︸ ︷︷ ︸
b

.

Since for any 0 < x, δ∗ < 1, both a, b > 0, the last inequality holds iff
a2 < b2 ⇐⇒ x ∈ (x1, x2) ∩ (0, 1), where x1 ≤ x2 are the roots of a2 = b2.
It turns out that both the roots

x1,2 = 1− 1

5∓ 8
√
δ∗ + 4δ∗

fall within (0, 1) for any δ∗ ∈ (0, 1), so δcrit is an admissible root of the
derivative whenever, δ∗ = δ∗(k) and x satisfy

1− 1

5− 8
√
δ∗ + 4δ∗

< x < 1− 1

5 + 8
√
δ∗ + 4δ∗

. (30)
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Regarding the other constraint, δcrit > max
{
0, 1−x−xk

1−x

}
, it further re-

mains to check (14). For x ≥ 1
k+1 it reduces to the trivial δcrit > 0.

Now assume x < 1
k+1 . One needs to check that

δcrit >
1− x− xk

1− x
,

and in case it holds, δcrit is admissible; otherwise, the boundary value at
L(1−x−xk

1−x ) should be considered instead of L(δcrit).

The above inequality holds if (and only if)

16

17 + 8k + 16k2
< x. (31)

Summarizing, we have the following cases. We let δ∗ = (1 − 2ek)2, δcrit =
4−3x−4

√
x−x2

4(1−x) and δmin = 1−(k+1)x
1−x If δ∗ > δcrit > δmin then the maximal

value is L(δcrit). If δ∗ < δmin then the maximal value is L(δmin). Finally,
if δcrit > δ∗ > δmin then the maximal value is L(δ∗). Equations (30) and
(31) provide criteria for the different cases. In addition to the maximal
value of L(δ) which we have just analyzed, we need to consider two other
posibilities, that the maximal curve is wholly contained in L1 or that it is
wholly contained in L2. The first possibility is relevant when x > 1/2 and
the other when x ≤ 1/2. In the first case the maximal curve within the first
square will be the maximal curve for F1, with its length determined by (8)
and scaling

L1′ =
√
x · T (F1, k).

We note that this is simply the estimated boarding time for random boarding
with xn passengers (passengers of the first group) instead of n passengers.
Likewise, if the maximal curve only spans the second group, its length will
be

L2′ =
√
1− x · T (F1, k)

The maximal length curve L(x) will be given by the maximum of L(δ), L1′

and L2′ . The quantity L(x) is our estimated boarding time for the 2 group
policy whose first group has xn passengers from the back rows. Our goal is
to minimize L(x) as a function of x.

3.1 The case of k = 4

We show how the calculations of the previous section can be applied specifi-
cally to the case k = 4 which we consider to be realistic. For this case, using
the upper bound (9), we conclude that the possible boarding time savings
given by any policy cannot exceed 20%.

By (8), the random boarding time is T (F1, 4) = 2.5− ln 2
2 ≈ 2.153426409
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To calculate L(x) we need to consider max {L (δcrit), L1′ , L2′)} as long
as (30) and (31) simultaneously hold, i.e., when x is within

(∼0.005338746︸ ︷︷ ︸
x1

,∼0.939095941︸ ︷︷ ︸
x2

) ∩ (
16

305
, 1) = (

16

305
, x2). (32)

Within this interval we wish to minimizeMax(L(δcrit), L1′ , L2′ with respect
to x.

Numerical search by x for the meeting point of L(δcrit) and L2′ in the
interval (32) shows that the minimum of max{L(δ2), L1′ , L2′} is achieved at
x ≈ 0.148531234 where L(δcrit) = L2′ . The mutual value is L =

√
1− x ·

T (F1, 4) ≈ 1.987075623. (Note that this already beats F1).

The interval (0, 16
305) can be excluded immediately from the consideration

since
√
1− x and consequently L2′ is a decreasing function.

Numerical search for the other meeting point where the maximal value
of L(δ) equals L1′ in the regime, of x ≥ x2 discovers another, somewhat
larger, local minimum of max{L(δ∗), L1′ , L2′} at x ≈ 0.975885874, where
L(δ∗) =

√
x · T (F1, 4) ≈ 2.127303971.

Thus, when k = 4, the optimal 2-group policy is achieved at

x ≈ 0.148531234,

which saves

1− L2′

T (F1, 4)
≈ 0.077249348 ≈ 8%

of the estimated boarding time in comparison with the random (no) boarding
policy.

While these explicit calculations were done for the case k = 4, they can
also be implemented for any other value of k.

4 An optimal m-group policy

We would like to compute the optimal m-group policy and to measure its
efficiency relatively to T (F1, k). The approach is similar to dynamic pro-
gramming. We will follow a similar procedure to what we have done with 2
groups. The computation is done inductively on m. We will need an auxil-

lary quantity which we denote by L
(m)
1 (z) the length of the maximal curve

in an m-cell partition of the unit square constrained to end at the point

(z, 0). We will also compute L
(m)
1 (z) inductively. To begin the induction we

know from (11) that

L
(1)
1 (z) =

√
k · z. (33)

In order to proceed with the induction we need to compute the maximal
length of a curve in the unit square which begins at the point (0, r) and
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ends at (q, 0). We call this the corner length and denote it by LC (r, q).
The length is computed in [7]. We need to distinguish two cases. Let
q∗ = 1

k ln(
1

1−
√
r
). The maximal curve between (0, δ0) and (q∗, 0) is tangent

to the bottom edge r = 0 at the endpoint (q∗, 0). If q ≥ q∗, the maximal
curve is obtained by concatenating the maximal curve between (0, r) and
(q∗, 0) with the bottom edge segment between (q∗, 0) and q, 0). The length
of this curve is

√
r
k + (q − q∗)

√
k. If q < q∗ the maximal curve will be given

by a solution to the Euler-Lagrange equation between the endpoints.
Given r and q and letting Q = ekq we find the corresponding c1, c2:

c1 = r − 1− c2; (34)

0 = (r − 1− c2)Q
2 + c2Q+ 1 = (r − 1)Q2 + c2Q(1−Q) + 1, (35)

thus

c2 =
(1− r)Q2 − 1

Q(1−Q)
(36)

c1 =
(r − 1)Q(1−Q) + (r − 1)Q2 + 1

Q(1−Q)
=

(r − 1)Q+ 1

Q(1−Q)
(37)

Given r and q and thus c1 and c2 from (37) and (36), we need to check when
the corresponding curve (6) is legitimate. Given r we find the minimal
value of q for which the solution is a legitimate curve. For the minimal q
the solution ϕ(q) will be light-like and will have zero length. The functional
L(ϕ), is in this case expressed by (5). Thus, we are looking for ϕ s.t.

ϕ′ + k(1− ϕ) = 0,

which has the general solution

ϕ(q) = 1 + ekqc1. (38)

Given r we get the initial condition ϕ(0) = r, so we get the solution

ϕ(q) = 1 + ekq(r − 1).

which meets the axis r = 0 at q which satisfies

1 + ekq(r − 1) = 0 ⇐⇒ ekq(r − 1) = −1.

Q = 1
1−r , so the minimal value is

q∗ = q∗(r) =
1

k
ln

(
1

1− r

)
.

We can also invert the relation. For a given q, the minimal r for which
there is a legitimate curve from (0, r) to (q, 0) is given by

r∗ = r∗(q) = 1− e−kq. (39)
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Putting the two cases together and using equation (7) we get

LC (r, q) =





√
(Q−1)((1−r)Q−1)

kQ , q∗ ≤ q < q∗;
(Q∗−1)(1−

√
r)√

k
+ (q − q∗)

√
k, q > q∗;

=





√
(Q−1)((1−r)Q−1)

kQ , q∗ ≤ q < q∗;
kq+

√
r+ln (1−

√
r)√

k
, q > q∗.

(40)

We can now use the corner length to compute inductively L
(m)
1 . We shall

mostly reuse the construction from section 3. However, instead of L1 (see
Figure 1), computed over a non-partitioned group of the back rows, we shall

use L
(m−1)
1 . For z ≥ 1

k+1 , we are led to the inductive formula

L
(m)
1 (z) = min

0<x<z
max

{√
1− x · L(1)

1

(
z − x

1− x

)
,

max
δ

{√
x · L(m−1)

1

(
δ(1 − x) + (k + 1)x− 1

kx

)
+

+
√
1− x · LC

(
δ,
z − x

1− x

)}}

where maxδ is, by (14), taken over max
{
0, 1−x−xk

1−x

}
< δ; the upper limit

is now further restricted by δ < 1− e−k· z−x

1−x according to (39).
For z < 1

k+1 we also need to consider the possibity that x > z and that

only the upper-leftm−1 cells, will contribute, thus, if z < 1
k+1 , then L

(m)
1 (z)

is defined as the minimum of the above and

min
z<x<1−kz

{√
x · L(m−1)

1

((
z − 1− x

k

)
/x

)}
.

Given L
(
1m)(z) we can finally compute Tm, the optimal boarding time for

an m group back-to-front policy. We compute Tm recursively using L
(m−1)
1

and L2(δ). We consider the first m − 1 groups and the last group. The
analysis of the contribution of the last cell is the same as the analysis of
the contribution of the second (last) cell in the two group case. The first

cell in the 2-group case is replaced by L
(m−1)
1 (z) for the appropriate z which

matches δ and x. specifically, following the analysis of the 2-group case we
have the recursive formula

L(m)(δ) =
√
x · L(m−1)

1

(
δ(1 − x) + (k + 1)x− 1

kx

)
+
√
1− x · L2(δ) (41)

for a maximal curve spanning both the first m− 1 cells and the last cell.
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k T2/T1 x

4/3 0.770 0.40700
2.00 0.840 0.29436
3.00 0.894 0.20152
4.00 0.923 0.14853

Table 1: The boarding times under the optimal two-group policy, and the
optimal partitioning point x for various congestion factors k.

Combining with the cases where not all cells are used we see that the
optimal time is given by

Tm = min
0<x<1

max

{√
x · Tm−1,

√
1− x · T1,max

δ
L(m)

}
, (42)

where the maxδ is, by (14), taken over the interval

max

{
0,

1− x− xk

1− x

}
< δ < 1.

Conjecture 1. For k ≥ 4, the curve maxδ L
(m) will be a piecewise con-

cave function of x; and therefore, computing the intersections of L(m) with√
xTm−1 and with

√
1− xT1 and taking the smaller value will produce the

optimum.

5 Results

In Table 1 we give a comparison of the boarding times between the optimal
2-group policy F ∗

2 , and random boarding F1, for various congestion factors.
The times for F ∗

2 were computed using the method described in Section 3.
They were normalised according to F ∗

1 as given by (8).
One can see that the optimal policy achieves visible savings over the

random boarding with congestion as high as k = 4. The last column in
the table shows the optimal partitioning point x defining the optimal pol-
icy F ∗

2 = (0, x, 1). Based on the table results we would recommend, that,
roughly, 15–20 percent of the passengers from the back rows board first,
followed by the other passengers. Such a strategy seems robust in the face
of possible changes in the value of k.

Table 2 summarizes the results of looking for the optimal m-class policy.
Again, the last columns list the inner points ρm−1, . . . , ρ1 of the partition
comprising F ∗

m. This time, we relied on the recursion described in Section 4
to obtain Tm.

From this table we conclude that, for k = 4, further partitioning beyond
m = 2 is impractical, while for more spacious airplanes with k = 2, a 3-class
policy might still be relevant.
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k m Tm/T1 F ∗
m

2 2 0.840 0.29436
2 3 0.792 0.11030 0.37226
2 4 0.774 0.04477 0.15009 0.40041

4 2 0.923 0.14853
4 3 0.911 0.02526 0.17004
4 4 0.909 0.00439 0.02953 0.17368

Table 2: The boarding times under the optimal m-group policies, and the
inner partitioning points ρm−1, . . . , ρ1 of the optimal policy for m = 2, 3, 4;
the congestion factors are k = 2, 4.

6 Conclusions and future work

In this work we have analyzed in detail back-to-front airplane boarding
policies. We have found near optimal boarding policies within this class,
depending upon the congestion parameter k. We have shown that 2 passen-
ger groups suffice to achieve near optimal results and that the first group
of passengers chould consist of between 15 and 20 percent of all passengers.
For congestion values close to k = 4 one can expect a nearly 8 percent im-
provement upon random boarding, with increasing gains for lower values
of k. Our results complement the upper bounds derived in [8].

It is natural to try and extend this work to the setting of boarding policies
which are not back-to-front. For non-back-to-front policies the iterative
formulae will be significantly more complex and will require some bound on
m the number of groups in the policy.
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