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ABSTRACT
We consider the performance of Task Assignment based on
Guessing Size (TAGS), a multi-host job assignment policy.
This policy, which was introduced by M. Harchol-Balter, was
designed to work in a non-preemptive setting with unknown
job sizes. The policy which is not work preserving. It has
been studied numerically, especially in the important case
of Bounded Pareto job size distributions. In this paper we
provide the first mathematical analysis of TAGS. We com-
pute exact stability conditions for the policy. The stability
condition is given in terms of the accuracy of Markov’s in-
equality as an estimator for the first moment of the job size
distribution. A consequence of our analysis is that for any
bounded job size distribution, TAGS cannot handle a load
which is more than logarithmic in the ratio of longest to
shortest job. In the case of Bounded Pareto job size distri-
butions we show that certain approximation equations for
average waiting time are conservative and relatively accu-
rate. We then compute near optimal cutoffs in this setting.
We show that at low loads the penalty for not knowing job
sizes is bounded by a factor of 2. We introduce a variant of
TAGS which we call T+F which is much more stable than
the original version. When using T+F, the penalty for not
knowing job sizes is reasonable for all but the highest loads.
Finally, we compare the performance of TAGS and FIFO us-
ing actual simulations rather than approximation formulas
and explain when each one is preferable.

Keywords: Queueing theory, Multiple host task assign-
ment, Non-preemptive policies, Heavy-tailed distributions.

1. INTRODUCTION
Many installations such as web server farms and comput-

ing centers have a multitude of hosts which can serve any in-
coming request. There has been a growing body of research
regarding scheduling policies for such multi-host systems. In
this paper we will examine multi-server systems that do not
allow preemption and individual job sizes are not known.
This situation occurs in super computing centers, [8]. One
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of the classical assignment methods for multi-server systems
is the FIFO policy. In this policy all incoming jobs are held
in a single queue and are released, in the order of arrival,
whenever a server becomes available. It is clear from the
description that the policy does not require knowledge of
job sizes. Recent empirical data has suggested that many
workloads which are typical of networked systems are heavy-
tailed, [2, 4, 14]. By heavy-tailed we will mean distributions
for which the probability of a job of size s or more, de-
creases polynomially rather than exponentially fast with s,
and whose variance is large. When the job size distribution
is heavy-tailed there is a substantial number of very long
jobs and it may happen that short jobs will have to wait
behind the long jobs until they complete, leading to large
waiting times.

These considerations led to the design of some variance
reducing assignment policies. One of the basic examples of
a variance reducing policy is the express line in the super-
market. In the express line we assign a server to handle
only small jobs up to a certain size, say up to 10 items. In
some supermarkets, there are two express lines, for example,
one handling up to 10 items and the other handling 11-20
items. Taken to the extreme we can imagine all the lanes in
the supermarket being assigned to handle customers with a
certain range of items.

Precisely this idea was introduced in the context of com-
puter servers in [11] as a method of reducing variance in
multi-server systems which experience heavy-tailed job size
distributions. The resulting family of policies is called Size
Interval Task Assignment (SITA) policies. The policies in
this family are parametrized by the intervals (ranges) of job
sizes that each server services. The endpoints of the ranges
are called cutoffs since they separate the jobs into different
servers. The optimal choice of cutoffs depends on the job
size distribution, the load and the target function that we
wish to minimize.

A SITA policy requires knowledge of job sizes. A vari-
ant that works in the case of unknown job sizes was intro-
duced and studied numerically in [8]. The variant which was
named Task Assignment based on Guessing Size (TAGS), op-
erates as follows. All jobs are sent to the first server which
processes them up to some given time s1. If they do not
complete by then, they are stopped and are sent to the next
server to start from scratch. The second server will work on
the job up to some time s2 > s1, if a job does not complete
by then, it is sent to the next server and so on. If there are h
servers, the policy is again parametrized by the h−1 cutoffs
s1 < s2 < . . . < sh−1.



While the SITA and TAGS policies seem similar there are
some important differences. For example, TAGS unlike SITA

is not work preserving, it kills jobs and restarts them from
scratch. There was no study of the load handling capabilities
of TAGS, when is it stable? and similar questions. Consid-
ering low loads, where stability is not an issue, how much
performance do we lose simply by not knowing job sizes?

The benchmark job size distribution in many of the stud-
ies of TAGS or SITA has either been empirical or the family
of Bounded Pareto distributions with parameter 0 < α < 2.
These distributions are heavy-tailed and in their unbounded
version have infinite variance. The case of interest is when
the ratio of the largest job to smallest job is very large, say
six orders of magnitude, leading to very large variance. As
noted above, these distributions have been shown in several
cases to model web related job sizes.

The SITA studies, [12] and in greater detail [24, 13, 1] have
shown that with such job size distributions, the comparison
between SITA and FIFO depends on the value of the parame-
ter α. roughly, FIFO having the upper hand for values α > 1
and SITA when α < 1. We note that these analytical com-
parisons are asymptotic, when the size of the largest job
tends to infinity, no actual comparison has been made for
reasobable valuess of the largest job.

The TAGS policy was compared to FIFO numerically in [8],
however, these comparisons did not involve simulations of
either policy, but rather numerical evaluations of approx-
imate formulas for the waiting time. The approximation
formula which was used to assess the performance of FIFO
was unfortunately very inaccurate.

In the evaluation of the TAGS policy the approximate wait-
ing time formulas assumed an exponential inter-arrival dis-
tribution at all servers. The formulas are not exact, since all
but the first server experience non exponential inter-arrival
times. While the approximation seems very reasonable it
was never verified that it actually produces results which
are close to the real values.

The present paper resolves many of the question marks
regarding the performance and stability of TAGS. Our analy-
sis of stability conditions holds for all job size distributions
and is rather complete. We also provide the first analytical
examination of TAGS systems with bounded Pareto job size
distributions and an accurate comparison to FIFO in this set-
ting, showing rather precisely when each of the scheduling
algorithms prevails. We summarize our results.

In section 2, we review some background material.
In section 3 we study stability issues. The results do not

assume Poisson arrivals. We provide a very simple algorithm
to decide if there exists a stable TAGS policy on h hosts, given
a particular job size distribution X and load ρ. We provide
a general formula in terms of X, for the largest (critical)
load ρcrit, for which there exists a stable TAGS policy on
any number of hosts. In other words, if the system experi-
ences a load above ρcrit, then, regardless of the number of
hosts, there will not exist cutoffs that will make the TAGS

policy stable. If the system experiences a load below ρcrit
then with sufficiently many hosts, we can find cutoffs that
will stabilize the TAGS policy. We compute the critical load
explicitly for several families of distributions, including the
Bounded Pareto distributions. The critical load ρcrit has an
interesting probabilistic interpretation. Markov’s inequality
states that for any s, E(X) ≥ s(1 − X(s)). We can think
of the inequality as providing an estimate for E(X) and we

consider the value s̃ which provides the smallest error, i.e.,
s̃(1−X(s̃)) is maximal. Measuring the error multiplicatively,
we consider E(X)/s̃(1 −X(s̃)). This is precisely ρcrit. We
also show that for any distribution X such that the ratio be-
tween largest and smallest job is at most p, ρcrit ≤ ln(p)+1,
which means that the Markov inequality (for the right value
of s) is surprisingly accurate. When X is Bounded Pareto
with parameter α = 1, this bound is nearly attained. Over-
all, the results show that TAGS does not handle load well.

From section 4 onward we assume Poisson arrivals and an
i.i.d Bounded Pareto job size distribution with a large ratio
between the largest to smallest job.

In section 4 we validate via simulations the accuracy of
the approximate formulas for average waiting time and show
that they are conservative, namely, they overestimate wait-
ing times.

In section 5, we analyze the approximation formulas as-
suming that they are conservative, as we have verified empir-
ically in section 4. Under this assumption we give explicit
formulas for near optimal cutoffs for the TAGS policy and
compute the resulting performance. We show that at low
loads, the penalty for not knowing the job size, i.e., the ra-
tio in average waiting time between SITA and TAGS is at most
2. This bound holds regardless of the number of hosts or the
parameter α. This result shows that the main problem with
TAGS is load handling.

Given that TAGS does not handle load well, there is a fast
growing performance gap between SITA and TAGS as the load
increases. To overcome this difficulty, we introduce in sec-
tion 5 a new policy, which does not use job size, which we
call T+F. The new policy combines TAGS and FIFO to produce
a much stabler version of TAGS, whose performance is much
closer to that of SITA at all loads.

In section 6, we provide a simulation based comparison
between the performance of TAGS and FIFO. The simulation
results fit well the analysis of TAGS. In fact, the major stum-
bling block for a complete analysis of the simulation results
is our relatively poor understanding of the performance of
FIFO.

In section 7, we conclude the paper and discuss possible
future work and open problems.

1.1 Related work
The TAGS policy was first introduced and studied in [8].

The performance was compared to that of FIFO on a work-
load with Poisson arrivals and Bounded Pareto job size dis-
tribution. The policies were not simulated. Instead, approx-
imation equations were used to estimate the performance for
both TAGS and FIFO. The systems studied consisted mainly
of 2 hosts, sometimes 4. The chosen target function was
mostly average slowdown, but in some cases average wait-
ing time was considered as well.

In [22] the authors suggest a generalization of TAGS in
which jobs are initially sent to different hosts with given
probabilities and then proceed as in TAGS. In [3] the same
generalization is considered under the additional favorable
assumption that jobs need not restart when passing from
one host to another, but rather resume service. This new as-
sumption completely changes the stability properties of the
algorithm. This is very different from the original TAGS set-
ting where non-preemptivness is an important assumption.
In fact, the algorithm is constructed with this limitation in
mind. This setting was also explored in [6] in a heavy traffic



regime.
The problem of finding good cutoffs for TAGS was explored

numerically in [23], which suggested the use of formal alge-
bra software.

There have been numerous studies of SITA, both numeri-
cal [11], [9], [21, 15, 26, 27, 28], and analytical [7, 12, 13, 24,
1]. However, not all analytical techniques and results carry
over to the study of TAGS and the numerics can be very dif-
ferent. In addition, some issues such as stability are unique
to TAGS.In fact, mapping the similarities and differences be-
tween SITA and TAGS is one of the main goals of the present
paper.

The performance characteristics of the FIFO policy which
is compared to TAGS in section 6 have been analyzed in a
series of papers [17, 16, 18, 19, 20, 25].

2. PRELIMINARIES

2.1 The TAGS assignment policy
In this paper we consider multi-host assignment policies

with no preemption, in the case where job sizes are not
known. We will assume though, that the job size distri-
bution is known or can be deduced by collecting statistics.
The TAGS policy can be described as follows:
There are hosts numbered 1, . . . , h. In addition, there are
cutoff values s1 < s2 < . . . < sh−1. All incoming jobs are
sent to host 1. At each host, jobs are serviced in first come,
first served (FCFS) order. If a job is being processed by the
i’th server and completes before si time units it leaves the
system. If not, it is stopped and put at the end of the queue
of the next host, where it starts from scratch. Jobs at the
last host always run to completion.

The TAGS policy can be viewed as an extension to the case
of unknown job sizes of a policy called SITA which requires
the knowledge of job size. In SITA we also use cutoffs s1 <
. . . , sh−1. We also set s0 = 0 and sh = ∞. Since we know
job sizes, an incoming job of size s is assigned upon arrival
to the host i for which si−1 ≤ s < si. In the setting of
unknown job sizes we do not know which host will satisfy
the cutoff relations so we try them one by one.

Later on we will compare TAGS to another non preemptive
policy, which does not require knowledge of job sizes, the
FIFO policy, where each job is sent to the next available
host.

In order to consider the TAGS scheduling policy in a queue-
ing theoretic setting, we consider some further system pa-
rameters and conditions. A TAGS system consists of the fol-
lowing data and assumptions

• h - The number of hosts. Unless stated otherwise, we
assume that all hosts are identical.

• Xi - A sequence of i.i.d job size random variables. We
denote by X(s) = Prob(Xi < s) the common job size
probability distribution. The job size is with respect
to the computing power of a single host.

• ρ - The incoming load. We assume that the inter-
arrival times are given by an i.i.d sequence of random
variables with common distribution Y . We let λ =
1/E(Y ) be the arrival rate and then ρ = λE(X). Since
job size is with respect to a single host, a single host
can handle a load ρ < 1.

• A set of cutoffs, 1 < s1 < s2 < . . . < sh−1 < p for the
TAGS policy.

2.2 Pareto and Bounded Pareto distributions
Let α > 0. A distribution X is said to be Pareto if its

density f has the form

f(s) = cs−α−1 (1)

in the range s ≥ 1. A distribution X is said to be Bounded
Pareto if its density has the above form, but is restricted
to a bounded domain 1 ≤ s ≤ p. The Pareto distribution
corresponds in this setting to the choice p = ∞. The con-
stant, c > 0, is a normalizing constant which ensures that∫ p

1
f(s) ds = 1. A simple computation shows that the nor-

malizing constant is

c =
α

1− ( 1
p
)α

(2)

We denote the Bounded Pareto distribution by Bp(α) and
the corresponding unbounded Pareto distribution by B(α).
Thinking of a bounded distribution as describing job size,
we consider the ratio of the largest to smallest jobs. We
will call this ratio, the range of the job size distribution.
Formally, we let a denote the infimum of the set of values
s for which X(s) > 0 and by b the supremum of the set of
values for which X(s) < 1. The interval [a, b] is the minimal
interval which supports the distribution and the ratio b/a is
the range. The range of Bp(α) is obviously p.

More generally we could have considered bounded distri-
butions whose minimal value is different from 1. However,
by changing the time unit of measurement, we can always
normalize a job size distribution, bounded away from 0, to
have a smallest job of size 1. Changing the time unit pre-
serves the range. Of particular interest to us will be the
case where 0 < α < 2, for which the Pareto distribution has
infinite variance. We think of the corresponding Bounded
Pareto distributions with large range as providing a natural
model for high variance job size distributions.

2.3 The objective function
Let X denote the job size random variable and let W

denote the difference between the time spent in the system
and the job size. We call W the waiting time. The objective
function that we consider is a normalized version of average
waiting time

E(N) = E(W )/E(X)

where E(W ) is the average waiting time and E(X) is the
average job size. The quantity E(N) is preferable to E(W )
since it is invariant under time unit changes.

3. BOUNDS ON THE LOAD OF A TAGS
SYSTEM

We consider a TAGS system with h identical hosts. let X(s)
denote the job size distribution function associated with the
job size random variable X, namely X(s) is the probability
that a job takes less than s time units to complete. For
simplicity we will assume as before that the smallest job
has size 1 and the largest has size p. We let λ be the rate of
job requests to the TAGS system and ρ = λE(X) be the total
load on the system. We note that TAGS can be described as a
multi-class forward feeding network. The classes correspond



to the jobs which terminate service at host i. The network
is forward feeding in the sense that jobs never reenter the
same server. For such systems it is known, [5], that stability
is equivalent to the condition that each server in the network
is sub-critical. The following elementary lemma provides a
tight bound on the ability of a TAGS system with any number
of hosts to stably support a load ρ.

Theorem 3.1. Let X(s) be any bounded, job size distri-
bution function with job sizes in the range [1, p]. Let

M(X) = sup
s
s(1−X(s))

where sup denotes the supremum. Given a load ρ, there ex-
ists a number h and cutoffs s1, ..., sh−1 such that the TAGS

system with h hosts and cutoffs si can stably support a work-
load with job size distribution X if and only if

ρ < E(X)/M(X)

Proof: We begin with the second statement. Assume
ρ > E(X)/M(X) and choose an s such that

ρ > E(X)/(s(1−X(s)))

Let si−1 ≤ s ≤ si be the range of job sizes whose service
completes at host i. All jobs of size at least s will pass
through the i’th host and the host will spend at least s time
units on each such job. The rate of jobs of size at least s is
λ(1−X(s)), therefore the system must satisfy

λs(1−X(s)) ≤ 1

in order to be stable. By definition ρ = λE(X) so we get

ρs(1−X(s))/E(X) < 1

a contradiction.
Conversely, assume that ρ < E(X)/M(X) or equivalently

ρM(X)/E(X) < 1. All jobs of size at least si−1 pass through
host i. We know that si is an upper bound on the time spent
by host i on any such job. Therefore, the utilization on the
host i is bounded from above by

λ(1−X(si−1))si ≤ λM(X)si/si−1

= ρM(X)/E(X)(si/si−1).

Fix any r > 1 such that rρM(X)/E(X) < 1 and let si = ri,
then by the above argument we have that host i will have a
utilization below 1. We see that h = [logr(p)] + 1 hosts will
suffice. q.e.d

The theorem leads us to define the critical load of a dis-
tribution X(s),

ρcrit(X) = E(X)/M(X)

The theorem shows that for a given job size distribution
TAGS systems can only support loads which are below the
critical load, regardless of the number of hosts available to
the system.

Given ρ < E(X)/M(X) we can determine the exact num-
ber of hosts needed for constructing a stable TAGS system
with load ρ by the following procedure. The load ρi on the
i’th server of the TAGS system is given by

ρi = λpiE(Xi) + λsi(1−X(si))

where E(Xi) is the average size of jobs between si−1 and
si, and pi = X(si) − X(si−1) is the probability that a job

has size in the range [si−1, si]. Fixing si−1 it is easy to
see that ρi is a non decreasing function in si. Let s̃1 be
such that ρ1 = 1. More generally, having computed s̃i−1

we iteratively determine s̃i to be such that ρi = 1. If no s
exists for which ρi = 1 then i hosts suffice for establishing
a stable TAGS system. If a TAGS system has h hosts and i
hosts suffice to for a stable system we define the number of
spare servers h̃ by the formula h̃ = h− i−1. This definition
will be important in later sections.

3.1 Some examples of critical loads
We compute the critical load of Bounded Pareto distribu-

tions and of restrictions of Weibull distributions.

3.1.1 Bounded Pareto distributions

Theorem 3.2. Consider the Bounded Pareto job size dis-
tribution B = Bp(α), where α is any real. Let a = 1/p be
the reciprocal to the range of the distribution. Let ρcrit =
ρcrit(α, p) be the critical load of Bp(α).

1) If a ≤ (1− α)1/α then,

ρcrit = (1− a1−α)(1− α)−1/α

2) If α < 1 and aα ≥ 1− α then

ρcrit =
α

α− 1
(
1− aα−1

1− aα )

3) If α = 1 then ρcrit = p
p−1

ln(p)

Proof: From the formulas for the B = Bp(α) distribution
we have that

s(1−B(s)) =
1

1− aα (s1−α − p−αs)

Differentiating and setting to 0 we see that the maximum of
s(1−B(s)) is obtained when

s = p(1− α)1/α

assuming that s ≥ 1.
If s < 1, or equivalently when a ≥ (1− α)1/α, then s(1−

B(s)) is a decreasing function in the range 1 ≤ s ≤ p and
hence maximal at s = 1. Since B(1) = 0 we have M(B) = 1
and therefore E(B)/M(B) = E(B) We recall that

E(B) =
α(1− p1−α)

(α− 1)(1− aα)

for α 6= 1. Therefore,

E(B) =
α

α− 1
(
1− aα−1

1− aα )

When α = 1 we have

E(B) =
1

1− 1
p

(ln(p))

as required.
Consider now the case s ≥ 1. Plugging s into s(1−B(s))

we obtain

M(B) =
1

1− aα (p1−α(1− α)1/α−1 − p1−α(1− α)1/α)

=
1

1− aα p
1−α(1− α)1/α α

1− α



Taking the ratio we obtain

E(B)

M(B)
= (1− a1−α)(1− α)−1/α

as required. q.e.d

We have the following corollary regarding the behavior of
the critical load for fixed α as p tends to infinity.

Corollary 3.3. When p −→∞ we have the following
1) If α < 1 then ρcrit(α, p)→ (1−α)−1/α and convergence

is from below.
2) If α = 1 then ρcrit(1, p) ≥ ln(p) and ρcrit(1, p)/ ln(p)→

1.
3) If α > 1 then ρcrit(α, p) → α

α−1
and convergence is

from below. q.e.d

3.1.2 Restrictions of Weibull distributions
The Weibull distribution with parameter k has a distri-

bution function of the form

Wk(s) = 1− e−s
k

for s ≥ 0. We will compute the critical load for this un-
bounded distribution. we can think of the result as the
limit of the critical load for the distributions which are ob-
tained by restricting the Weibull distribution to an inter-
val [ε, p] and letting ε → 0 and p → ∞. It is known
that E(Wk) = Γ(1 + 1

k
) where Γ(k) =

∫∞
0
tk−1e−tdt is the

Gamma function. This is easily seen by using the change of
variable t = sk. To compute the maximum of s(1−Wk(s))

we differentiate (s(1 − Wk(s))′ = e−s
k

(1 − ksk−1). Set-

ting to zero we get s = ( 1
k

)1/k and for that value of s

we get s(1 − Wk(s)) = ( 1
ke

)1/k, where e is the natural
base. Letting k tend infinity, we see that E(Wk) tends to
Γ(1) = 1, hence the critical load tends to 1. On the other
hand, if k tends to zero, say k = 1/n with n an integer,
we get E(W1/n) = Γ(n + 1) = n!. The maximal value of
s(1−Wk(s)) is (n

e
)n. According to Stirling’s formula, as n

tends to infinity, ρcrit(W1/n) ∼
√

2πn. For the exponential
distribution which is given by setting k = 1 we get that the
critical load is e.

3.2 A universal bound on the load
The following theorem provides a general bound on the

load of any TAGS system when the job size distribution has
range p.

Theorem 3.4. For any distribution X with range p we
have ρcrit(X) ≤ ln(p) + 1.

Proof: Let X(s) be a bounded distribution of range p. We
claim that for any ε > 0, X(s) may be approximated by
a continuous distribution Y (s) of the same range such that
|ρcrit(X)− ρcrit(Y )| < ε. To see this, decompose the range
interval [1, p] into n equal sub-intervals, with endpoints 1 =
x0, x1, ..., xn = p. Consider the distribution Yn which lin-
early extrapolates X between its endpoint values on each
sub-interval [xi, xi+1]. Since X and Yn are both monotone
non decreasing functions they are Riemann integrable and
it is obvious from the definition that limn E(Yn) = E(X).
We claim that limn M(Yn) = M(X) as well. Indeed, For
any s ∈ [xi, xi+1] we have

s(1−X(s)) ≤ s(1−X(xi))

= (s− si)(1−X(xi)) + xi(1−X(xi))

≤ p

n
+ xi(1− Yn(si)) ≤

p

n
+M(Yn)

hence M(X) ≤ p
n

+ M(Yn). Applying the same argument
to Yn instead of X and noting that xi(1− Yn(xi)) = xi(1−
X(xi)) ≤M(X) we see that M(Yn) ≤ p

n
+M(X) and both

inequalities together yield the claim for n large enough.
Given the above approximation it is enough to prove the

bound for continuous distributions. Let X be continuous.
We claim that we can find a distribution Y such that:

1) ρcrit(X) ≤ ρcrit(Y )
2) Y is also supported on [1, p].
3) M(Y ) = 1.

We always have M(X) ≥ 1(1 −X(1)) = 1. If M(X) = 1
there is nothing to prove, hence we assume that M(X) > 1.
Let s̃ > 1 be such that s̃(1 − X(s̃)) = M(X), s̃ exists by

continuity of X. Consider the distribution Ỹ which is sup-
ported on the interval [M(X), p] which is defined as follows,
for s ≥ s̃,

Ỹ (s) = X(s)

and for M(X) ≤ s ≤ s̃,

1− Ỹ (s) = M(X)/s

By construction M(X) = M(Ỹ ). Also by the definition of

M(X) and the construction of Ỹ we have for all s, 1−Ỹ (s) ≥
1−X(s). Consequently

E(X) =

∫ p

s=0

1−X(s) ds ≤
∫ p

s=0

1− Ỹ (s) ds = E(Ỹ )

We conclude that ρcrit(X) ≤ ρcrit(Ỹ ). Finally we define Y

to be a rescaling of Ỹ by the formula Y (s) = Ỹ (M(X)s).
Rescaling does not change ρcrit, the support of Y is in
[1, p/M(X)], which is contained in [1, p], and M(Y ) = 1.

Following the above argument it is sufficient to prove the
bound for continuous distributions which satisfy M(X) =
1. In this case we have ρcrit(X) = E(X), hence our goal
is to bound E(X). Since M(X) = 1 we have for any s,
s(1−X(s)) ≤ 1 or 1−X(s) ≤ 1/s. Consequently,

E(X) =

∫ p

0

1−X(s) ds =

∫ 1

0

1 ds+

∫ p

1

1−X(s) ds ≤ 1 +

∫ p

1

1/s ds = 1 + ln(p)

As desired. q.e.d

The distribution Bp(1) has critical load ln(p) < ρcrit =
p
p−1

ln(p) < ln(p) + 1, which shows that the bound is very

tight. It also shows that Bp(1) has nearly optimal critical
load.

4. THE APPROXIMATION EQUATIONS



h α Simulated AWT Calculated AWT
2 0.2 1368.72 1408.87
2 0.4 577.91 583.34
2 0.6 214.06 215.64
2 0.8 79.60 79.86
2 1 33.83 34.02
2 1.2 18.07 17.99
2 1.4 11.38 11.38
2 1.6 7.83 7.88
2 1.8 5.25 5.73
3 0.2 2323.63 2657.09
3 0.4 704.26 769.79
3 0.6 185.89 197.60
3 0.8 52.70 54.32
3 1 19.89 20.35
3 1.2 11.76 12.03
3 1.4 9.74 10.12
3 1.6 9.09 10.20
3 1.8 9.59 11.14
4 0.2 11180.74 13982.31
4 0.4 1468.58 1789.23
4 0.6 255.05 287.54
4 0.8 54.47 58.84
4 1 18.82 19.72
4 1.2 12.17 13.01
4 1.4 13.28 15.15
4 1.6 22.72 28.05
4 1.8 143.89 181.70
5 0.6 484.40 597.45
5 0.8 68.04 77.26
5 1 21.04 22.81
5 1.2 15.24 17.31
5 1.4 28.93 36.34
6 0.8 98.86 117.45
6 1 25.71 29.04
6 1.2 22.46 27.19
7 0.8 173.79 221.62
7 1 33.70 39.98
7 1.2 43.60 55.88
8 1 50.17 60.72

Table 1: Comparison of actual waiting time from
simulations of TAGS systems, with the estimate from
the approximation formulas, which assume Poisson
arrivals at all hosts

The average waiting time of a TAGS system with Pois-
son arrivals has no exact analytical formula, because the
input stream to the second host and beyond is not Pois-
son anymore. We consider an approximation which assumes
Poisson arrivals to all hosts. Once the assumption is made,
an approximation to the average waiting time can be com-
puted using the Pollaczek-Khinchine equation for an M/G/1
queue. This approximation was suggested in [8] and was
used for calculating the performance of TAGS systems. It was
also suggested that the approximation will over-estimate the
average waiting time since the input streams, to all but the
first host, tend to be more regular than Poisson, having near
constant inter-arrivals. Such input streams should lead to
better response times than a Poisson stream.

To analyze the true performance of TAGS and to compare it
with the approximation equations, we developed an efficient
computer simulation of a TAGS system. Instead of simulating
the queues at the different hosts, the simulation follows the
jobs through the system one by one. For each host we hold
a ”current time” counter which states when the host will
become available to process the next job. As we track a new
job through the system, these counters are updated and at

the same time, the total amount of overhead time the job
spends in the system is recorded. This approach turns out
to be much more efficient than keeping track of the queues
at each host. Using this approach we were able to easily run,
on a standard PC, the TAGS system on 108 jobs, the number
we fixed for each simulation run. The TAGS systems that
were examined had Bounded Pareto job size distributions
with varying values of 0 < α < 2 and varying numbers of
hosts. The load per host was fixed to be 1/2, so that the
total load was ρ = h/2. The smallest job size was of size 1
and the largest job size was p = 104. This value was chosen
because for α = 2, the probability of a job of size greater
than s is about s2, hence the probability for a job of size
greater than 104 is approximately 10−8. This means that
for α close to 2, and 108 jobs in a simulation run we would
not get jobs substantially greater than 104, therefore, there
was no point in choosing a larger value for p in experiments
across all values of α. The values of s1, . . . , sh−1 for the
system were chosen to be close to optimal for minimizing
average waiting time in the approximate equations. While
such a choice is not necessary for the validation process, we
thought it would be the most interesting choice to explore.

The results showed that the average waiting time value
which is computed using the approximation equations is
always close to the value computed from the simulations.
Moreover, as conjectured in [8], the computed value always
over-estimates the actual average waiting time. As might be
expected, the computed values are closest to the simulation
results when the number of hosts is small. The computed
values for h = 2 are essentially identical to the simulated
values, except for the case α = 1.8 where there was a 10%
difference. For larger values of h the error can be as large
as 20%, a value which we still consider to be very reason-
able. The largest errors occur for the extreme values of
α, away from the central value α = 1, where the errors are
smallest. A few more experiments where performed with the
larger value p = 106 and α < 1. The results are essentially
the same, the approximate equations are fairly accurate and
conservative.

Following these results we analyze in the next section the
approximation equations under the assumption that they
are conservative.

5. ASYMPTOTIC ANALYSIS WITH BOUNDED
PARETO JOB SIZE DISTRIBUTION

In this section we analyze the performance of TAGS when
the job size distribution is Bounded Pareto, with parameter
α in the range 0 < α < 2. We also assume for simplicity
that α 6= 1, although the main results hold in that case as
well.

5.1 The low load case, ρ < 1

Let us assume that the total system utilization satisfies
ρ < 1. We consider a family of TAGS queueing systems,
parametrized by p > 1. The number of hosts, h and the
load ρ are fixed independently of p. The job size distribu-
tion is the Bounded Pareto distribution B = Bp(α) with α
fixed. For a given p, the cutoffs, si(p), i = 1, . . . , h− 1, are
chosen from the set ∆h,p of all cutoff parameters 1 < s1 <
... < sh−1 < p, which forms an h− 1 dimensional open sim-
plex. We denote the average normalized waiting time of the
resulting TAGS system, as computed using the approximate



equations by E(N)TAGS(p, h, ρ, α, s1(p), . . . , sh−1(p))). We
are interested in analyzing the asymptotic behavior of this
quantity as p → ∞. Of particular interest is the asymp-
totic behavior of E(N) for an optimal choice of parameters
si(p). Let E(N)OPT−T (p, h, ρ, α) denote the optimal (mini-
mal) value of E(N)TAGS(p, h, ρ, α, s1(p), . . . , sh−1(p))) over
the simplex ∆h,p.

Let E(N)OPT−S(p, h, ρ, α) denote the corresponding op-
timal value of the normalized waiting time of SITA over the
same simplex.

The next result is a comparison theorem between SITA

and TAGS systems. Roughly speaking, the theorem states
that at low loads the penalty for not knowing job sizes is
bounded by a factor of 2 regardless of the value of α, the
number of hosts h or the load ρ (as long as it low, ρ < 1).

We will use the notation f ∼ g to denote two quantities
f, g whose ratio tends to 1 as p tends to infinity.

Theorem 5.1. Fix ρ < 1 and consider the family of Bounded
Pareto distributions with α fixed, 0 < α < 2 and varying
value of p.

Assume that the approximation equations are conserva-
tive, then, as p → ∞, the average waiting time in a TAGS

system with optimal cutoffs is at most twice the average wait-
ing time of a SITA system with optimal cutoffs.

More precisely, let

q =
α

2− α
and let

µ =
(qh−1 − 1)q

qh − 1

then

E(NOPT−T )

E(NOPT−S)
∼ (

2

α
)µ ≤ 2 (3)

Proof:
Assume that for all i = 1, . . . , h, si(p)/si−1(p) → ∞ as

p→∞, and that ρ < 1. We show that

E(N)SITA(α, h, ρ, p, s1(p), . . . , sh−1(p)) (4)

∼
h∑
i=1

fSITAi (α, ρ)s−αi−1s
2−α
i (5)

and

E(N)TAGS(α, h, ρ, p, s1(p), . . . , sh−1(p)) (6)

∼
h∑
i=1

fTAGSi α, ρs−αi−1s
2−α
i (7)

for some constants fSITAi (α, ρ), fTAGSi (α, ρ) such that for
i < h

fTAGSi (α, ρ) =
2

α
fSITAi (α, ρ) (8)

and for i = h

fTAGSh (α, ρ) = fSITAh (α, ρ) (9)

Let pSITAi be the portion of jobs which pass through host
i in a SITA system. These are precisely the jobs with size
si−1 < s ≤ si. These are also the jobs that pass through
host i but not through host i + 1 in the TAGS system. For

bounded Pareto distributions we have

pSITAi =
1

1− ( 1
p
)α

(sαi−1 − sαi ) (10)

We also compute pTAGSi the portion of jobs which pass
through host i in a TAGS system, that is, jobs of size si−1 < s.

pTAGSi =
1

1− ( 1
p
)α

(sαi−1 − pα) (11)

By (10-11) and our assumption that si(p)/si−1(p)→∞ we
get

pSITAi ∼ pTAGSi ∼ s−αi−1 (12)

We also get the more precise formula

pTAGSi − pSITAi ∼ s−αi (13)

except for the last host for which

pSITAh = pTAGSh (14)

Let E(Bji,SITA) be the j’th moment of service time in the
i’th host of a SITA system. A simple calculation shows that

E(Bji,SITA) =
αsαi−1

1− (
si−1
si

)α
sj−αi−1 − s

j−α
i

α− j (15)

Following (15) the average job size for the i’th host with
α < 1 satisfies

E(Bi,SITA) ∼ α

1− αs
α
i−1s

1−α
i (16)

while for α > 1

E(Bi,SITA) ∼ α

α− 1
si−1 (17)

Similarly, for α < 1

E(B) ∼ αp1−α

1− α (18)

and for α > 1

E(B) ∼ α

α− 1
(19)

For the second moment we have

E(B2
i,SITA) ∼ α

2− αs
α
i−1s

2−α
i (20)

In comparison, in a TAGS system, the jobs which pass through
host i consist of those which do not pass onto host i+ 1 and
those who do. The former have average service time mo-
ments E(Bji,SITA) which is given by formula (15), while for

the latter we get sji at host i. We conclude that the j’th ser-
vice time moment at host i in a TAGS system, E(Bi,TAGS)
is the weighted average

E(Bji,TAGS) =
pSITAi

pTAGSi

E(Bji,SITA) + (1− pSITAi

pTAGSi

)sji (21)

From (21) and (12-17) we have for α < 1 and i < h

E(Bi,TAGS) ∼ (
α

1− α + 1)sαi−1s
1−α
i ∼ 1

α
E(Bi,SITA) (22)

while for α < 1 and i = h or for α > 1 and all i

E(Bi,TAGS) ∼ α

1− αs
α
i−1s

1−α
i ∼ E(Bi,SITA) (23)



Similarly for the second moment of the service time, when
i < h we have

E((Bi,TAGS)2) ∼ 2

α
E(B2

i,SITA) (24)

While for i = h we have

E((Bi,TAGS)2) ∼ E(B2
i,SITA) (25)

Let λ = ρ/E(B) denote the job arrival rate to the whole
system. Let λSITAi and λTAGSi denote the rate of job arrival
at host i in a SITA and TAGS system respectively. The latter
includes all jobs that will pass later on to the next host. We
have

λTAGSi = λpTAGSi ∼ λpSITAi = λSITAi (26)

The utilization of host i in a SITA system is given by

ρSITAi = λSITAi E(Bi,SITA)

with the corresponding equation

ρTAGSi = λTAGSi E(Bi,TAGS)

for a TAGS system.
Using formulas (10,11,16-19,22,23) a simple computation
shows that for all 0 < α < 2 and 1 ≤ i ≤ h

1− ρSITAi ∼ 1− ρTAGSi (27)

In a SITA system the inter-arrival rate at host i is exponen-
tially distributed with rate λSITAi , hence, we can apply the
Pollaczek-Khinchine formula for waiting time in an M/G/1
queue to each server individually, to obtain E(W )SITAi the
average waiting time at host i. The formula is

E(WSITA
i ) =

λSITAi E(B2
i,SITA)

2(1− ρSITAi )
(28)

Using our approximation assumption that the inter-arrival
rate at host i is exponentially distributed we can apply the
same formula with the corresponding quantities for a TAGS

system to obtain E(WTAGS
i ), the average waiting time at

host i. A comparison of the two expressions using formulas
(26,24,25,27) shows that for i < h

E(WTAGS
i ) ∼ 2

α
E(WSITA

i ) (29)

while for i = h

E(WTAGS
i ) ∼ E(WSITA) (30)

We recall from the description of the TAGS algorithm that
a job which finishes service at host i spends an additional
time of Ti =

∑i−1
j=1 sj ≤ (h− 1)si−1 being serviced at hosts

1, 2, . . . , i − 1 and that the average excess service time sat-
isfies E(T ) =

∑h
i=1 piTi ≤ (h− 1)E(B) or

E(T )/E(B) ≤ h− 1 (31)

We have E(N)TAGS ≥ E(N)OPT−T ≥ E(N)OPT−S . But
by the asymptotic result in [12] we have E(N)OPT−S →∞,
therefore E(T ) is asymptotically negligible.

The average waiting time E(WSITA) in a SITA system is
the weighted sum

E(WSITA) =

h∑
i=1

pSITAi E(WSITA
i ) (32)

From the fact that E(T ) is negligible we see that for a TAGS

systems, the corresponding formula is

E(WTAGS) ∼
h∑
i=1

pTAGSi E(WTAGS
i ) (33)

Using formulas (12,18,19,29,30,32) we obtain, after some
straightforward computations, formulas (4, 6, 8, 9).

It has been shown in [13, 24, 1] that the optimal cut-
offs for computing E(N)OPT−S satisfy the assumption that
si+1(p)/si(p)→∞ for all i. The same argument also applies
for the cutoffs used for computing E(N)OPT−T . Thus we
are reduced to computing the asymptotic value as p → ∞
of the ratio

Min∆

∑h
i=1 f

TAGS
i (α, ρ)s−αi−1s

2−α
i

Min∆

∑h
i=1 f

SITA
i (α, ρ)s−αi−1s

2−α
i

where ∆ = ∆h,p. A simple scaling argument shows that
the ratio is independent of p and depends only on the ratios
ri = fTAGSi /fSITAi . We have shown, (8, 9) that ri = 2

α
for

i < h and that rh = 1. Plugging these values into lemma 5.3
from [1] which computes such ratios we obtain the expression
in (3).

We still need to show that ( 2
α

)µ ≤ 2. Since µ = µ(α) < 1
for all values of 0 < α < 2, this is obvious for α ≥ 1. For

α < 1 we have q < 1. This implies µ = (qh−1−1)q

qh−1
< q =

α
2−α . Differentiating ( 2

α
)
α

2−α it is easy to verify that it is

an increasing function in the interval (0, 1] with value 2 at
α = 1, which proves our assertion. q.e.d

5.2 Higher loads and the T+F policy
The results above can be extended to higher loads. Recall

from section 3 the definition of the number of spare servers h̃.
Let i be the minimal number of hosts, required to stabilize
the TAGS system. We then let h̃ = h̃TAGS = h − i − 1. In
generalizing to higher loads we will content ourselves with
order of magnitude performance estimates. We claim that
for higher loads the order of magnitude performance is given
by the same formula as in the low load case with h replaced
by h̃.

Theorem 5.2. Assume that the approximation equations
provide the correct order of magnitude performance. For
α > 1, we have

E(N)OPT−T (ρ, α, h, p) = Θ(p
2α−2

qh̃−1 ) (34)

, where q = α
2−α . For α < 1, we have

E(N)OPT−T (ρ, α, h, p) = Θ(p
2−2α

qh̃−1 ) (35)

with q = 2−α
α

.

Proof: Consider the case α > 1. Let i be the minimal num-
ber of hosts needed for a stable TAGS system. We recall the
computation of i. We define recursively values s̃i. Given
s̃i−1 we define s̃i to be such that in a TAGS system with s̃i−1

and s̃i as cutoffs, the load on the i’th host is precisely 1. If
s̃i does not exist because the load on the i’th host is always
less than 1, then the minimal number of hosts which are re-
quired for a stable system is i. Consider the value of s̃i−1(p).
We observe that s̃i−1(p) is an increasing function of p, since
the coefficient c in the definition of the density is decreasing.



In addition it is bounded by s̃i−1(∞), the value correspond-
ing to the Pareto distribution B(α). The remaining load,
ρrem(s̃i−1(p)) , coming from jobs of size at least s̃i−1(p) sat-
isfies ρrem(s̃i−1(p)) < 1. We choose si−1(p) < s̃i−1(p), such
that the remaining load still satisfies ρrem(si−1(p)) < 1. We
choose s1(p), ..., si−2(p) so that the load on the first, i − 1
hosts of the TAGS system will be balanced. By the con-
struction of s̃i−1(p) and the fact that si−1(p) < s̃i−1(p),
the subsystem consisting of the first i− 1 hosts will be sta-
ble. The remaining workload, which is handled by h̃ hosts
is up to scaling again a Bounded Pareto distribution. We
use our low load results to choose near optimal cutoffs. By
the comparison between SITA and TAGS in theorem 5.1, the
contribution to the normalized waiting time of the last h̃
hosts has order of magnitude in both SITA and TAGS. The
asymptotic formulas (34,35) which are stated in the theo-
rem are the known results for SITA which can be found in
[13, 24, 1]. Since si−1(p) is bounded, the contribution of the
first i − 1 is bounded and hence, asymptotically negligible.
The optimal performance cannot have smaller order of mag-
nitude, since the i− 1 cutoff of any stable system cannot be
larger than s̃i−1 by definition. We conclude that the first
i− 1 hosts cannot asymptotically contribute to lowering the
order of magnitude of average waiting time.

For α > 1, we use a similar strategy, but we must proceed,
from the other end of the job size range, from p. We define
s̃h−1 to be such that the load on the last host is precisely 1.
Inductively, given s̃h−j we define s̃h−j−1 to be such that the
load on the h − j host will be precisely 1. We can proceed
this way to define s̃h̃, s̃h̃+1, ..., s̃h−1. Since this provides an
alternative procedure for calculating the minimal number of
required hosts, the remaining load, consisting in this case of
the load as seen by a single host which is responsible for jobs
in the range [1, s̃h̃] will be less than 1. It is easy to check
in analogy with the case α > 1, that p/s̃h̃ is bounded. The
construction proceeds in analogy with the case of α > 1.
We choose sh̃ > s̃h̃, such that the remaining load is still

smaller than 1. We choose sk, h > k > h̃, such that the last
h− h̃ hosts are load balanced. It is easy to verify using our
previous calculations that, for any a > b > 0, if a host is
responsible for jobs in the range [p/a, p/b], then its contri-
bution to the normalized average waiting time is bounded.
Therefore, asymptotically, the last h−h̃ do not contribute to
the normalized waiting time. The first h̃ cutoffs are chosen
near optimally, to insure the requested order of magnitude
performance. q.e.d

We note that both theorem 5.2 and theorem 5.1 are valid
more generally for systems with heterogeneous hosts, a set-
ting which was first considered (in the SITA case) in [7]. In
this setting not all hosts have identical capabilities. The
job size distribution is given with respect to some reference
host. Each host in the system, say host i, has an associ-
ated power coefficient ci. A job which takes t time on the
reference host, takes t/ci time on host i. In this setting,
apart from choosing cutoffs, we have to choose for each job
size range [si−1, si], which host will service jobs up to size
si. In this setting, the low load condition is replaced by the
condition that the strongest host (largest ci) can handle the
entire load.

The arguments that lead to theorem 5.1 boil down to a
comparison of waiting times at individual hosts in the sys-
tem without relying on different hosts having equal strength.

alpha h=2 h=3 h=4 h=5 h=6 h=7 h=8
0.1 2 3 4 9 NA NA NA
0.2 2 2 4 7 34 NA NA
0.3 2 2 4 6 14 NA NA
0.4 2 2 4 5 9 33 NA
0.5 2 2 3 5 7 13 NA
0.6 2 2 3 4 6 9 14
0.7 2 2 3 4 5 7 9
0.8 2 2 3 4 5 6 7
0.9 2 2 3 3 4 5 6
1.0 2 2 3 3 4 5 6
1.1 2 2 3 3 4 5 6
1.2 2 2 3 4 4 6 7
1.3 2 2 3 4 5 7 11
1.4 2 2 3 4 6 NA NA
1.5 2 2 3 5 NA NA NA
1.6 2 2 3 6 NA NA NA
1.7 2 2 4 NA NA NA NA
1.8 2 2 4 NA NA NA NA
1.9 2 2 5 NA NA NA NA

Table 2: The values of h̃TAGS, when ρ = h/2

They also do not depend on the loads on the hosts because
of equation (27). As a result, the theorem holds in the het-
erogeneous setting as well. The proof of theorem 5.2 also
goes through, however, we have to redefine the spare server
number for the heterogeneous setting. For α < 1 this is done
by ordering the hosts from the weakest to the strongest and
checking how many hosts are in a low load system. When
α > 1 we order the hosts from the strongest to the weakest
and check for the number of hosts in the low load case. The
reason is that the load burden in the case α < 1 falls on the
large job hosts, while for α > 1 the opposite is true.

Let h̃SITA = h̃FIFO = h − [ρ]. We note that this defini-
tion is consistent with the definition for TAGS, being h−i−1,
where i is the minimal number of hosts required for a sta-
ble SITA or FIFO system. Following the arguments above,
the asymptotic, order of magnitude, performance of SITA,
depends on h̃SITA and is given by replacing h̃ by h̃SITA in
the statement of theorem 5.2. Similarly, it is known (see the
next section) that the order of magnitude performance of

FIFO depends on h̃FIFO.
The table charts the minimal number of hosts which are

needed to stabilize a TAGS system when ρ = h/2. The corre-
sponding values for SITA or FIFO are [h/2] + 1. The symbol
NA, denotes the case that h/2 ≥ ρcrit and hence, TAGS can-
not be stable regardless of the number of hosts. As can
be easily seen, in many cases the minimal number of hosts
which are required to stabilize TAGS is substantially bigger
than in the case of SITA, and consequently the performance
has worse order of magnitude, since the number of effective
hosts is smaller.

We see that a major problem of TAGS in comparison with
SITA is that h̃ = h̃TAGS either does not exist, due to inherent
instability, or is much smaller than h̃SITA.

The arguments in theorem 5.2 suggest that we may sub-
stantially improve h̃ and consequently, the order of mag-
nitude performance of TAGS at higher loads if we combine
TAGS with work preserving policies like FIFO or even ran-
dom assignment, which are better at consuming load. Our
improved version of TAGS which combines elements of FIFO
will be denoted by T+F. For α > 1, we let s̃ be such that the
remaining load ρrem of jobs which are greater than s̃ is 1.



Our plan is to service all incoming jobs with [ρ] or [ρ] + 1
hosts, working in FIFO or random assignment mode. How-
ever, if a job exceeds s̃+ ε (for some small ε) time units it is
killed and sent to the remaining servers which process jobs
according to the TAGS policy. It is obvious that such a FIFO

system with [ρ]+1 hosts will be stable since the system expe-
riences less work than a corresponding FIFO system which
processes all jobs to completion. However, in some cases
[ρ] hosts will suffice for a stable system, in which case we
will use only [ρ] hosts. The number of remaining hosts will

be h̃T+F . To determine the precise condition for [ρ] hosts
to suffice in the FIFO subsystem, we provide an asymptotic
formula for s̃. A comparison of the load coming from jobs
of size, between 1 and s̃, and the total load with p → ∞
shows that s̃ satisfies 1 − s̃1−α ∼ ρ−1

ρ
, or s̃1−α ∼ 1 − ρ.

Since the system will also spend s̃ time units on each job
of size at least s, a simple calculation shows that the actual
load experienced by the hosts in the FIFO system will be
ρ(1 − 1

α
s̃1−α). Plugging the asymptotic value of s̃ into the

last expression and requiring that it is at most [ρ], yields
ρ− 1

α
< [ρ] or 1

α
> ρ− [ρ].

Similarly, when α < 1, we define s̃ to be such that the load
of a single server in a TAGS system servicing jobs in the range
[1, s̃] is precisely 1. The remaining load, coming from jobs
whose size is in the range [s̃, p] will satisfy ρ− 1 ≤ ρrem ≤ ρ
and hence, will require either [ρ] + 1 or [ρ] hosts for a stable

FIFO system. The remaining h̃T+F hosts will manage all
incoming jobs using TAGS with the last cutoff being s̃ − ε.
Jobs which are of size greater than s̃ − ε are sent to begin
service from scratch in the FIFO system. Using formula (22)
it is easy to see that [ρ] hosts suffice in the FIFO subsystem if
α > ρ−[ρ]. The asymptotic order of magnitude performance

of T+F is given by theorem 5.2 with h̃ being replaced by
h̃T+F , which satisfies

h̃SITA − 1 ≤ h̃T+F ≤ h̃SITA

a vast improvement over TAGS.
The basic strategy of the T+F policy can be applied to

more general job size distributions. However, as can be seen
already in the Bounded Pareto case, the details of the imple-
mentation vary substantially with the workload. Basically,
the FIFO managed hosts should be responsible for values of s
such that s(1−X(s)) is large. This is difficult to implement
when the workload is such that s(1−X(s)) is not monotonic,
or when the workload is dynamic.

5.2.1 The analysis of some variants
We can also consider the performance of TAGS under the

relaxed assumption that jobs can be resumed on the next
host from the point in which they were stopped in the pre-
vious host. This setting was explored in [6] and in [3].

While this assumption improves the stability of TAGS and
hence the number of effective servers, we show that it has
no effect on the asymptotic performance of TAGS in the low
load case when ρ < 1 and the workload is Bounded Pareto.
To see this, we again consider the case where si/si−1 →∞.
In that case, the work done on a job in the first i−1 servers
is

∑i−1
j=1 sj < (1 + ε)si−1, for any ε > 0 and p large enough.

Let s̃i−1 = (1 + ε)si−1 and consider a host in a TAGS system
which handles jobs in the range [s̃i−1, si]. Assume also that
from each job whose original size was s ≥ si−i we subtracted
s̃i−1 work. Such a host experiences less traffic and has less
work for each job than the i’th host in the TAGS system

where we assume that work is resumed. However, a short
look at formulas (12,15,28,29,30) shows that the i’th host in
the new system has asymptotically the same contribution to
waiting time as the i’th host of the original system and our
conclusion follows.

6. A SIMULATION COMPARISON BETWEEN
THE TAGS AND FIFO POLICIES

In this section we will compare empirically the TAGS policy
with the FIFO policy for Bounded Pareto job size distribu-
tions. In the previous section we analyzed the performance
of TAGS on such workloads. The analysis of the performance
of FIFO in [17, 16, 18, 19, 20, 25] leads to the following
estimate

Pr(WFIFO > s) = Θ((1−Xe(s))h̃) (36)

6.1 The simulation comparison
We provide a detailed simulation based comparison be-

tween FIFO and TAGS policies for various values of h and α.
We keep the load per host fixed at 0.5, which means that
the load on the system is ρ = h/2. We will use the analysis
of the previous sections to provide a partial explanation of
the results.

We note that a comparison for two hosts was provided
in [8], however, it was based on an approximate calculation
for the performance of FIFO which proved to be far from
accurate.

In addition, the normalization which was used gave very
different ranges (values of p) to different values of α. For
example, when α = 0.2 it assumed a Bounded Pareto job
size distribution with p = 1066, while for α = 2 it assumed
p = 106. Thus it was difficult to compare results for different
values of α. We fix the value p = 106 across all values of
α. Fixed p normalization was first used in [7]. It is a more
natural normalization since it is time unit invariant.

As a consequence of these changes our results and insights
are somewhat different than those which can be found in [8].

We started by using 108 jobs in the simulation. We ob-
serve that it is hard to simulate heavy-tailed distributions
with large range. In particular, for α > 1 we had difficulty
in covering the entire range of jobs and therefore for α ≥ 1.3
we used 109 jobs instead of 108. This still did not solve the
problem, but we feel that it is unlikely that real systems will
have many more jobs than that.

The results are summarized in table 3. The rows of the
table list the value of the parameter α, while the columns list
the number of hosts h in the system. We recall that we fix
p = 106 throughout and ρ = h/2. each table entry consists
of two numbers. The left number is the normalized average
waiting time under the TAGS policy, while the number on
the right is the same for FIFO. The numbers are rounded
downward to the nearest integer. Sometimes the letter T

appears in the entry. That indicates that the performance
of TAGS was superior to that of FIFO. In other cases the
letters NA appear as the table entry. That indicates that
there is no stable TAGS system with these parameters, hence
FIFO wins by default.

The results for 2 servers convey the situation which was
examined in section 5. The load is ρ = 1 which is at the
edge of the low load assumption ρ < 1 for the analysis. We
clearly see in the results for TAGS the approximate symme-
try between α and 2 − α, which comes from the symmetry



for SITA and the comparison theorem. We also see that the
performance is worst near α = 1 and gets better as we move
towards the extreme values α = 0 and α = 2. For FIFO, we
see that performance for α ≥ h+1

h
= 3/2 is indeed good and

is superior to that of TAGS as expected from the asymptotic
analysis. The normalized waiting time then climbs steeply
until reaching a maximal value at α = 0.9 and then falls off
less steeply as we approach α = 0. The order of magnitude
of the normalized average waiting time asymptotics, suggest
that the maximal value should be at α = 1. However, if we
follow the heuristic of considering formula (36) as an equal-
ity, the resulting calculations suggest that for α < 1, with
p fixed, as h̃FIFO increases, E(N), decreases like a function

of the form h̃−
1

1−α . This heuristic argument suggests that
for fixed p, the effect of the number of hosts is stronger for
larger values of α and consequently, we expect the maximal
value to drift towards smaller values of α as h̃ increases.
This phenomenon is indeed observed in our table.

Also as suggested by the asymptotic theory, TAGS starts
outperforming FIFO once α < 3/2. However, for α small the
asymptotic difference is less important since pα is small and
the higher loads in a TAGS due to job loss take effect, leading
FIFO to outperform TAGS when α < 0.3.

The results of section 5 show the asymptotic low load per-
formance of TAGS is worst at α = 1 and improves towards
α = 0 and α = 2. On the other hand the results of section
3 show that the load handling capabilities of TAGS have the
exact opposite behavior, they are best at α = 1 and deteri-
orate rapidly towards α = 0 and α = 2. When h = 3 (and
ρ = 1.5) these contrasting tendencies essentially cancel each
other and the normalized waiting time shows little variation
across the different values of α.

The results for h ≥ 4 show the strong effects of the in-
creasing load. Whereas for FIFO and SITA the values near
α = 1 pose the biggest challenge, for TAGS, the performance
at α = 1 is best since that is where TAGS can handle load
better. The range of α in which TAGS outperforms FIFO

decreases steadily, for α > 1. The reason is that the perfor-
mance of FIFO is better asymptotically than that of SITA,
let alone TAGS. On the other hand, for α < 1 where the per-
formance of FIFO is not as strong it is more an issue of the
different load handling capabilities and hence TAGS is able to
hold on to a lead a bit longer. Meanwhile, the increased load
allows stable TAGS in only a very small range of α values cen-
tered at α = 1. This phenomenon which follows easily from
our load handling analysis was not noted at all in previous
studies. With 6 hosts there is still substantial improvement
of TAGS over FIFO for α = 0.9 and α = 1. beyond 8 hosts the
performance of FIFO is better than that of TAGS for all values
of α. Apart from the stability conditions, the other factor
is that we are not in the asymptotic regime anymore. For
α = 1, where TAGS suffers least from stability issues, given
8 hosts, each of the hosts in a TAGS system is responsible
for a small range of approximate size 106/8 < 6 and lower-
ing the range still further would have little effect. On the
other hand, every additional host will improve the constants
involved in the performance of FIFO more substantially.

7. CONCLUSION
In this paper we studied the TAGS policy, which assigns

jobs to servers in the non-preemptive regime, with unknown
job sizes. We examined, the stability conditions of the as-

alpha h=2 h=3 h=4 h=6 h=8
0.1 4, 2 7, 1 99, 1 NA NA
0.2 5, 4 7, 2 34, 1 NA NA
0.3 6, 10 T 7, 4 22, 2 NA NA
0.4 7, 22 T 7, 10 T 15, 5 NA NA
0.5 9, 51 T 6, 23 T 9, 12 T NA NA
0.6 11, 112 T 6, 48 T 7, 26 T NA NA
0.7 12, 219 T 5, 94 T 5, 49 T 11, 16 T NA
0.8 15, 407 T 5, 150 T 4, 77 T 4, 24 T 12, 8
0.9 16, 555 T 5, 185 T 3, 79 T 3, 20 T 4, 5 T
1.0 15, 370 T 4, 151 T 3, 63 T 2, 12 T 3, 3 T
1.1 14, 175 T 4, 63 T 3, 30 T 3,3 T 4, 1
1.2 16, 124 T 5, 11 T 4, 6 T 4,1 12, 0
1.3 13, 51 T 5, 11 T 4, 1 11, 0 NA
1.4 11, 14 T 5, 3 5, 0 NA NA
1.5 8, 4 5, 1 7, 0 NA NA
1.6 7, 2 6, 0 17, 0 NA NA
1.7 5, 1 6, 0 22, 0 NA NA
1.8 3, 1 5, 0 NA NA NA
1.9 3, 0 6, 0 NA NA NA
2.0 2, 0 5, 0 NA NA NA

Table 3: Comparison of TAGS and FIFO

signment policy and obtained a formula for the maximal
load that a TAGS system can support in terms of the job
size distribution function. When arrivals are Poisson and
the job size distribution is Bounded Pareto, we verified that
some approximation equations for average waiting time are
conservative and rather accurate. It would be interesting
to prove, rather than verify, such claims. We examined the
approximation equations and showed that at low loads, the
penalty for not knowing the job size is at most a factor of 2,
regardless of α, the load (as long as its low) or the number of
hosts. It would be interesting to establish a low load compar-
ison theorem for general distributions. We developed a vari-
ant policy which combines TAGS and FIFO, which can handle
higher loads much better than TAGS. We compared TAGS to
FIFO and found that, in general TAGS is more appropriate
for values with α < 1.1, where FIFO tends to exhibit more
difficulties. The improvement over FIFO is sometimes sig-
nificant. However, as the number of hosts increases mildly,
FIFO becomes the better policy across all values of α.
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