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We show that several discrete processes including airplane boarding, optimal I/O scheduling
in disk drives, patience sorting and others can be asymptotically modeled by two dimensional
Lorentzian geometry. In the case of aiplane boarding, boarding time is given by the maximal
proper time of worldlines in the model. Fluctuations in boarding time about the maximal proper
time are related to random matrix models. We then show how such models can be used to explain
why commonly practiced airline boarding policies are ineffective and even detrimental.

We show a wide range of discrete processes originat-
ing in several distinct disciplines can be provided with
a common description interms of two dimensional space-
time geometry. Table 1 which will be explained below
provides a dictionary for translating notions between the
processes. This implies that the seemingly unrelated pro-
cesses form a universality class which shares some com-
mon statistical properties, strongly related to random
matrix theory (RMT) and that results which are obtained
in one domain can be applied to the others. A particu-
larly appealing example is provided by airplane board-
ing, a process which is personally experienced, daily, by
millions of passengers worldwide. Airlines have devel-
oped various strategies in the hope of shortening board-
ing time, typically leading to announcements of the form
“ passengers from rows 40 and above are now welcome
to board the airplane”, often heard around airport ter-
minals. We will later show that several other known
processes are in fact special cases of airplane boarding.
Therefore for the purpose of presentation we will consider
our results in the context of this process which, rather
surprisingly, has not been analyzed previously.

We describe the boarding process as follows: Passen-
gers 1, ..., N are represented by coordinates Xi = (qi, ri),
where qi is the index of the passenger along the boarding
queue (1st, 2nd, 3rd and so on), and r is his/her assigned
row number. We assume that the main cause of delay in
airplane boarding is the time it takes passengers to or-
ganize their luggage and seat themselves, once they have
arrived at their assigned row. The input parameters for
our model are: u - The average amount of aisle length
occupied by a passenger, luggage included.

w - The distance between successive rows. For the
purposes of presentation we will assume that w is fixed.

b - Number of passengers per row.

D - Amount of time (delay) it takes a passenger to
clear the aisle, once he has arrived at his designated row.
We shall assume at first that D is fixed.

p(q, r) - The joint distribution of a passenger’s row
and queue joining time. p(q, r) is directly affected by the
airline policy and the way passengers react to the policy.

We rescale (q, r) to [0,1]x[0,1]. and define on the unit

square the Lorentzian metric

dτ2 = 4D2p(q, r)(dqdr + kα(q, r)dq2)

where k = bu/w and α(q, r) =
∫ 1

r
p(q, z)dz. In the ab-

sence of a boarding policy, p(q, r) = 1 and α = 1− r.
We define T (X) as the maximal proper time (integral

over dτ) of a time-like trajectory ending at X. We also

define L(τ) as the length (integral over
√
−dτ2) of the

space-like curve which is defined by the equation T (X) =
τ .

Our statements are (A) The boarding time of passenger

i is approximately
√
NT (Xi)

(B) The number dN of passenger with boarding

time between
√
Nτ and

√
N(τ + dτ) is approximately

1
2D

√
NL(τ)

In the statements we use the word approximately to
mean, ratio tending to 1 with probability approaching 1
as the number of passengers N tends to infinity.

Airplane boarding and Lorentzian geometry are related
via the partial orders which they induce. For Lorentzian
geometry we have causal strucure, for airplane boarding
the natural partial order is blocking. We say that passen-
ger X blocks passenger Y if it is impossible for passenger
Y to reach his assigned row before passenger X (and
others blocked by X) has sat down and cleared the aisle.
Airplane boarding functions as a peeling process for the
partial order defined by the blocking relation. At first
passengers which are not blocked by any other passen-
gers sit down, these passengers are the minimal elements
in the blocking relation. In the second round passengers
which are not blocked by passengers other than those of
the first round are seated and so forth. Boarding time
thus coincides with the size of the longest chain in the
partial order. Let X = (q, r) and X ′ = (q + dq, r + dr),
dq > 0, represent passengers with nearby coordinates. X
blocks X ′ if dr > 0, however he may block X ′ even when
dr < 0. Consider the time when passenger X arrives
at his designated row. All passengers with row numbers
beyond r which are behind passenger X in the queue
but in front of passenger X ′ will occupy aisle space be-
hind passenger X. The number of such passengers is
roughly Nαdq. Each such passenger occupies u/w units
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Discrete process Events Partial order Number of rounds Events in the same rounds

Space-time random points causal structure length of longest geodesics level curves
Disk I/O requests radial coordinate+unreacability total requests serviced
scheduling in the same rotation service time in the same rotation
Polynuclear growth nucleation events layering height of droplet layers
Patience numbered cards higher value longest increasing cards in
sorting in a deck later in the deck subsequence in the deck the same pile
Airplane passengers passenger total boarding passengers who
boarding blocking time sit at the same time

TABLE I: A comparison of of different processes which are modeled by space-time

of aisle length where we take the basic aisle length unit
to be the distance between rows. The row difference be-
tween X and X ′ is −(N/b)dr thus passenger X is block-
ing passenger X ′, via the passengers which are behind
him, roughly when dq ≥ −αkdr. Thus, we see that the
metric corresponding to a boarding scenario is designed
in such a way that the relation of blocking between pas-
sengers and the relation of causality between space-time
points asymptotically coincide. The metric is then con-
formally scaled so that the volume form is proportional
to the number of passengers. This procedure resembles
the causal set theoretic approach to quantum gravity ,[1].
By the asymptotic equivalence between passenger block-
ing and causality we may replace in the analysis the air-
plane boarding process with the peeling process applied
to the causal structure on points in space-time sampled
with respect to the volume form. By a well known result
on two dimensional Lorentzian metrics we can assume
by a change of coordinates that the space-time is con-
formally flat on some domain (not necessarily the unit
square). In light-like coordinates, chains in the causal
relation in a conformally flat space-time coincides with
increasing (upright) subsequences. The peeling process
applied to the causal structure coincides with patience
sorting which is a well known card game process which
optimally computes the longest increasing subsequence
in a permutation, [2], [3], [4]. Statement (A) then corre-
sponds to a result on increasing subsequences of Deuschel
and Zeitouni [5]. The global scaling constant 4D2 comes
from a result of Vershik and Kerov [6]. Statement (B) fol-
lows from statement (A) and the fact that the level curves
given by the equation T (X) = τ are Lorentz-orthogonal
to maximal proper time trajectories. A previous compu-
tation of Aldous and Diaconis on pile sizes in patience
sorting [3] corresponds to statement (B) when the space-
time is assumed to be flat.

We may find chains of passenger blocking by consider-
ing a set of pointers in which each passenger points to the
last passenger who blocked her way to the assigned row.
The seating time of a passenger X will be D times the
length of the trail of pointers starting from A. The con-
struction of the metric ensures that this trail of pointers
will cluster along a length maximizing geodesic trajectory
ending at X.

So far we have assumed that D is fixed. It would seem
more realistic to allow D to be a distribution. We can

accommodate within our models delay distributions but
the construction becomes somewhat less explicit. Given
a distribution D, let W be the maximal weight of an
upright sequence amongN points uniformly chosen in the
unit square with weights distributed according to D. By
a result of Hammersley, [7] the random variable W will
asymptotically concentrate on a value of the form cD

√
n

for some constant cD which depends on the distribution
D. The metric which models airplane boarding when
D is a distribution is given by dτ 2 = c2Dp(q, r)(dqdr +
kα(q, r)dq2)

Patience sorting which coincides with airplane board-
ing on conformally flat spaces is also known, [8], to be
equivalent to the Polynuclear growth (PNG), [8], [9],
which is a simple layer by layer surface growth model
in dimension 1+1. PNG is in the Kardar-Parisi-Zhang
(KPZ) universality class, [10]. In the mapping between
PNG and airplane boarding, Nucleation events corre-
spond to passengers. In previous studies of the PNG
model (without sources) it was assumed that the proba-
bility of a nucleation event is uniform in space and time,
which leads to flat space-time models on various domains
D which depend on the initial conditions. When one as-
sumes more generally an inhomogeneous environment in
which nucleation rates may vary one obtains more general
space-time models as in airplane boarding. The space-
time model controls the macroscopic shape of the surface.
In this setting the height of the surface at location x at
time t will be given by T (x, t), the length of the maximal
time-like trajectory ending at (x, t) and the nucleation
events whose spread is sufficient for creating the layers
above position x are clustered along the length maximiz-
ing curve.

Using the relation between increasing subsequence and
airplane boarding we can study the fluctuations in board-
ing time when the corresponding space-time is flat by
reinterprating the corresponding results on increasing
subsequences [11], [12]. A similar interpretation of re-
sults on increasing subsequences in the context of the
PNG model is presented in [8]. We assume that the pas-
sengers are represented by N uniformly sampled points
from a domain A in the unit square with metric dqdr. We
assume that there is a unique maximal length trajectory
in A, which we call C. When the endpoints of C are at
corners on the boundary of the domain (for example if
D is the unit square itself) the fluctuations are identical
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to those of the largest eigenvalue of a random N by N
matrix in the Gaussian unitary ensemble (GUE). When
only one endpoint is at a corner while the other lies on
a straight line segment of the boundary, the fluctuations
are identical to that of the largest eigenvalue of a matrix
in the Gaussian symplectic ensemble (GSE). when the en-
tire curve lies along the boundary of D between two cor-
ners we obtain the fluctuations of the largest eigenvalue
in the gaussian orthogonal ensemble (GOE). All these
cases appear naturally under various boarding process
assumptions. In light of these results we expect the fluc-
tuations of boarding time for the boarding process with
general parameter settings (which do not correspond to
flat metrics) to have features which are common to the
various matrix models. In particular we expect

1) the order of magnitude for the fluctuations in board-

ing time about the value of
√
Nd(M) should be N1/6.

2) The average value of the fluctuations should be neg-
ative.

3) The probability of a fluctuation of size cN 1/6 as

c→∞ should have order of magnitude e−γc
3/2

for some
constant γ.

Some initial experimental data using various boarding
process parameters support these expected conclusions.

the fact that PNG is one of the processes in our class
explains why the magnitude of fluctuations in airplane
boarding are the same as those of KPZ in 1+1 dimen-
sions as derived from the value of the dynamical scaling
exponent β = 1/3.

boarding policies and the most natural instances of the
disk scheduling problem lead to models with a continuous
family of maximal length trajectories. For flat space-time
models the fluctuations are on the order of log(n)2/3n1/6,
since the fluctuations behave like an extreme value dis-
tribution on nf independent variables Zi where Zi is the
distribution describing the fluctuations associated with a
single length maximizing trajectory and f is related to
the transversal width of the fluctuations. We expect this
to hold more generally for all models (not neccessarily
flat) with families of maximizing curves.

Another problem which is known to be strongly re-
lated to the study of increasing sequences is the schedul-
ing of I/O requests to a disk drive with a linear seek
function [13], [14]. We can show that the problem of
I/O scheduling can be modeled by a Lorentzian metric
on the surface of the disk drive (or compact disk). A disk
drive, or optical storage such as a compact disk, has the
shape of an annulus S1 × I, where I is an interval. the
annulus can be represented in normalized polar coordi-
nates, say 0 ≤ r ≤ 1, 0 ≤ θ ≤ 1 with the identification
(r, 0) = (r, 1). The problem of scheduling I/O requests
can be presented as follows:

Given N I/O requests to different locations in the disk
drive, find the optimal sequence in which the requests
should be served so that total service time for all the
requests is minimal.

Since not all data is equally popular we may assume
that the locations of the N I/O requests are sampled

with respect to a density p(r, θ)dθdr which quantifies the
relative popularity of the data at location (r, θ). The
metric on the annulus which models I/O scheduling is
given by
dτ2 = p(r, θ)(dr2 − cdθ2)
Here c is a constant which depends on the radial speed

of the read/write head of the disk drive and the rotational
speed of the disk. In particular the optimal scheduling
process (algorithm) of Andrews et al., [13], essentially co-
incides with the peeling process applied with respect to
the causal structure of the space-time to the N request
locations. In analogy with statement (A), the number of
disk rotations which are required by the optimal schedul-
ing algorithm to service all N requests is asymptotically√
Nd(M). In the analogue of statement (B) dN refers to

the number of I/O requests which are serviced between

rotations
√
Nτ and

√
N(τ + dτ).

Disk scheduling can be mapped to PNG with a circular
initial surface.

Statements (A) and (B) have several useful applica-
tions to the design and analysis of airplane boarding and
disk scheduling strategies. A full description of the ap-
plications will be provided elsewhere. Here we want to
present an application to the analysis of airline boarding
strategies. Typically with the exception of first class pas-
sengers and passengers with special needs, airlines will
attempt back to front boarding policies. Such policies
initially allow passengers from the rear of the airplane
to join the queue first and gradually allow more passen-
gers (rows 40 and above, rows 30 and above) from the
back towards the front. A boarding policy is given by
a function F (r) which represents the time in which pas-
sengers from row r are allowed to join the queue. Back
to front policies correspond to non increasing functions
F (r). In order to specify a distribution p(q, r), given a
policy F , we also need a passenger reaction model which
will tell us how passengers react to airline policies. One
simple passenger reaction model assumes that passengers
do not attempt to join the queue before they are allowed
and join the queue at uniformly distributed times within
a time units of being allowed to join. We may think of
1/a as a parameter which measures the attentivness of
passengers. As a decreases the passengers become more
attentive and the airline can exert more control via the
policy F . This reaction model coupled with a policy F
leads to a distribution p(q, r) which is uniform on points
(q, r) satisfying.
F (r) ≤ q ≤ F (r) + a
and vanishes outside this domain. We recall that the

parameter k depends on interior design parameters of the
airplane i.e., distance between rows and number of seats
per row. When studying airline boarding strategies it is
natural to fix k. Thus, given fixed values of a and k an
airline policy specifies a model MF and the problem of
finding a good or optimal policy becomes the problem of
minimizing d(MF ) among all F .

When k = 0 we obtain flat space-time models which
are supported on the domain p > 0 and the problem be-
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FIG. 1: Optimal policy for k = 0 and a = 1/3.

comes that of finding the domain with smallest diameter
given a fixed a. The optimal policy for a fixed a is never
unique. One can show that if F1 and F2 are optimal
then so is Max(F1, F2), leading to a unique maximal op-
timal policy F which is given by a sequence of hyperbola
segments as pictured in figure 3 for the case a = 1/3.

The diameter of the corresponding model Ma is given
by

d(Ma) = 2
m

√
m+ 1− 1

a

Where m is the unique integer satisfying
2m+1

(m+1)2+m ≤ a < 2m−1
m2+m−1 .

In particular we conclude that as the attentivness of pas-
sengers increases the normalized boarding time as given
by d(Ma) tends to zero.

The same conclusion holds as long as k < 1, however,
at k = 1 a phase transition occurs. To understand the
phase transition we consider the family of linear back to
front (attentivness dependent) boarding policies given by
Fa(r) = 1 − 1

(1−a)r . When k < 1 these policies satisfy

d(Ma) −→ 0 as T −→ 0. On the other hand d(MT )→∞

as T −→ 0 for k > 1. Geometrically the reason for the
phase transition is that when k > 1, the antidiagonal
q + r = 1 which was space-like for k < 1 becomes time-
like and it’s proper time increases as T tends to 0. The
same phenomenon occurs for all back to front policies.
Assuming the realistic values of 5-6 passengers per row,
each occupying half the distance between successive rows
we estimate that 2.5-3 is a realistic range for the param-
eter k. Based on this value and our analysis we conclude
that simple back to front policies as practiced by many
airlines are likely to be ineffective and even detrimen-
tal. These results are in line with results from simulation
studies, [15], [16],[17]. In addition the results above in-
dicate that local (in space and time) congestion which is
reflected in the value of the parameter k, greatly affects
boarding time. This suggests that airline policies should
try to diffuse congestion by spacing passengers as much
as possible at any given time. This can be achieved by
applying multiple class policies which divide passengers
into classes, say according to seat type. At any given
time only one class is allowed to board. Multiple class
policies effectively reduce the value of the local conges-
tion parameter from k to k/l, where l is the number of
classes. This explains the efficincy of multiple class poli-
cies as observed in simulation studies. our results provide
a theoretical and quantitative basis for these conclusions.

In conclusion, we have shown that several processes
which appear naturally in diverse contexts can be
mapped to a peeling process with respect to the causal
structure, acting on points in 2 dimensional space-time.
The processes share common statistics which are strongly
related to RMT. The analysis of these process carries ap-
plications to the design of good airplane boarding policies
and I/O scheduling algorithms for disk drives and for the
analysis of the macroscopic shape of polynuclear growth
surfaces.
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