
Analysis of the GSTF disk scheduling algorithm

Eitan Bachmat ∗ Ilan Elhanan †

1. INTRODUCTION
Modern disk drives have the ability to queue incoming

read and write requests and to service them in an out of
order fashion. In the disk scheduling problem we are given
at any given moment a set of queued requests and we wish
to service them in an order which minimizes the service rate,
or equivalently, in an order which maximizes the number of
requests serviced per time unit.

The disk scheduling problem with various assumptions has
a long history of both experimental and theoretical work, see
[2, 3, 4, 5, 6, 8, 9, 12, 11] among many others.

In [12], Seltzer, Chen and Ousterhout suggest several al-
gorithms for the disk scheduling problem in an attempt to
achieve good performance without starving requests, i.e.,
that the maximal response time for a request remains low.
At first they consider the greedy algorithm which chooses
as the next request to be serviced, the request which can
be satisfied in the least amount of time given the current
disk head position. This policy is known as SPT (shortest
positioning time). This policy has very good overall perfor-
mance, but some neglected requests may wait a very long
time to be serviced. To alleviate this problem the authors
suggest that the disk drive be divided into several cylindrical
regions, given by ranges of the radius of the request. The
algorithm, known as GSTF (Grouped shortest time first) ,
services all accumulated requests to a given region of the
disk drive (ignoring incoming requests to the region during
the service time) and moves on to service the accumulated
requests of the next region.

In this paper we will analyze the GSTF algorithm. The
analysis of the basic case is closely related to the card games
called Bulgarian solitaire and Austrian solitaire, see [1, 10].

∗Department of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel. Email: ebachmat@cs.bgu.ac.il. Re-
search supported in part by an Israeli Science Foundation
research grant
†Department of mathematics, Ben-Gurion University, Beer-
Sheva, Israel, Email:ilanel@post.bgu.ac.il

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

We show that if I/O requests are uniformly distributed, in
the limit, as the number of regions becomes large, the GSTF

algorithm has a throughput which is
√

2 times larger than
in the case of a single region.

The GSTF algorithm implicitly assumes that the distribu-
tion of requests to the disk is uniformly random. We in-
troduce a variant of GSTF which handles non uniform distri-
butions better in terms of performance while somewhat in-
creasing the risk of starvation. We provide a partial analysis
of the variant. the variant seems to exhibit rather complex
behavior.

2. PRELIMINARIES
We model the disk drive platter in polar-like coordinates.

For convenience, the radial coordinate will have range 0 ≤
r ≤ 1 and similarly, we let the angular coordinate have range
0 ≤ θ ≤ 1, instead of the more standard range in [0, 2π]. The
annulus is formed via the identification of points (r, 0) with
(r, 1). Note however, that unlike polar coordinates we do
not identify the points (0, θ), since the platter is an annulus.
We can conveniently normalize our time parameter t so that
at time t = 0, the angular position of the head of the disk is
θ = 0, or in other words, θ(0) = 0. We can also normalize the
time parameter so that the disk platter makes a full rotation
after precisely one time unit. Given that the platter rotates
at a constant speed and that the head only moves radially,
this implies that

θ(t) = t mod 1 (1)

The seek time function f(r) measures the time required
for the head to radially move a distance r. The motion must
start and end without radial velocity since the disk head
must be stable to read and write data at a given radius.

The constant speed rotation of the disk which is respon-
sible for equation (1), together with the seek time function
provide the following mathematical characterization of disk
drive performance.

Definition 1. Let L1 = (r1, θ1) and L2 = (r2, θ2) be two
locations on a disk drive with seek time function f . We
define df (L1, L2), the time required to move from location
L1 to location L2 as the minimum of t2 − t1 taken over all
pairs t1, t2 such that θ(t1) = θ1, θ(t2) = θ2 and t2 − t1 ≥
f(|r1 − r2|).

We will assume that the seek distance function f is linear
and is normalized so that f(t) = t. Physically, this choice
amounts to ignoring the effects of acceleration and decel-
eration of radial disk head motion. We assume that the

disk head reaches maximal velocity instantaneously and sim-
ilarly, can stop instantaneously. Obviously, both assump-
tions are unrealistic, but it is easier to tackle this toy model
and it provides us with some basic insights.

We assume that in any given point in time we have n I/O
requests, whose locations are chosen in i.i.d. fashion from
a distribution µp = p(r, θ)drdθ. When an I/O request is
handled by the disk drive, a new request is introduced to
the queue. This way the number of requests in the queue
remains constant. Due to commonly practiced data layout
considerations, usually, the distribution p = p(r) depends
only on r. The distribution which was chosen in the simula-
tion evaluation of the GSTF algorithm in [12] was the uniform
distribution given by p(r) = 1.

In the case of a linear seek function and a given set of
n given requests, Andrews, Bender and Zhang (ABZ) have
found a simple algorithm for computing the optimal order
of service, [2].

We describe a family of I/O scheduling algorithms which
we call GSTF algorithms.

A GSTF algorithm consists of the choice of domains Di, i =
1, ..., k in the disk drive. The union of the domains covers the
disk drive and they can only intersect along boundaries. At
each stage of the algorithm a domain is chosen, and all the
outstanding requests in the domain are serviced (ignoring
newly arriving requests) using the ABZ algorithm. Once all
the requests have been serviced another domain is chosen.

In the version of the GSTF algorithm presented in [12], the
domain Di was given by i−1

k
≤ r ≤ i

k
. The choice of the

domain consisted of the periodic sequence

D1, D2, ..., Dk, D1, D2, ..., Dk, D1

We will call the GSTF algorithm with these choices a standard
GSTF algorithm. We will say that a domain is radial if it is
given by a ≤ r ≤ b.

We will measure performance by the service rate, i.e., the
average time required to service a single request.

The following result, is an amalgamation of results from
[3] and [7] and [13] provides an asymptotic formula for the
service time of the ABZ algorithm on n requests sampled
with respect to a radial distribution in a radial domain.

Theorem 1. Consider a disk drive with seek time func-
tion f(t) = t. Let D be a radial domain of the form a ≤ r ≤
b in the cylinder C, representing disk locations. Let p(r)drdθ
be a radial distribution on D. Let R̄ be a set of n requests in
D, sampled i.i.d. from the density p and let ST (R̄) be the
number of disk rotations needed to service all the requests in
R̄ with an optimal policy. Then: For all ε > 0, there is a
δ = δ(ε) such that with probability at least 1− eδn

|ST (R̄)− diam(D)√
n

| < ε
√
n (2)

where diam(D) =
√

2
∫ b
a

√
p(r)dr.

We define the average service rate of a scheduling algo-
rithm withm outstanding requests asRm = limt→∞Sm(t)/t,
where Sm(t) denotes the number of requests serviced by time
t. We will consider algorithms where the above limit ex-
ists (and is a given constant) with probability approaching
1, and study the asymptotic behavior of Rm as m → ∞.

In particular, we define the normalized asymptotic service
rate to be R̃ = limm→∞Rm/

√
m, assuming the limit exists.

From the theorem above, we conclude that the GSTF algo-
rithm with a single region D consisting of the whole disk and
with uniformly dense I/O requests has a normalized rate of

R̃ = 1/
√

2

3. ANALYSIS OF THE GSTF ALGORITHM
We will prove the following result:

Theorem 2. For a uniform distribution of requests, lin-
ear seek function and k regions, the normalized rate of the
standard GSTF algorithm is

R̃ =

√
k

k + 1

Sketch of proof:
We need to estimate how many requests are in a disk

region when we apply the algorithm to that region. The fol-
lowing discrete Markov chain describes the evolution of the
number of requests in the domains Di of the GSTF algorithm,
applied to m outstanding requests.

denote by Xm(n, i) the number of requests in the i-th re-
gion after n steps (a single step occurs every time we apply
the ABZ algorithm to a region of the disk) when the algo-
rithm is applied with m outstanding requests. Denote by
Xm(n) the k-tuple (Xm(n, 1), ..., Xm(n, k))

The Markov chain evolves as follows. At time n = i(mod k),
we service all the Xm(n, i) requests in the i−th region, then
we get Xm(n, i) new requests, each one of the new requests
is placed independently in a region which is chosen by sam-
pling the uniform distribution on k elements. The resulting
state is the n+1 state of the chain.

Denote by Ym(n) the process Xm(nk)
m

. We wish to show
that when m and n are large, Ym(n) is with high probability

close to the vector Lk, with entries Lk(i + 1) = 2(k−i)
k(k+1)

,

i = 0, ..., k − 1. We prove the following result:

Theorem 3. for each ε > 0 there exist a time n0 and a
constant C such that for each time n ≥ n0:

Pr(‖Ym(n)− L(k)‖∞ > ε) ≤ C

m

where Pr denotes the probability of an event.

The strategy to prove theorem 3 is by showing that the
process Ym(n) converges to a deterministic process when m
tends to infinity. The deterministic process converges to
L(k) when n tends to infinity. These two facts together will
give us theorem 3.

Consider the following deterministic process X̃(n):
There are are k regions numbered from 0 to k-1. Each

region contains a fluid of some level qi ≥ 0, with
∑
i qi = 1.

The sum of the fluid in the system stays constant and is
equal to 1. At time n=i(mod k) we redistribute the contents
of the i− th cell evenly among all cells (including the i− th
cell). The result is the n+1 stage of the process.

The following 2 lemmas make the idea in the above para-
graphs concrete:

Lemma 1. For each ε > 0 and each time n0 there exists
a constant C such that if Xm(0)

m
= X̃(0) and 0 ≤ n ≤ n0

than:

Pr(‖Xm(n)

m
− X̃(n)‖∞ > ε) ≤ C

m
(3)

Lemma 2. Let Y (n) be the process X̃(nk), then, Y (n)
converges to L(k). moreover, the convergence is uniform
in the initial states, i.e., for each ε > 0 there exist N such

that for each n ≥ N and for each vector
−→
V ∈ Rk such that

Y (0) =
−→
V , ‖Y (n)− L(k)‖∞ ≤ ε.

We need to compute R̃ = limm→∞Rm/
√
m. Theorem

3 essentially says that apart from an exponentially small
portion of the steps, the number of requests we serve at
each step is roughly 2m

k+1
requests, and from this, a simple

computation provides the normalized rate in the theorem.

4. A VARIANT OF THE GSTF ALGORITHM
We present a variant of the GSTF algorithm. The algo-

rithm again consists of a choice of domains in the disk drive.
The difference is that the domains are not serviced in a pre-
scribed order. Instead, after a domain has been serviced, the
next domain to be serviced is chosen to be the one contain-
ing the most requests. This variant may be more efficient,
especially when the probability measure is far from being
uniform.

To analyze this variant we need to know how many re-
quests on average are in the region we are serving. To do
this we need to explore a Markov chain which describes how
many requests are in each region over time. This chain is
superficially similar to the corresponding Markov chain de-
scribing the standard GSTF algorithm. However, there are 2
differences. The first one is we no longer assume the distri-
bution is uniform, therefore each region Di has a weight αi
associated with it. The weights are numbers between 0 and
1 such that their sum is 1. When we get the new requests
instead of being placed into cells according to a uniform dis-
tribution, the requests are placed according to the weights
αi. The second difference is that the next region to be ser-
viced will be the one with the most requests.

There is also a corresponding deterministic process in which
a fluid is distributed among the regions. We examined some
cases of 2 regions.

The deterministic process may be viewed as iterating the
function f on the interval [0,1]. Where f is defined as fol-
lows:

f(r) =

{
αr if r > 1

2

α+ (1− α)r if r ≤ 1
2

The behavior of the process depends on the parameter α.
The following result provides an analysis of the dynamics of
the deterministic process for a certain range of the parame-
ter.

Theorem 4. when α satisfies the following 2 equations:

1− αn−1 − αn ≥ 0

1− 3αn−1 + αn < 0

There exist a unique, globally attracting periodic orbit of
length n, i.e., no mater what the starting point is, the process
converges to that periodic orbit.

The conditions on α in the theorem define an infinite set
of semi-open intervals with mutually exclusive closures. We
also know that for some other values of α there are more
complicated periodic orbits. In ongoing work we are trying
to analyze the dependence of the dynamics of the map f on
the parameter α, we expect rather complex dependence.

Additionally, there are many interesting open questions on
the behavior of GSTF, such as monotonicity of performance
with respect to partitioning of regions.

Acknowledgments: E. Bachmat and I. Elhanan have been
supported by grant 580/11 of the Israeli Science Foundation.

5. REFERENCES
[1] E. Akin and M. Davis, Bulgarian solitaire, American

Mathematical Monthly, 92(4), 237-250, 1985.

[2] M. Andrews, M.A. Bender, and L. Zhang, New
algorithms for the disk scheduling problem,
Algorithmica, 32, 277-301, 2002. Conference version,
Proceedings of FOCS, pages 580-589, October 1996.

[3] E. Bachmat, Average Case Analysis of Disk
Scheduling, Increasing Subsequences and Spacetime
Geometry, Algorithmica, 49(3), 212-231, 2007.

[4] F. Cady, Y. Zhuang, and M. Harchol-Balter. A
Stochastic Analysis of Hard Disk Drives, International
Journal of Stochastic Analysis, Article ID 390548,
2011.

[5] E.G. Coffman, L.A. Klimko and B.Ryan, Analysis of
scanning policies for reducing disk seek times, SIAM
Journal of computing, 1(3), 1972.

[6] P.J. Denning, effects of scheduling on file memory
operations, Proceedings of AFIPS spring joint
computer conference, 9-21, 1967.

[7] J.D. Deuschel and O. Zeituni, On Increasing
Subsequences of I.I.D. Samples, Combinatorics,
Probability and Computing, 8, 247-263, 1999.

[8] H. Frank, Analysis and optimization of disk storage
devices for time-sharing systems, Journal of the ACM
16(4), 602-620, 1969.

[9] C.C. Gotlieb and G.H. MacEwen, Performance of
movable-head disk storage devices, Journal of the
ACM, 20(4), 604623, 1973.

[10] S. Popov, Random Bulgarian solitaire, Random
Structures and Algorithms, 27(3), 310-330, 2005.

[11] A. Riska, E. Riedel and S. Iren, Adaptive disk
scheduling for overload management , in Proceedings
of the 1st International Conference on Quantitative
Evaluation of Systems, (QEST), 176-186, 2004.

[12] M. Seltzer, P. Chen, and J. Ousterhout, Disk
scheduling revisited, in Proceedings of the USENIX
Technical Conference, 313324, 1990.

[13] T. Seppalainen, Large deviations for increasing
sequences on the plane, Probability Theory and
Related Fields, 112, Issue 2, 221-244, 1998.

