
Analysis of Airplane Boarding Times

Eitan Bachmat ∗ Daniel Berend † Luba Sapir ‡ Steven Skiena §

Natan Stolyarov ¶

Abstract

We model and analyze the process of passengers boarding an airplane. We show how

the model yields closed-form estimates for the expected boarding time in many cases of

interest. Comparison of our computations with previous work, based on discrete event

simulations, shows a high degree of agreement. Analysis of the model reveals a clear

link between the efficiency of various airline boarding policies and a congestion parameter

which is related to interior airplane design parameters, such as distance between rows. In

particular, as congestion increases, random boarding becomes more attractive among row

based policies.

1 Introduction

The process of airplane boarding is experienced daily by millions of passengers worldwide. Air-

lines have adopted a variety of boarding strategies in the hope of reducing the gate turnaround

time for airplanes. Significant reductions in gate delays would improve on the quality of life

for long-suffering air travelers, and yield significant economic benefits from more efficient use

of aircraft and airport infrastructure. (See Van Landeghem and Beuselinck (2002), Marelli et

al. (1998) and Van den Briel et al. (2005).)

The most pervasive strategy currently employed links passenger queueing time to row

assignment. In particular, airlines tend to board passengers from the back of the airplane first.

Such “back-to-front” policies are implemented by announcements of the form “Passengers

from rows 30 and above are now welcome to board the plane”.

It is not clear a priori how to analyze such strategies or to determine which policies

are most effective at minimizing the expected boarding time. Airplane boarding has been

previously studied through discrete event simulations by Van Landeghem and Beuselinck
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(2002), Marelli et al. (1998) and Ferrari and Nagel (2005). In addition, Van den Briel et al.

(2003) formulated a non-linear integer programming problem, related to airplane boarding

time, to which they applied various heuristics in order to find efficient boarding policies. The

policies were then tested using a discrete event simulation.

Somewhat surprisingly, these studies have found that back-to-front policies are not neces-

sarily effective, and might even be detrimental when compared with a boarding process with

no boarding policy at all (random boarding). Van Landeghem and Beuselinck (2002) argue

that back-to-front policies are ineffective because they cause local congestion in the airplane,

but no explanation is given for the mechanism by which congestion affects boarding time.

These studies also show that outside-in boarding policies, in which window seat passengers

board first, followed by middle and then aisle seat passengers, can improve boarding time. In

such policies, and others suggested by the studies, passengers are divided into multiple classes

or groups which are boarded in sequence.

The study by Marelli et al. (1998) of Boeing Corp. emphasizes the effect of airplane

interior design on boarding time, again using discrete event simulation methods. The paper

describes a commercial simulation product, and simulation results are only sketched. It is

therefore difficult to analyze the results of this work.

The results and observations of Van Landeghem and Beuselinck (2002), Van den Briel

et al. (2003) and Ferrari and Nagel (2005) are of considerable value and interest. However,

they do not address the need for a unified, analytic approach which can lead to a deeper

understanding of the boarding process. As an example of the limitations of previous methods,

we note that the simulations in all studies were carried out with particular airplanes in mind.

It is therefore important to know how the success of airline boarding policies is related, if

at all, to airplane design parameters, such as distance between rows, if the results are to be

extended to other airplanes. The model of Van den Briel et al. (2003) does not take such

design parameters into account.

In addition, any new scenarios need to be tested from scratch, and there is very little

insight to be gained as to the underlying mechanisms of success for various strategies.

An analytical model which takes airplane design parameters into account was recently

introduces in Bachmat et al. (2005, 2006). The authors express the expected boarding time

T , as the number of passengers is large, in terms of the solution to a variational problem.

The variational problem turns out to have a beautiful geometric interpretation in terms of

spacetime (Lorentzian) geometry. A major issue that is not addressed in Bachmat et al. (2005,

2006) is the validation of the model against detailed simulations of the boarding process. This

is particularly important since the model makes many simplifying assumptions. In addition,

the variational problem which is solved describes the asymptotic behavior of the model when

the number of passengers tends to infinity. The papers also use a substantial amount of

physics-related terminology, a fact which makes them less accessible to the operations research

community.
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The purpose of this paper is to:

• explain the model in terms of classical notions in operations research and optimization;

• explain how to use the model to compute boarding times and assess boarding policies.;

• validate the model against results from detailed computer simulations;

• establish the relation between congestion and efficiency of airline boarding policies.

When congestion is low, back-to-front boarding policies are very effective, while random

boarding is very ineffective. When congestion is high, random boarding is very effective,

while back-to-front boarding with equal size groups is detrimental.

In establishing the relation between congestion and airline boarding policies we utilize a clear

advantage of analytical models over simulations, namely the ability to consider large classes of

boarding policies at once. In Section 2 we consider airplane boarding as a project consisting

of tasks with precedence relations. When passengers board the airplane they essentially

“solve” the project scheduling problem via the critical path method. The input parameters

for the project, which determine the precedence relations and delay times, include distance

between rows in the airplane, number of passengers per row, passenger aisle clearing time

and the airline boarding policy. Airplane boarding is not a deterministic process but rather

a stochastic one. We explain how to provide a stochastic framework to the input parameters

and thus to the boarding process.

As is typical of many stochastic processes, the behavior of the process becomes simpler

and more deterministic as the number of passengers tends to infinity. In Section 3 we present,

following Bachmat et al. (2005, 2006), a constrained variational problem whose solution

provides the expected critical path and boarding time in the limit as the number of passengers

tends to infinity. The input to the variational problem is a probability measure p, determined

by the airline boarding policy and a congestion parameter k which is related to the interior

design of the airplane.

In Section 4 we describe a large class of airline boarding policies. We show how to associate

with to each policy a probability measure p, to be used in the variational problem.

In Section 5 we provide detailed computations of the expected boarding times for a large

class of airline boarding policies. The computations show how the variational problem can

be solved in many cases and form the basis for comparison with the simulation results.

In Section 6 we apply the calculations of Section 5 to many specific boarding policies

considered in previous studies. A comparison of our calculations with the results of the

detailed discrete event simulations of Van Landeghem and Beuselinck (2002) and Van den

Briel et al. (2003) shows a rather remarkable degree of overall agreement on the relative merit

of various policies. The comparison serves to validate the model. In addition, the results show

that it is difficult to substantially improve upon random boarding (i.e., no policy) without
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exerting a large degree of control over the boarding process or reverting to policies which

incorporate outside-in seat boarding. It seems unlikely that passengers will tolerate strict

control boarding policies, even if these are easy to implement. Among policies which exert

mild control over passengers, the best candidates for improving upon random boarding are

policies combining outside-in boarding with a touch of back-to-front boarding.

In Section 7 we prove a general result which holds for a very large class of boarding policies.

The result shows that the failure of Van Landeghem and Beuselinck to find mildly intrusive,

row based, boarding policies, which will improve upon random boarding, is not coincidental.

In fact, random boarding is asymptotically optimal as congestion grows among all row based

policies, not only those studied in the simulations.

Section 8 provides a brief summary and suggestions for future work.

2 The airplane boarding process

In this section we provide a model for the airplane boarding process. Our approach is to think

of airplane boarding as a project and use the standard representation of a project as a network

with precedences. We view airplane boarding as consisting of tasks, one per passenger. The

task of each passenger is to sit down. The precedence relations come from aisle blocking,

where a given passenger blocks the aisle while handling his/her luggage and getting organized

before sitting down. While this activity is taking place, other passengers which are behind

the given passenger cannot proceed to their assigned rows. Once the passenger’s task is

complete, they clear the aisle. As an example, consider passenger A whose row is 25 and

passenger B who is further back in the boarding queue and sits at row 30. It is obvious that,

until passenger A clears the aisle, passenger B will not be able to reach his/her row. The

delay associated with a passenger is the total amount of time that the passenger blocks the

aisle once he has reached his designated row.

Once we consider airplane boarding as a network of tasks with execution times (the delays)

and precedence relations, we notice that the boarding process essentially coincides with the

critical path method (CPM).

We formalize the network/project approach as follows. We assume that passengers are

assigned seats in the airplane in advance of the boarding process. Boarding is from the front

of the plane, and the front row is row 1.

The input data which determines the network is composed of the following items.

• A number h which represents the number of passengers per row.

• A sequence of passengers x1, . . . , xn, where xi denotes the i’th passenger in the boarding

queue. Each passenger xi has a seat in an assigned row, denoted by ri = r(xi). The

row number ri ranges between 1 and n/h, and each number in that range is the row

number of h different passengers. We implicitly assume here that the airplane is full.

4



• A length value W , which measures the aisle length occupied by a passenger, baggage

and personal space included.

• A delay value D, which measures the total amount of time it takes from the moment

passenger xi has reached his/her designated row until he clears the aisle. This time

includes getting organized, placing carry-on luggage and, possibly, passing by previously

seated passengers from the same row on the way to the designated seat. The last

operation usually requires the seated passengers to get up and sit back after the newly

arrived passenger has taken his/her seat.

• A length parameter l, representing the distance between successive rows.

The delay associated with the i’th passenger/task is D. The precedence relations are

defined as follows:

The location of row m along the aisle is ml. When passenger xi reaches his/her row, ri,

he/she occupies the aisle length segment from lri to lri + W . Passengers arriving at time ti

to their assigned row sit down and clear the aisle at time ti + D. Once they clear the aisle,

passengers who are behind them continue marching along the aisle as far as they can, and

the process repeats.

In terms of these parameters, we define the precedence/blocking relations as follows.

Consider the time t = ti+D−ε, just before the i’th passenger clears the aisle. Let xi1 , . . . , xik
be the passengers who are lined up behind xi at time t. Passenger xi has precedence over

passenger xij if

lri − (j − 1)W < lrj . (1)

The precedence relation can be explained as follows. Since xi1 , . . . , xij−1 are lined up behind

xi, they create an aisle backlog which stretches back to at least lri − (j − 1)W , and if the

inequality holds, this prevents xj from getting to his/her row.

It is customary, when dealing with projects, to represent the project using a 2-dimensional

chart, in which tasks are represented by points and precedence relations are represented by

arrows pointing to the right. We represent the airplane boarding process as follows. Let

m = n/h be the number of rows. Consider the passenger xi, who is in the i’th position in

the boarding queue and sits at row ri. We represent xi by the point (i/n, ri/m) in the unit

square. Since passengers can only block passengers who are further than them in the queue,

precedence relations will be represented by arrows pointing to the right.

Airplane boarding is not a deterministic process since airlines do not have full control on

the order in which passengers queue. We therefore need to provide a stochastic process setting

for the boarding process. We achieve this goal by presenting the ordering of passengers xi in

a random variable setting, in which the representation (i/n, ri/m) is relaxed.

Let p(q, r) be a joint distribution function on the unit square 0 ≤ q ≤ 1, 0 ≤ r ≤ 1,

which represents passengers’ row and queue positions. We will show later on how p(q, r) is
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determined by the airline’s boarding policy (and also by how passengers react to this policy).

It is through p that we model and compare boarding policies.

To determine the ordering of passengers, the distribution p(q, r)dqdr is sampled n times

independently to produce passenger coordinates xi = (qi, r̃i), i = 1, . . . , n, where we assume

that passengers are indexed in increasing order of the q-coordinate, i.e., q1 < q2 < . . . < qn.

To determine the row ri = r(xi) of passenger xi, the passengers are sorted by the value of r̃i

in increasing order. The first h passengers are assigned to seats in row 1, the next h to seats

in row 2 and so on.

We are interested in studying the vector (ti), where ti is the time passenger xi takes his

seat. In particular, we are interested in the behavior of the random variable t = maxi ti,

which represents the project completion time (length of critical path), or total boarding time.

3 Modeling the asymptotic behavior of airplane boarding with

space-time

Consider the stochastic airplane boarding process with parameters n,D, h, l,W, p, as defined

in the previous section. Many probabilistic systems obey laws of large numbers, which makes

their behavior more predictable as the number of system components increases. We will

therefore consider the asymptotic behavior of the boarding time random variable t as the

number of passengers tends to infinity. We will eventually have to verify that the results we

obtain are relevant for finite populations as well. Put

α(q, r) =

∫ 1

r
p(q, z)dz (2)

and

k = hW/l. (3)

We make the technical assumption that the unit square may be divided into a finite number

of regions in such a way that p is differentiable in each region (p is piecewise differentiable).

This assumption will hold in all our examples.

Let T = T (D,h, l,W, p) = T (p, k) be the solution to the following variational problem.

Consider the set Ψ of all piecewise differentiable functions φ(q) defined on an interval [q0, q1],

0 ≤ q0 < q1 ≤ 1, with values in the unit interval [0, 1], and satisfying

φ′(q) + k · α(q, φ(q)) ≥ 0. (4)

Let

T = sup
φ∈Ψ

L(φ) , (5)

where

L(φ) = 2D

∫ q1

q0

√
p(q, φ(q))[φ′(q) + k · α(q, φ(q))]dq. (6)
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A curve satisfying (4) is legitimate. Note that (4), together with the non-negativity of the

distribution function p, guarantee that the square root in (6) is defined. (We always take

the positive root). For a legitimate curve φ, the non-negative value L(φ) is the length of the

curve.

The constrained variational problem above has been studied previously, mostly in the

context of Lorentzian geometry. In the Lorentzian geometry literature, legitimate curves

are called timelike, and the Euler-Lagrange equation associated with the functional L is an

example of a geodesic equation. Here are a couple of basic, well-known facts about this

problem, which can be found in Sections 6 and 7 in Penrose (1972).

Fact 1: The supremum of the functional (6) over all curves satisfying (4) is always

achieved; hence T is the maximum of L(φ) over all curves satisfying (4). Such a curve, which

maximizes L(φ), is a maximal curve.

Fact 2: Maximal curves are differentiable at all points in which p is differentiable and

non-degenerate, p 6= 0, including boundary points. At such points it is also true that the

inequality (4) is strict.

The analysis carried out in Bachmat et al. (2005, 2006) suggests that, as the number

of passengers n becomes large, t ≈ T
√
n. More precisely, for any ε > 0, with probability

approaching 1 as n −→∞,

1− ε < t

T
√
n
< 1 + ε. (7)

Consequently, we will use T = T (p, k) as our normalized measure for boarding time.

The analysis suggests, furthermore, that, with probability approaching 1 as n −→∞, the

curve obtained by joining points along the critical path by straight line segments will lie in

an ε-neighborhood of a maximal curve. The maximal curves represent therefore the limiting

shapes of the critical paths.

4 Airplane boarding policies

Our aim is to explain how airline boarding policies can be compared using our model. In

this section we introduce the airline boarding policies which will be analyzed in this paper,

and explain how to assign to each of them a joint distribution p which will serve as an input

parameter for the model.

4.1 Announcement policies

An announcement policy is a policy in which the passengers are divided into groups G1, ..., Gm.

The groups are then called to board the airplane, starting with the passengers of the first
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group, then the second group and so on, until finally those of the m’th group are called

to board the airplane. We assume that passengers are attentive to the announced order of

boarding and therefore that all passengers from group Gi board before passengers from group

Gj if i < j. We also assume that the policy does not provide any further control information

beyond the specification of the groups. Hence, the boarding order within a group is uniformly

random.

An important special case of announcement policies is the family of row policies, in which

the groups are specified by blocks of contiguous row numbers. More explicitly, we consider

a partition of the unit interval 0 = r1 < r1 < . . . < rm < rm+1 = 1 and a permutation σ on

1 . . . ,m. Recall that there are n/h rows in the airplane. The group Gi consists of all passen-

gers from row rσ(i)(n/h) to row rσ(i)+1(n/h), namely, those whose normalized row number

r satisfies rσ(i) ≤ r < rσ(i)+1. If σ is the permutation m,m − 1, . . . , 1, the announcement

policy is a back-to-front policy, since it boards passengers from the back of the airplane first,

progressively moving towards the front. Such policies are very common in practice.

An announcement policy is uniform if all groups of passengers are of equal size, i.e., if

ri = i−1
m for some m. We denote by Fm the uniform back-to-front announcement policy with

m groups.

More generally, we denote by Fm,σ the uniform announcement policy with m groups and

the permutation σ.

As an example, the policy F1 corresponds to having no policy. The order in which passen-

gers queue is uniformly random. Let σ be the identity permutation on two elements. Then

F2,σ = F2,id is the policy which first allows passengers from the front half of the airplane

to board, followed by passengers from the back half. By contrast, if σ is the permutation

(2, 1), then F2,σ is the policy which first queues passengers from the back half of the airplane

followed by passengers from the front half. This is an example of a back-to-front policy. If

σ = (2, 1, 3), then F3,σ denotes the policy which allows the middle third of the airplane to

board first, followed by the front third and finally the back third.

4.2 Multiclass policies

More general airline boarding strategies can be described as tiered systems consisting of classes

Ci, which are not formed of contiguous blocks of rows. The classes Ci are further subdivided

into groups Gi,j . The boarding order is determined by the class and the group within the

class. Such strategies have been examined in Van Landeghem and Beuselinck (2002), Van

den Briel et al. (2003) and Ferrari and Nagel (2005). We provide two examples of classes.

• Half-row classes: These classes were introduced in Van Landeghem and Beuselinck

(2002). There are two classes, consisting of passengers on the right side of the aisle and

those to the left of the aisle, respectively. Note that in this 2-class system, unlike the seat

type classification system presented below, the delay distribution remains unaffected.
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• Seat type classes: Passengers may be classified according to seat type, instead of row

type. We can group all window seat passengers in one class, middle seat passengers in

a second class and aisle seat passengers in a third class. Seat type classification has a

feature which makes it more advantageous than other types of classification. The delay

distribution D is greatly reduced by allowing window passengers to board first, followed

by middle seat passengers, since passengers do not need to unseat others who are seated

already.

We will consider in this paper multiclass policies with an equal number of passengers in

each class. In terms of notation, consider a policy with c classes and m groups per class. We

denote by Gi,j the group consisting of passengers from the j’th class which are from rows

(i − 1)/m ≤ r ≤ i/m. We also use the single index notation Gi+(j−1)m = Gi,j . Let σ be a

permutation of the elements 1, . . . , cm. We denote by Fc,m,σ the policy which calls passenger

groups in the order given by σ.

As an example, if the passengers are divided into two classes according to half rows and

σ = (2, 1, 4, 3), then the policy F2,2,σ boards first passengers to left of the aisle in the back

half, followed by passengers which are left of the aisle but in the front half, then passengers

on the right of the aisle in the back half and finally passengers on the right of the aisle in the

front half. On the other hand, the policy with σ = (2, 3, 4, 1) first boards passengers which

are on the left in the back half, then on the right in the front half, then on the left in the

back half and finally on the right in the front half.

Given a permutation σ on m elements and c classes, there is a simple way of constructing

a class policy. We simply perform the Fm,σ policy on the passengers of class 1, then on those

of class 2 and so on. We call such a policy a cyclic class policy and denote it by Fc,m,σ.

As an example, the half-row policy with σ = (2, 1, 4, 3) is the same as the policy F2,2,τ ,

where τ = (2, 1).

4.3 Modeling policies

In order to compare boarding policies, we need to show how to assign a distribution p(q, r)

to the policy. We first consider row policies. Let qi = rσ(i)+1 − rσ(i) be the size of the

block of rows of group Gi. Let si =
∑i−1
j=1 qi be the sum of block sizes of all passengers

in groups G1, . . . , Gi−1. We will assume that the airplane is full. In that case the number

of passengers in a group is proportional to the number of rows in the block defining the

group. From our assumptions that passengers obey the policy rules it follows that pairs (q, r)

which represent passengers from group Gi will form a square Si in the unit square given by

si ≤ q < si+1 = si + qi and rσ(i) ≤ r < rσ(i)+1 = ri + qi. The squares Si for the permutations

σ = (4, 2, 3, 1) and σ = (4, 3, 2, 1) are depicted in figures 4.3 and 4.3. By our assumption that

boarding is otherwise uniformly random, p(q, r) restricted to Si is constant. The assumption

that the airplane is full means that each set of rows has the same number of passengers and
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Figure 1: The squares Si for the permutation σ = (4, 2, 3, 1).
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Figure 2: The squares Si for the permutation σ = (4, 3, 2, 1).
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consequently
∫ 1

0 p(q, r)dq = 1 for all 0 ≤ r ≤ 1. Since p vanishes outside the squares Si, we

get that p(q, r) restricted to Si equals 1/qi. A point (q, r) with si ≤ q < si+1 = si + qi is

below the square Si if r < rσ(i). For such points p(q, r) = 0. Consequently, any segment ψ of

a curve φ which passes entirely beneath the squares si satisfies

L(ψ) = 0 (8)

and does not contribute to L(φ). Moreover,

α(q, r) =

∫ 1

r
p(q, z)dz =

∫ rσ(i)+1

rσ(i)

1/qidz = 1.

Plugging into (4) we see that the condition on ψ translates into

ψ′ ≥ −k. (9)

Consider now the case of a point (q, r) with r ≥ rσ(i)+1 which lies above si. For such points

again p = 0 and α(q, r) = 0. For a curve segment ψ, consisting of such points, we conclude

that

L(ψ) = 0 (10)

and that (4) translates into

ψ′ ≥ 0. (11)

To simplify the analysis we choose the time unit normalization D = 1/2, which eliminates the

constant scaling prefactor 2D from the formula for L(φ). This procedure assumes that the

boarding policies which are compared do not affect the delay, say in comparison with random

boarding. This is indeed the case for row policies since the order in which passengers from

the same row arrive at their seats is uniformly random.

Extending the method above to model half-row class policies is straightforward. Let

1 ≤ g ≤ cm be a group index and let Gg = Gi,j , which means that the g’th group to

board the airplane consists of passengers from the i’th group in the j’th class, or equivalently

σ(g) = i+(j−1)m. Passengers from the g’th group are represented by points in the rectangle

Rg consisting of points with (g− 1)/cm ≤ q ≤ g/cm and (i− 1)/m ≤ r ≤ i/m. The density p

vanishes outside the union of the rectangles Rg. Also, since passengers within the g’th group

board in random order, the density p is constant on Rg. Since the number of passengers in

each group is the same and since all rectangles have the same size, the density p has the same

values for all g. Since the density must have unit integral over the unit square and the area

of the union of the rectangles Rg is 1/m, we conclude that p = 1/m on Rg for all g.

As before, points may be classified as being under, on or above Rg, and a simple compu-

tation shows that (8),(9),(10),(11) still hold.

It is important to observe that in a half-row class scheme the delay time experienced by

passengers is the same as that in row policies. The reason is that the delay of a passenger
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depends in general only on his/her half row, since passengers in the other half do not have

to get up in order for the newly arrived passenger to take his/her seat. Also the order in

which passengers arrive at the half row is uniformly random as in the case of row policies.

We conclude that the time unit normalization that sets D = 1/2 for row policies will also set

D = 1/2 for half-row policies.

As for seat type classes, the rectangles Ri and the density p are described in the same

manner, but with c = 3 rather than c = 2 for half rows. However, the delay D cannot be

considered a constant anymore since passengers in different groups experience different delay

values. Depending on the permutation σ, it may happen that passengers in a given block of

rows are boarded using the efficient order of window first, then middle and then aisle seat.

It may also happen that in other groups of rows the order is different, say, aisle, then middle

and then window, which is very inefficient. In order to model this situation, we let the delay

D depend on the group index. To each group Gg, consisting of the i’th group in the j’th

class, we assign a delay Dg which depends on which passengers from the i’th group of rows

boarded before the passengers from group Gg. As an example, the group Gg may consist of

the middle passengers in the back third of the airplane. The delay of these passengers will

depend on whether aisle passengers from the back third have boarded already or not. Delay

times for all the different scenarios must be observed using field experiments and assigned

accordingly to the different groups in the model. We then consider the delay D as a function

of (q, r), setting D(q, r) = Dg if (q, r) ∈ Rg and 0 otherwise. The functional (6) should then

be replaced by

L(φ) = 2

∫ q1

q0
D(q, φ(q))

√
p(q, φ(q))[φ′(q) + k · α(q, φ(q))]dq. (12)

5 Computations

In this section we compute asymptotic boarding times for various policies, introduced in the

preceding section.

5.1 Computing the boarding time for the policy F1

We begin our computations with the boarding policy F1 in which passengers randomly join

the boarding queue. We will recall the basic facts about this case from Bachmat et al. (2005,

2006) and state a few more which will serve us later.

When there is no boarding policy, the joint row/queue position distribution is uniform,

namely, p(q, r) = 1. Since p is uniform, we have α = 1 − r. We parameterize curves φ via

the q-coordinate and write the curve accordingly in the form r = r(q). The functional L(φ)

takes the form

L(r) = 2

∫ 1

0

√
r′ + k(1− r)dq. (13)
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Since the functional L(r) does not depend explicitly on q, the Euler-Lagrange equation asso-

ciated with the functional degenerates to the Beltrami equation

r′
dL

dr′
− L = const, (14)

or, explicitly
r′

2
√
r′ + k(1− r) −

√
r′ + k(1− r) = const. (15)

The general solution of the equation is

r = c1e
2kq + c2e

kq + 1. (16)

Given such a solution in the range α ≤ q ≤ β, the value of the length of r is

L(r) = (ekβ − ekα)

√
c1

k
. (17)

It is easy to see that there is a maximal curve r(q) in the unit square which maximizes the

functional L and satisfies r(0) = 0, r(1) = 1. Indeed, for any point (q, r) in the unit square the

line segments connecting (0, 0) to (q, r) and q, r) to (1, 1) are legitimate (satisfy (4)). Given a

maximal curve beginning at (q, r) 6= (0, 0), we can concatenate it to the line segment joining

the two points to obtain a curve at least as long. The same argument applies to the point

(1, 1) as an endpoint. Placing these boundary conditions, we obtain the solution

r =
e2kq

ek − 1
− ek

ek − 1
ekq + 1. (18)

The solution remains within the unit square for 0 ≤ q ≤ 1 when k ≤ ln 2. Applying the

functional to the solution, we obtain

T (F1, k) =

√
ek − 1

k
(19)

for k ≤ ln 2.

When k > ln 2, the solution (18) is not contained in the unit square anymore and we have

to consider the boundary of the square. We claim that the curve, which maximizes L subject

to the boundary conditions r(0) = 0, r(q0) = 0, 0 < q0 ≤ 1, is given by the q-axis segment

r(q) = 0 between the endpoints. To see this, we can compare the functional L to a simpler

functional L̃(r) =
∫ 1

0

√
r′ + kdq. Obviously, L̃(r) ≥ L(r) for any curve r(q) in the unit square.

It is easy to verify that the Euler-Lagrange equation associated with L̃ is r′′ = 0, and so any

line segment is a solution. The claim follows by noting that, for r(q) = 0, the values L and L̃

coincide.

By fact 2, a maximal curve has to be differentiable. We conclude that the maximal curve

r(q) consists of a segment r1 of the form [0, q0] on the q-axis, followed by a curve r2 which solves

the Euler-Lagrange equation between the points (q0, 0) and (1, 1). By the differentiability of
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r we need r′2(q0) = 0. We solve the Euler-Lagrange equation with boundary conditions

r2(q0) = 0 and r(1) = 1, requiring in addition that r′2(q0) = 0, which leads to q0 = k−ln 2
k .

Plugging the resulting curve r into the functional leads to

T (F1, k) =
√
k +

1− ln 2√
k

, k > ln 2. (20)

The maximal curves are plotted for various values of k in Figure 5.1.
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Figure 3: Maximal length curves for several values of k.

5.2 Computing boarding time for the F2 policy

We present a general formula for T (F2, k), the normalized boarding time for the F2 policy

with parameter k, when k ≥ 1. It is easier to study the F2 policy if we inflate the unit square

to the square [0, 2]× [0, 2] via the map (q, r) −→ (2q, 2r). Let U be a maximal curve. Let U1

be the segment of U which lies in S1, given by 0 ≤ q ≤ 1 and 1 ≤ r ≤ 2. Similarly, let U2 be

the segment of U which lies in S2, given by 1 ≤ q ≤ 2 and 0 ≤ r ≤ 1. We may assume that

a maximal curve which has a non-empty part lying in S1 must begin at the point u = (0, 1),

since the line segment connecting u with any other point v in S1 is legitimate. By a similar
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argument for S2, one of the points of the form (1, δ) with 0 ≤ δ ≤ 1 can be taken as the initial

point for U2. We also note that, when k > 1, the curve U1 may be taken to be non-empty

since the line segment joining u to any point of the form (1, δ) is legitimate.

The endpoint of U1 lies on the boundary of S1, either on the bottom edge, r = 1, or on

the right edge, q = 1. By (9), curves which satisfy (4) and start at a point with q = 1 and

r ≥ 1 are non-decreasing and therefore never reach S2. Consequently, the endpoint of U1

must lie on the bottom edge of S1. Let (q1, 1) be a point on the bottom edge. As explained

in Section 5.1, the maximal curve between u and (q1, 1) is the curve (q, 1), 0 ≤ q ≤ q1, and

hence U1 must have this form. The length of the curve is

q1

√
k/2. (21)

U2, which begins at some point (1, δ), must end at (2, 1) and must be maximal among all

such curves. Let U2(δ) denote the maximal curve with these endpoints. Depending on δ, it

may either be a solution to the Euler-Lagrange equation, lying in the interior of S2, or it may

contain a segment on the lower edge of S2. In either case, it must be differentiable, and hence

the critical value of δ which separates the two cases is the value for which the solution to the

Euler-Lagrange equation passing through (1, δ) and (2, 1) is tangent to the bottom edge of

S2. The solution passing through (1, δ) and tangent to the bottom is given by the equation

r(q) = (1−
√
δ)2(ek(q−1) − 1

1−
√
δ

)2, (22)

and passes through the point (2, 1) when δ = (1 − 2e−k)2. If δ ≥ (1 − 2e−k)2, then U2 will

have the form 1−δ
ek−1

e2k(q−1) − ek(1−δ)
ek−1

ek(q−1) + 1. According to (16), we have

L(U2(δ)) =

√
1

2k

√
(ek − 1)(1− δ) (23)

in this case. If, on the other hand, δ < (1− 2e−k)2, then U2(δ) consists of three segments:

(a) the solution of (22) up to the tangent point (1 + (ln( 1
1−
√
δ
))/k, 0),

(b) the line segment joining (1 + (ln( 1
1−
√
δ
))/k, 0) and (2− ln 2/k, 0), and

(c) the solution from (2 − ln 2/k, 0) to (2, 1), which is tangent to the bottom edge at

(2− ln 2/k, 0) according to the computations in Section 5.1.

The length of the three segments combined is

L(U2(δ)) =

√
1

2k
(
√
δ + ln(1−

√
δ) + k + 1− ln 2). (24)

For any legitimate curve ψ in the region below S1 we have, by (9) and (8), L(ψ) = 0 and

ψ′ ≥ −k. The segment of U between the endpoint of U1, which is (q1, 1), and the initial point

of U2, which is (1, δ), is legitimate, and therefore the inequality

1− δ ≤ (1− q1)k, (25)
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must hold. It is easy to verify that, as a function of δ, the length of U2(δ) is decreasing.

Therefore, for the maximal curve U we have equality in (25). Consequently, we define U1(δ)

to be the curve given by r = 1 in the range 0 ≤ q ≤ k−1−δ
k . The length of U1(δ) is by (21)

L(U1(δ)) =

√
1

2k
(k − 1 + δ). (26)

Let U(δ) be the concatenation of U1(δ) and U2(δ). By the analysis presented above we know

that the maximal curve has the form U(δ) for some 0 ≤ δ ≤ 1. Let A(δ) denote the sum

of the expressions (24) and (26). Differentiating A(δ), we find that A(δ) increases towards

δ = 1/4 and is maximized when δ = 1/4. The length of U(δ) coincides with A(δ) in the

range 0 ≤ δ ≤ (1 − 2e−k)2. For k ≥ 2 ln 2, the value δ = 1/4 is in that range and A(1/4)

is the maximal value, while for k ≤ 2 ln 2 the maximal value in the range is provided by

A((1− 2e−k)2). Let B(δ) denote the sum of the expressions on the right-hand sides (23) and

(26). B(δ) coincides with U(δ) whenever δ ≥ (1− 2e−k)2. Differentiating B(δ), we find that

the maximal value is obtained when δ = 1 − ek−1
4 . This value is in the range where U(δ)

coincides with B(δ) whenever 1− ek−1
4 ≥ (1− 2e−k)2. Writing x = ek and multiplying both

sides by x3, which is always positive, we obtain the condition x3 − 16x2 + 16x− 1 ≤ 0. Since

x3 − 16x2 + 16x− 1 = (x− 1)(x− 4)2, the condition holds for 1 ≤ x ≤ 4, which translates to

the condition k ≤ 2 ln 2.

When k ≥ 2 ln 2, the maximum of B(δ) in the range δ ≥ (1 − 2e−k)2 is attained at

δ = (1− 2e−k)2. Since A((1− 2e−k)2) = B((1− 2e−k)2), we conclude that for k ≥ 2 ln 2 the

maximal value of U(δ) is attained at δ = 1/4. Similarly, for k ≤ 2 ln 2 the maximal value of

U(δ) is attained at δ = 1− ek−1
4 . Plugging these values into A(δ) and B(δ), respectively, we

see that the length of the maximal curve U for k ≥ 2 ln 2 is

T (F2, k) =
√

2k +
3/4− 2 ln 2√

2k
(27)

and for 1 ≤ k ≤ 2 ln 2 is

T (F2, k) =

√
1

2k
(k +

ek − 1

4
). (28)

The maximal curve for k = 4 is displayed in Figure 5.2.

5.3 Computations for Fm

Consider the case m > 2. As for F2, it is more convenient to consider the expanded square

[0,m] × [0,m]. We have the squares Si = [i − 1, i] × [m − i,m − i + 1], i = 1, . . . ,m, which

lie along the anti-diagonal. The part of the maximal length curve U which contributes to the

length is composed as before of segments Ui contained in Si. In addition, there are legitimate

segments, joining the endpoint of Ui to the initial point of Ui+1, which lie below the Si and

do not contribute to the length. The arguments presented for the case of F2 also show that

(0,m− 1) is the initial point of U (and U1) and that the initial point of Ui is on the left edge
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Figure 4: Maximal curve for F2 with k = 4.
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of Si for all i. In addition, for i = 1, . . . ,m− 1, the endpoint of Ui lies on the bottom edge of

Si. Thus, the initial point of Ui has the form (i,m− i+ δi) and the endpoints have the form

(i+ βi,m− i) for some δi and βi. The maximality of U , together with the requirement that

U be legitimate, implies the relation

βi = 1− 1− δi+1

k
. (29)

Consider U1 and U2. The initial point and the endpoint of U1 lie on the bottom edge of S1,

and hence by maximality all of U1 lies on the bottom edge. Let (1,m− 2 + δ) be the initial

point of U2 and (1 + β,m − 2) the endpoint. Given the endpoint of U2, we can optimize

the location of the initial point of U2. Depending on δ2, U2 may either be a solution to the

Euler-Lagrange equation which lies in the interior of S2 or be composed of a solution which

is tangent to the bottom edge, followed by a segment along the bottom edge. In the first case

the length of the segment is

L(U2) =

√
ekb − 1√
k

·

√
(1− δ)ekb − 1
√
ekb − 1

. (30)

We may add the contribution of U1 and differentiate. The sum of contributions is maximized

when

δ = −(
ekb

4
+

4

ekb
) +

5

4
. (31)

Writing x = ekb

4 , we see that δ = −(x+ 1/x) + 5/4, and since x+ 1/x ≥ 2 for all x > 0 we see

that the optimal δ is negative. Hence the U2 component of the maximal curve is composed of

a solution tangent to the bottom of S2, followed (possibly) by a segment along the bottom.

This case was already analyzed in the F2 case. The optimal value for δ is 1/4 if it is in the

range

ln(
1

1−
√
δ

)/k ≤ b. (32)

Let k ≥ 3/4 + ln 2. Consider the curve U with δi = 1/4 for i = 1, . . . ,m − 1. By (29), this

corresponds to βi = 1− 3
4k . We note that (32) is satisfied for b = βi when k ≥ 3/4 + ln 2. We

claim that U is maximal. Assume to the contrary that U ′ with parameters β′i is maximal. Let

j be the first index for which β′j 6= 1 − 3
4k . We claim that β′j < 1 − 3

4k , as otherwise, by the

calculations for U1 and U2, the path U ′i+1 from (j+1,m− (j+1)+ δ′j+1) to (j+1+β′j+1,m−
(j + 1)) is not optimal, since δ′j+1 ≥ 1/4. For the same reason we must have β ′i < 1− 3

4k for

all i > j. However, by the computation for F2 we know that for k ≥ 2 ln 2 the contribution

of the union of Um−1 and Um is not optimal. Since 3/4 > ln 2, we are done.

The length of the curve U is

T (Fm, k) =
√
mk − m− 2√

mk
(ln 2 + 1/4)− 2 ln 2− 3/4√

mk
. (33)

The maximal curve for F3 with k = 4 is depicted in Figure 5.3. The maximal curve for Fm

has the same structure with the segments U2, . . . , Um−1 repeating.
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Figure 5: Maximal curve for F3 with k = 4.
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5.4 Computing Fm,σ

We compute Fm,σ under some assumptions on σ and k. Using the representation of passengers

in the expanded square [0,m]× [0,m], elements in the i’th group will be represented by points

in the square Si,σ, consisting of points of the form i − 1 ≤ q ≤ i and σ(i) − 1 ≤ r ≤ σ(i).

Let U be a maximal curve, composed of curves Ui in Si,σ. The sequence σ(1), σ(1), . . . , σ(m)

decomposes into blocks Bj , 1 ≤ j ≤ s(σ) of size bj of decreasing sequences, that is, σ(1) >

... > σ(b1) < σ(b1 + 1) > . . . > σ(b1 + b2) < σ(b1 + b2 + 1) . . .. Let cj =
∑j
i=1 bj be

the sequence of partial sums of the sequence bj . Define the excess descent of block Bj by

ej = σ(cj) − σ(cj−1) − bj + 1 if bj > 1 and ej = 0 if bj = 1. Let e =
∑
j ej . Let λ(σ) be the

maximum over all decreasing pairs of consecutive elements, σ(l) < σ(l+ 1), of σ(l+ 1)−σ(l).

If

k ≥ 3/4 + ln 2 + λ(σ)− 1, (34)

then

T (Fm,σ, k) =

s(σ)∑

j=1

T (Fbj , k)

√
bj√
m
− e 1√

km
. (35)

To see this, consider a maximal causal curve U in the union of Si,σ, composed of curves Ui

in the respective squares, and legitimate linear segments joining them. As in the previous

computations, it is easy to verify that the endpoint of Ui is on the bottom edge of Si,σ, say

at (i − 1 + βi,σ, σ(i) − 1), and the initial point of Ui is on the left border of Si,σ, say at

(i− 1, σ(i)− 1 + δi,σ). The endpoint of Ui must be connected to the initial point of Ui+1 by a

legitimate linear segment. If σ(i) < σ(i+ 1), then the line segment between any point of Si,σ

and any point of Si+1,σ, is legitimate and therefore we can make independent computations

in the blocks Bj as long as the maximal curves in Bj contain non-empty curves Ui for all i.

When σ(i) > σ(i+ 1), (4) implies that

σ(i)− σ(i+ 1)− δi+1 ≤ k(1− βi). (36)

The process of identifying a maximal curve in Bj is identical to the process in the case of

Fbj , subject to the replacement of (29) by (36) and a change in density from 1
bj

to 1
m . As

in the case of Fbj , the curve with δi = 1/4, for cj−1 + 2 ≤ i ≤ cj , is optimal when it can

be constructed subject to (36), which holds when k ≥ σ(i) − σ(i + 1) − 1 + 3/4 + ln 2 for

all i. The change in density yields a comparison with T (Fbj , k)

√
bj√
m

. A comparison of (29)

and (36) shows that the portion of the curve Ui on the bottom edge of Si,σ is shorter (in the

standard Euclidean sense) by σ(i+1)−σ(i)−1
k than the corresponding curve in the computation

of T (Fbj , k). Summing over i ∈ Bj and taking the density 1
m into account, we obtain the

difference term −e 1√
km

, thus establishing (35).
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5.5 Computing F2,m,σ

We compute boarding time for cyclic half-row policies F2,m,σ for certain permutations σ.

Consider the restriction of the boarding process to the first half of the queue. We wish to

compare this part of the boarding process to the boarding process associated with the policy

Fm,σ. The number of passengers is n/2 instead of n. Also, h should be replaced by h/2, since

only half the number of passengers in each row (those to the left of the aisle) are boarding.

The order in which row blocks board is by definition the same as that of Fm,σ. This leads

to the replacement of k by k/2. We conclude that the boarding time for the first half of the

queue T1 is given by

T1 = T (Fm,σ, k/2)
√

1/2 . (37)

By symmetry, the same formula would hold for the boarding time if we considered only the

second half of the queue. Assume that σ(1) < σ(m). This means that each passenger from

the last group of the first half of the queue blocks each passenger from the first group in the

second half of the queue. Assume furthermore that k is large enough so that the maximal

curve U for half the queue contains non-empty segments in the first and last groups, namely

U1 and Um are non-empty when considering the policy Fm,σ with congestion parameter k/2.

We conclude that in such cases the maximal paths for the first and second half of the queue

can be concatenated to produce a maximal curve of twice the length. Therefore, under such

circumstances

T (F2,m,σ, k) = 2T1 =
√

2T (Fm,σ, k/2). (38)

6 Comparison with previous work

The model and the computations presented above must be validated against detailed sim-

ulations, since they make many simplifying assumptions. In this section we compare our

computations with simulation results reported in previous works on airplane boarding, in

particular with those of Van Landeghem and Beuselinck (2002), which are the most detailed.

Van Landeghem and Beuselinck (2002) have carried out computer based simulations of 47

different boarding policies.

The design and input of the simulations were based on observations of passenger boarding

and interviews with personnel at Brussels airport. Each experiment was performed 5 times,

and the average and standard deviation are recorded on page 302 of loc. sit. and plotted on

page 303. A detailed description of the boarding procedures which were simulated is given

on pages 299–300. We shall refer to the simulations as the V-B simulations.

The simulations take into account some observed delays which we have not modeled. We

briefly summarize the differences between the V-B simulations and our model.

• Passengers in the V-B simulations travel along the aisle at finite speeds according to

some distribution. In our boarding model, we implicitly assume that passengers travel
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at infinite speeds when unobstructed. This leads to the definition of delay as the time

spent while the passenger is blocking the aisle at his/her row location.

• The V-B simulations attach to each passenger between one and three carry-on items,

to be stored in the overhead bin compartments. The simulation keeps track of the

available bin space. Towards the end of the boarding process, passengers sometimes

need to search a large number of bins before they find space for their luggage, causing

further delay in aisle clearing time. Also, as noted earlier, late arriving passengers

have to unseat other passengers in order to get to their assigned seat. Consequently,

the delay becomes larger towards the end of the V-B simulation. As a result of these

considerations, the delay in the V-B simulations depends on the (q, r) coordinates of the

passenger and is also given by a distribution rather than a constant value as assumed

in the model.

• The simulations also take into account the situation in which an occasional passenger

sits in the wrong place. When the passenger whose assigned seat is taken arrives, the

passenger who occupies the wrong seat gets up and moves to the correct place. This

phenomenon is not considered at all in the model.

• The V-B simulations model an Airbus A320 with 23 rows and 132 seats, each row (apart

from first class) carrying six passengers, three on either side of the single aisle. Our

computations are asymptotic and assume that the number of passengers is very large.

As shown in Bachmat et al. (2006) the computations are not accurate at all for 100-200

passengers per aisle, a reasonable range for the number of passengers per aisle in a

modern commercial airplane. As an example, we refer to Figures 6 and 7. According

to the model, the critical path for the airplane boarding process should follow closely

the shape of the maximal curve. In the two figures the maximal curve is plotted in red,

while the other curves display the critical path for runs of the airplane boarding project

with 100, 200 and 106 passengers. in Figure 6 we see the results for runs with k = 0.5,

while in Figure 7 we see the results for k = 5. As can be seen, when there are 106

passengers the critical paths do follow closely the maximal curve, while for 100 and 200

passengers there are very large differences. These differences also display themselves

in the differences between the actual length of the critical path and the asymptotic

calculations. The analysis of these differences in Bachmat et al. (2006) shows that the

asymptotic expressions of the form T (F, k)
√
n consistently overestimate the boarding

time. The overestimation increases with k, and for reasonable values of k such as k = 4

is on the order of 50% .

However, we are interested in comparing different boarding policies. When comparing

two different policies we consider the ratio of boarding times. Consistent overestimation

will have little effect on such ratios. Thus, while the model based asymptotic estimates
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Figure 6: Comparison of Maximal curve for k=0.5 with simulation based maximal chains.

are not reliable indicators of absolute boarding times, they may still be considered for

policy comparisons.

Having stated the difference between the V-B simulations and our model based computations,

we proceed to the comparison of their respective results. In the V-B simulations, the 132

passengers are divided into groups called in succession to join the queue, while the order

within the group is random. In 18 of the experiments, the number of groups is very large and

the boarding process becomes nearly deterministic, corresponding to various combinatorial

instances of the boarding process, as discussed in Section 2. The fastest boarding methods

according to the simulations belong to these tightly controlled boarding methods. The best

method is the one calling window passengers from one side of the aisle first in descending

order, followed by window passengers from the other side in descending order, and similarly for

middle and then aisle passengers. The problem of families or other small parties of passengers

traveling together being separated by such policies can be solved by allowing such parties to

board together according to the minimal group number among participants. Van Landeghem

and Beuselinck found this policy to be about 2.5 times faster than random boarding. This

deterministic policy is also the fastest according to our tasks with precedences model, allowing

passengers to board in 6 rounds, far better than the random policy. In fact, the relative

ranking among these 18 policies nearly coincides with the total boarding time according to
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our corresponding deterministic tasks with precedence models. It is unlikely, though, that

an airline can exert such detailed control on the order in which passengers board, and we do

not know of any example in which such strict methods are practiced. Therefore, we will not

analyze these policies in great detail.

The remaining 29 simulations concern row assignment policies blocks or half-row class

policies. We can compare the results of these simulations with the calculations we have

performed. We omitted one policy which involves placing first-class passengers first and,

in addition, three policies which divided the passengers into 20 groups. As noted earlier,

such policies are hard to enforce, and, in addition, for such a large number of groups the

probabilistic analysis tends to be irrelevant. This leaves us with 25 policies. We need some

estimate of the parameter k. Given that there are 6 passengers per row, and assuming an

estimate of 2/3 of the distance between successive rows for the average aisle length occupied

by a passenger, we obtain an estimate of k = 4. We performed a complete set of computations

assuming this value for the 25 policies considered by Van Landeghem and Beuselinck. We

also computed boarding times for the policies with the estimate k = 3.5, and observed that

the results remain qualitatively the same. Almost all computations were performed using

(27), (28), (33), (35) and (38) in a straightforward manner. In a few cases, some additional

arguments were needed. An explanation of the basis of these other calculations is given in
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Appendix B.

In terms of our terminology, Van Landeghem and Beuselinck simulated F1, F2, F3, F4, F6

and F10. In addition, they simulated F2,2, F2,3, F2,4, F2,6 and F2,10, using passengers on the

right side of the aisle as the first class and passengers on the left side as the second class. The

remaining 15 out of 25 simulations were of type Fm,σ and F2,m,σ for various permutations.

A list of the permutations used in the V-B simulations is given in Appendix A.

We consider F1 to be the basic policy which will serve as a yardstick for measuring all

other policies, and normalize its boarding time to be 1 (24.7 minutes according to loc. sit.).

We compute for each policy the ratio of the boarding time of the policy to that of F1. The

computations are done with the parameter setting k = 4. The results are presented in Figure

6 and table 1.
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252015105
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V-B results             

Figure 8: Boarding time (B) according to the model and the V-B simulations.

We make the following observations and conclusions.

A) The computational results using the model based approach and the results of the

V-B simulations agree to a large extent. The correlation coefficient between the k = 4

computations and the V-B results is 0.965. There is also strong agreement with the V-B

simulations on the ordering of policies according to boarding time, as can be seen in Table 1,

which provides the comparison of policy rankings. This result – we believe – reinforces both

approaches.

B) The main disagreement between results comes in cases where the number of classes is

large. In experiment 12 with policy F10, we are in a situation with k > 2 ln 2 and m = 10.
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index policy k = 4 V-B results k = 4 ranking V-B ranking

1 F1 1.00 1.00 3 1

2 F2 1.21 1.12 8 8

3 F3 1.40 1.16 13 11

4 F3,σ0 1.42 1.21 14 15

5 F4 1.56 1.27 20 20

6 F4,σ1 1.47 1.24 16 17

7 F4,σ2 1.47 1.24 17 18

8 F6 1.86 1.37 23 23

9 F6,σ3 1.60 1.27 22 21

10 F6,σ4 1.52 1.25 18 19

11 F6,σ5 1.52 1.32 19 22

12 F10 2.34 1.61 25 25

13 F10,σ6 2.01 1.40 24 24

14 F10,σ7 1.58 1.20 21 14

15 F2,2 1.10 1.11 5 7

16 F2,2,σ8 1.10 1.01 6 3

17 F2,3 1.18 1.13 7 9

18 F2,3,σ9 1.25 1.20 9 13

19 F2,4 1.28 1.15 10 10

20 F2,4,σ10 1.09 1.07 4 6

21 F2,4,σ11 1.28 1.18 11 12

22 F2,6 1.43 1.23 15 16

23 F2,6,σ12 0.90 1.00 1 2

24 F2,6,σ13 1.30 1.06 12 5

25 F2,6,σ14 0.90 1.04 2 4

Table 1: Comparison results
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Each class in this case contains merely 13 passengers. By (33), the boarding time of Fm tends

to infinity with m, resulting in an overestimate. Underestimates occur when there are many

small groups which do not block each other as in experiments 23 and 25.

C) According to (33) and (38), for fixed values of m and k ≥ 2(3/4 + ln 2) we have

T (F2,m, k) < T (Fm, k). In agreement with this statement, we observe that indeed the

boarding times of F2, F3, F4, F6 are all greater than the corresponding boarding times of

F2,2, F2,3, F2,4, F2,6, according to the V-B simulations.

D) In some cases the V-B simulations distinguish between pairs of policies which our

models cannot distinguish. In the pairs 15 and 16, 19 and 21, and 23 and 25, the groups of

passengers consist of passengers from the same blocks of rows but from different sides of the

aisle. Our models of airplane boarding cannot distinguish between seat assignments differing

only by a symmetry with respect to the aisle, and hence the expected boarding time is the

same for the pairs. In all three pairs, the V-B results show a difference. This difference is

small for 19 and 21, as well as for 23 and 25, but amounts to 10 percent for the pair 15 and

16. The most natural explanation for the difference is simple statistical fluctuations of the

average over the 5 trials of each experiment. The average of the experiments turns out to

be in very good agreement with the analytical computations. Another possible explanation

is the fact that the V-B simulations keep track of which overhead bins are available. If the

simulations also assume that passengers who sit in a given side try to place their luggage on

that same side, then the symmetry is broken and the experiments can be distinguished, even

though the differences should still be small.

E) Given observation (C), it is natural to suggest the use of policies with 3 classes. The

division of passengers into classes may be random, or may be according to the row number

modulo 3. We can then impose an Fm type policy in each class in succession. Such class

policies, which may have in general c classes, can be modeled in the same manner that we have

modeled half-row classes above. The same arguments which are used to establish formula (38)

can be used to show that for k ≥ c(3/4 + ln 2) the model based boarding time estimate is

T (c,m, k) =
√
cT (m, k/c) . (39)

In particular, we may consider F3,2, which divides passengers into 3 classes and 6 groups.

By observation (A), we expect our predictions for this policy to be fairly good since m and

the number of groups cm are small and k/c > 1. The expected boarding time is 0.95 when

we assume k = 3.5, 0.99 when we assume k = 4 and 1.04 when we assume k = 4.5. It

seems unlikely that passengers will tolerate a division into more than 6 groups, and within

that range F3,2 has the best predicted performance. We note that the expected gain over

the uniform policy F1 is rather negligible and is probably not worth the extra complication.

We conclude, in agreement with the simulation results of V-B, that it is difficult to improve

upon the uniform boarding policy, using policies which do not change the delay distribution

D, without excessively burdening the passengers.
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F) We are left with the option of using seat type classes which decrease the value of D

and provide a better way of dividing passengers into 3 classes. The policy F3,1 with seat type

classification, along with some variants which resemble F3,2, have been suggested by Van

den Briel et al. (2003, 2005). We note that F3,1 simply means that window seat passengers

are boarded first, followed by middle seat passengers and finally aisle seat passengers. This

policy is also sometimes referred to as an outside-in policy. Van den Briel et al. consider a

different measure for assessing airplane boarding policies. It can be shown that asymptotically

their measure correlates strongly with the number of times that passengers which are already

seated have to get up to allow newly arrived passengers reach their seat. It is therefore not

surprising that seat type classes and other outside-in boarding policies prove to be optimal

with respect to this measure.

Van den Briel et al. (2005) report on the success of a change in policy at America West

airlines. They converted from a (non-uniform) back-to-front policy to a policy which which

they call reverse pyramid. Reverse pyramid closely resembles F3,2 with seat type classification,

but has only 5 groups. A 20 percent reduction in boarding time is reported. According to our

analysis F3,1, inverted pyramid and F3,2 should improve upon F1 by about the same amount,

with a slight edge for F3,2 over F3,1. F (3, 1) and inverted pyramid have been considered

in Ferrari (2005), which simulates many policies. They have been found to provide a 21

and 25 percent reduction in boarding time, respectively. This shows again that the main

gain in boarding time comes from the employment of outside-in strategies rather than from

experimenting with the ordering of rows.

7 Announcement policies and congestion

Having validated the model, we would like to explore some of its consequences. We show

that the relative effectiveness of announcement policies changes substantially between small

and large values of k. When k = 0, passengers from different groups in a back-to-front policy

do not interact with each other during the boarding process. Consequently, the normalized

boarding time is the maximum among boarding times in each individual group. The i’th

group has qin passengers and hence its normalized boarding time is
√
qi times faster than the

boarding time with no policy. The normalized boarding time is thus maxi
√
qi. We conclude

that the policy with worst boarding time among back-to-front policies is the uniform policy

F1 and that, among all announcement policies (not only back-to-front) with a fixed value

of m, the uniform policy Fm is the best. On the other hand, the following result shows

that, as k becomes large, the uniform policy F1 beats any other announcement policy, and

among all policies with a fixed value of m the uniform policy Fm is asymptotically one of

the worst policies and is worst among back-to-front policies. This shows again the important

observation that congestion is a critical parameter in airplane boarding. In addition, the

theorem shows that as congestion increases the order in which groups are boarded becomes
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less important and the various sizes of the groups are the only parameters that counts. In

the following theorem we denote by T (F, k) the normalized boarding time of a policy F with

parameter k.

Theorem 7.1 For any announcement policy F , given by r1, . . . , rm+1 and a permutation σ,

with m > 1, there exists a value kF such that for k > kF we have T (F1, k) < T (F, k). More

precisely,

lim
k→∞

T (F, k)√
k

=
∑

i

√
qi,

and, in particular, the limit is independent of σ.

Proof: Let qmin = mini qi. A curve satisfying (4) consists of a union of curves Ui in the

rectangles Ri, which describe the boarding process among passengers in rows ri+1 ≤ r ≤ ri,

and of curves which do not contribute to (6), but which satisfy (4) and connect the endpoint

of Ui to the initial point of Ui+1.

By the computation of Section 5.1, applied to the nqi passengers in the i’th group, we

have L(Ui) ≤
√
qik+

√
qik

1−ln 2
k =

√
qik+o(1), where o(1) denotes a function of k whose limit

is 0. We conclude that the normalized boarding time satisfies T (F, k) ≤ (
∑
i
√
qi)
√
k + o(1).

We now show that T (F, k) ≥ ((
∑
i
√
qi)− ε/√qi)

√
k for any ε > 0, To obtain the lower bound

we fix any u < 1. Consider the horizontal line segment Ui,ε, consisting of points of the form

(rσ(i), q), with si ≤ q < si+1 − ε. If k > 1/varepsilon, then the line segment joining the

endpoint (si+1 − ε, rσi) of Ui to the initial point (si+1, rσ(i+1)) of Ui+1 has a positive slope if

σi+1 > σi and a slope greater or equal −k otherwise. In both cases it satisfies (4). The length

of Ui,ε is by (6 equal to
√
k
√

1/qi(qi − ε), as required.

8 Summary and future work

We have introduced a multi-parameter tasks with precedences model, which captures the

essential features of the airplane boarding process. The model allows us to compare various

boarding policies. It also allows us to compute closed-form estimates for the boarding time in

many cases of interest. The resulting model based computations have been validated against

very detailed simulations of the boarding process of Van Landeghem and Beuselinck (2002).

Both methods rank policies very similarly.

For an airplane with 6 passengers per row, the main candidates for a good boarding

policy have been reduced to F3,1 with seat type classification for 3 group policies and F3,2

with seat type classification for 6 group policies. It is possible, using the analytic model,

to reevaluate the effect of policy changes when the distance between rows or the number

of passengers per row/per aisle change. Upon adding passengers per row or squeezing the

distance between rows, the boarding process becomes slower due to congestion, and the F1

policy more attractive among row based policies.
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The most immediate challenge in terms of the analysis of airplane boarding seems to be

the analysis of policies in which seats are unassigned. Based on sporadic personal evidence,

we believe that such policies may in fact prove to be more efficient. The basic difficulty is in

establishing a reasonable passenger behavior model which will lead to the construction of an

appropriate probability distribution p. This will require extensive field work and interviews

with customers. One insight which may be gained from the present work is that the congestion

controls to a large extent boarding time. We believe that passengers which are strangers are

naturally averse to congestion and will tend to space themselves along the airplane, thus

effectively lowering the value of k. Other trends, such as a preference for front seats, have

detrimental effects. However, until a more detailed study of passenger behavior is performed,

we cannot provide a useful model for unassigned seating policies.
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Appendix A: Table of permutations

We provide a table of the permutations which were used by Van Landeghem and Beuselinck

in their experiments. As an example, the policy F6,σ4 . The policy divides the passengers into

six equal size groups. Assuming for simplicity of presentation that the airplane has 24 rows,

then the order of boarding is:

rows 21-24,

followed by rows 9-12,

followed by rows 17-20,

followed by rows 5-8,

followed by rows 13-17,

followed by rows 1-4.

As an example of a half row class policy consider F2,4,σ11 . The boarding order in this case is:

left side of the aisle, rows 19-24,

followed by right side of the aisle, rows 13-18,

followed by left side of the aisle, rows 7-12,

followed by right side of the aisle, rows 1-6,

followed by right side of the aisle, rows 19-24,

followed by left side of the aisle, rows 13-18,

followed by right side of the aisle, rows 7-12,

followed by left side of the aisle, rows 1-6.
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The rest of the table can be understood in a similar manner.

0 2, 3, 1

1 4, 2, 3, 1

2 4, 1, 3, 2

3 6, 4, 2, 5, 3, 1

4 6, 3, 5, 2, 4, 1

5 6, 2, 5, 1, 4, 3

6 10, 8, 6, 4, 2, 9, 7, 5, 3, 1

7 10, 5, 9, 4, 8, 3, 7, 2, 6, 1

8 4, 1, 2, 3

9 6, 4, 5, 3, 1, 2

10 8, 6, 7, 5, 4, 2, 3, 1

11 8, 3, 6, 1, 4, 7, 2, 5

12 12, 10, 8, 11, 9, 7, 6, 4, 2, 5, 3, 1

13 12, 9, 11, 8, 10, 7, 6, 3, 5, 2, 4, 1

14 12, 4, 8, 5, 9, 1, 11, 3, 7, 6, 10, 2

Table 2: Permutations

Appendix B: Methods of computation

We provide explanations for the various calculations which were used in the computation of

the table in Appendix B. We first recall the main formulas needed for the computations.

A) The basic formula for F1 with k > ln 2:

T (F1, k) =
√
k +

1− ln 2√
k

. (40)

B) The formula for F2:

T (F2, k) =





√
1
2k (k + ek−1

4 ), 1 ≤ k ≤ 2 ln 2,√
2k + 3/4−2 ln 2√

2k
, k ≥ 2 ln 2.

(41)

C) The formula for Fm, m > 2 and k ≥ 3/4 + ln 2:

T (Fm, k) =
√
mk − m− 2√

mk
(ln 2 + 1/4)− 2 ln 2− 3/4√

mk
. (42)
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D) The formula for Fm,σ, where k ≥ 3/4 + ln 2 + λ(σ)− 1:

T (Fm, σ, k) =

r(σ)∑

j=1

T (Fbj , k)

√
bj√
m
− e 1√

km
. (43)

E) The formula for F2,m,σ:

T (2,m, σ, k)
√
n =
√

2T (m,σ, k/2) . (44)

All policies not involving a permutation σ are computed directly from these formulas by

setting k = 4 and dividing by the expression for F1, which yields the value 2.15. We now

consider the policies which involve a permutation σ.

σ0, σ1, . . . , σ6: We can apply (43) in all these cases. For σ4 and σ5 we use the fact that for

m = 2 the argument leading to (43) only requires k ≥ λ(σ).

σ7: In this case (43) does not hold since some of the Ui’s are empty. To compute a maximal

curve U , we need to decide which of the Ui’s are non-empty. This can be done using a dynamic

programming approach, which is easily carried out by hand for small cases. The maximal

curve is obtained when Ui is non-empty for all even values of i. We note that, for even i, the

top right corner of Si,σ blocks the bottom right corner of Si+2,σ. As a result, T = 5√
10
T (F1, k)

with k = 4.

σ8, . . . , σ11: In these cases the performance is computed in a straightforward manner using

the formulas above, in different combinations. In accordance with formula (44) we set k/2 = 2

in formulas (40)–(43).

σ12: We have r(σ) = 4, bj = 3, and all the Ui’s are non-empty, but we cannot use (43) since

m = bj > 2 and the condition on k is not satisfied with k/2 = 2. The computations are made

assuming δi = 1/4 for i = 3, 6, 9, 12. It can be shown that this choice leads to a curve length

which is at most 1 percent below the maximal length.

σ13: As in the case of σ7, the maximal curve is obtained when Ui is non-empty for even i.

We have k/2 = 2, which yields T = 6√
12
T (F1, 2).

σ14: By aisle symmetry, this involves the same calculation as σ12.
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