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Abstract. Distributed constraints satisfaction problems (DisCSPs) have been stud-
ied for over a decade. The first distributed search algorithm was asynchronous
backtracking, which is still the most studied. In the last few years, several new
families of distributed search algorithms have been investigated and comparative
experimental studies are encouraging.
A natural extension to distributed constraints satisfaction is distributed constraints
optimization. Stochastic search algorithms for solvingDisCSPs, such as Dis-
tributed Breakout, have appeared a few years ago. Distributed stochastic search
algorithms are naturally suitable for solving distributed optimization. In contrast,
asynchronous search algorithms for distributed optimization have been proposed
in recent years.
Due to the distributed nature of the problem, message delay can have unexpected
effects on the behavior of algorithms onDisCSPs. This has been shown in an
experimental study that induced random delays on messages sent among agents.
In order to study the impact of message delays on DisCSP search, a model of
delays in terms of concurrent performance measures is needed. Within such a
model, the behavior of families of search algorithms in the presence of delays is
varied and interesting.
An important feature of the distribution of the problem among agents is their
ability to maintain some privacy. Agents may not want to share their values with
other agents, and they may wish to keep constraints as private as possible. Some
recent work has resulted in versions of asynchronous backtracking that maintain
both privacy of values and privacy of constraints. Other investigations of privacy
in DisCSPs focused on the analysis of information gain by studying a well-
defined problem, that of scheduling meetings of agents.

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[29, 27, 24]). To achieve this goal, agents check the value assignments to their variables
for local consistency and exchange messages with other agents, to check consistency
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of their proposed assignments against constraints with variables owned by different
agents [4].

Distributed CSPs are an elegant model for many every day combinatorial problems
that are distributed by nature. Take for example a large hospital that is composed of
many wards. Each ward constructs a weekly timetable assigning its nurses to shifts. The
construction of a weekly timetable involves solving a constraint satisfaction problem for
each ward. Some of the nurses in every ward are qualified to work in theEmergency
Room. Hospital regulations require a certain number of qualified nurses (e.g. for Emer-
gency Room) in each shift. This imposes constraints among the timetables of different
wards and generates a complex Distributed CSP [24].

An example of a large scale DisCSP has started as a DARPA problem presented
publicly on the web in 2000. The description here is from [2]. The problem hasn
sensors andm targets, where a target is tracked ifk sensors are tracking it at the same
time. The major constraint is that a sensor can only track one target at a time. Bejar et.
al. have formulated this problem as a DisCSP as follows. Each sensor is represented
by an agent. Each agent has variables for every target that is in range. Variables are
assigned the value 1 if the agent selects to track them and 0 otherwise. Each agent is
constrained internally to have only one variable with the value 1. Constraints between
agents are such that for every target, there are at leastk agents that have assigned 1 to
the value of their variable that corresponds to that target. Bejar et. al. have termed this
DisCSP problem SensorCSP [2].

SensorCSP can be a large problem and has attracted researchers to investigate non
complete DisCSP search algorithms on them [34, 20]. The most popular distributed
stochastic search algorithm has been the Distributed Breakout Algorithm (DBA) [28,
31]. A comparative study of distributed stochastic search looked at DBA and at dis-
tributed local search [31]. The main problem with the family of distributed stochastic
search algorithms is their synchronous behavior (cf. [32]. All agents running the Dis-
tributed Breakout Algorithm, for example, need to select a value (or replace weights) at
synchronous steps [32]. SensorCSPs were also used to investigate the experimental be-
havior of distributed search algorithms under communication delays [6]. The impact of
communication delays on asynchronous backtracking algorithms was found to be quite
strong and performance was found to deteriorate strongly with larger random delays
[6].

A search procedure for a consistent assignment of all agents in a distributed CSP
(DisCSP ), is a distributed algorithm. All agents cooperate in search for a globally
consistent solution. The solution involves assignments of all agents to all their variables
and exchange of information among all agents, to check the consistency of assignments
with constraints among agents. An intuitive way to make the distributed search process
on DisCSPs efficient is to enable agents to compute concurrently. Concurrent computa-
tion by agents can result in a shorter overall time of computation for finding a solution.
Section 2 presents the state of the art of distributed search algorithms on DisCSPs. In-
complete search algorithms that solve distributed optimization problems onDisCSPs
are presented too.

Search algorithms on DisCSPs must be measured in terms of distributed computa-
tion. Two measures are commonly used to evaluate distributed algorithms - time, which



is measured in terms of computational effort, and network load [11]. The time perfor-
mance of search algorithms on DisCSPs has traditionally been measured by the number
of computation cycles or steps (cf. [27]). In order to take into account the effort an
agent makes during its local assignment, the computational effort can be measured by
the number of concurrent constraints checks that agents perform ([13, 22]). Measuring
the network load poses a much simpler problem. Network load is generally measured
by counting the total number of messages sent during search [11]. A sample of per-
formance measurements of complete search algorithms onDisCSPs are presented in
section 5.

When instantaneous message arrival is assumed, steps of computation in a standard
simulator can serve to measure the concurrent run-time of a DisCSP algorithm [27].
On realistic networks, in which there are variant message delays, the time of run can-
not be measured simply by the steps of computation. Take for example Synchronous
Backtracking [27]. Since all agents are completely synchronized and no two agents
compute concurrently, the number of computational steps is not affected by message
delays. However, the effect on the run time of the algorithm is completely cumula-
tive (delaying each and every step) and is thus large. The impact of message delays on
DisCSP algorithms is discussed in section 3 and some interesting experimental results
are given in section 5. It turns out that the performance of asynchronous backtracking
and asynchronous forward checking algorithms deteriorates strongly with large enough
random message delays. In contrast, concurrent search algorithms are quite robust to
random message delays [37]. This is probably connected to the fact that the multiple
search processes compensate one another in the presence of random message delays
(see section 3).

An important goal of search algorithms for the distributed constraint satisfaction
problem is to support the privacy of agents. During cooperative search for a globaly
consistent solution, agents exchange messages about their assignments and about con-
flicts with other agents’ assignments. This creates a natural trade-off between informa-
tion disclosure and the efficiency (and correctness) of the distributed search process.
The first to investigate measures of privacy forDisCSPs were Meseguer et. al. [?]. In
a series of two papers they presented algorithms for maintaining two types of privacy
during the run of the asynchronous backtracking (ABT) algorithm [15,?]. Privacy of
assignments and privacy of constraints are described in section 4.

A different approach for investigating the privacy of distributed search was pre-
sented first by Wallace and Freuder [26]. They use a concrete family of problems
(scheduling meetings among agents) to compare the amount of needed computations for
finding a solution, when different quantities of information were exchanged among the
searching agents [25]. In section 4 the meeting scheduling problem of [26] is presented
and generalized. Some new results about the trade-off between volunteered information
and the efficiency of search are presented.

2 Search algorithms on DisCSPs

One method for achieving concurrency in search on Distributed CSPs is to enable agents
to cooperate in a single backtrack procedure. In order to avoid the waiting time of a



single backtrack search, agents compute assignments to their variables asynchronously.
In asynchronous backtracking algorithms, agents assign their variables without waiting
to receive information about all relevant assignments of other agents [29, 22]. In order
to make asynchronous backtracking correct and complete, all agents share a static order
of variables and the algorithm keeps data structures forNogoods that are discovered
during search (cf. [4]).

Asynchronous backtracking (ABT ) uses a complete order among all agents. Agents
receive messages informing them about assignments of agents that are ahead of them in
the total order (i.e.ok? messages). After performing an assignment, each agent sends
ok? messages to agents that are ordered after it. InABT , agents always have their vari-
ables assigned. Initially, variables are assigned without waiting for messages informing
about assignments of other (constraining) agents. When messages informing of assign-
ments of other agents, that are conflicting with the current assignment of the receiving
agent arrive, the receiving agent performs one of two actions. Either it finds an alterna-
tive assignment that is consistent with the received message. Or, it sends back aNogood
message. TheNogood message informs the receiving agent that its assignment has to
be changed. Having sent back thisNogood (backtracking) message, the agent than as-
sumes that the culprit assignment will be changed and proceeds to assign its variables
accordingly. This is the way in which all agents running ABT keep being assigned at
all times (cf. [27]).

The performance ofABT can be strongly improved by requiring agents to read all
messages they receive before performing computation [28]. A formal protocol for such
an algorithm was not published. The idea is not to reassign the variable until all the
messages in the agent’s ’mailbox’ are read and the status it keeps of all other agents’
assignments (i.e. itsAgent view) is updated. This technique was found to improve
the performance ofABT on the harder instances of randomly generated DisCSPs by
a factor of 4 [36]. However, this property makes the efficiency ofABT dependent on
the contents of the agent’s mailbox in each step, i.e. on message delays (see sections 3
and 5).

Another improvement to the performance ofABT can be achieved by using the
method for resolving inconsistent subsets of theAgent view, based on methods of
dynamic backtracking [7]. A version ofABT that uses this method was presented
in [4]. In [36] the improvement ofABT using this method overABT sending its full
Agent view as aNogood was found to be minor. In all the experiments quoted in
this tutorial a version ofABT which includes both of the above improvements is used.
Agents read all incoming messages that were received before performing computation
andNogoods are resolved, using the dynamic backtracking method.

In order to gain some intuitive understanding ofABT , consider its run on a sim-
ple problem. Figures 1, 2 describe the 10 cycles ofABT , solving the 4-queens prob-
lem. Each cycle of computation includes the receiving of messages, computations trig-
gered by the received messages, and the sending of messages [28, 27]. The four agents
A1, A2, A3, A4 are ordered from top to bottom. In the first cycle, all agents assign the
first value in their domains (i.e. the first column) and sendok? messages downstream.
In the second cycle AgentsA1, A2, A3 recieve theok? messages sent to them and pro-
ceed to assign consistent values to their variables. AgentA3 assigns the value 3 that is



consistent with the assignments ofA1 andA2 that it received. AgentA4 has no consis-
tent value with the assignments ofA1, A2, A3. It sends aNogood containing these three
assignments toA3 and removes the assignment ofA3 from its Agent V iew. Then, it
assigns the value 2 that is consistent with the assignments that it recieved fromA1, A2.
The active agents in this cycle areA2, A3, A4.

Fig. 1.First 6 cycles of ABT - lists of Active Agents in each cycle

In the third cycle, for example, only agentA3 is active. After receiving the assign-
ment of agentA2, it sends back aNogood message to agentA2. It then erases the
assignment of agentA2 from itsAgent V iew and validates that its current assignment
(the value 4) is consistent with the assignments of agentA1. AgentsA1 andA2 con-
tinue to be idle, having received no messages that were sent in cycle 2. The same is true
for agentA4. AgentA3 receives also theNogood sent byA4 in cycle 2, but, ignores it
since it includes an invalid assignment ofA2 (i.e.< 2, 1 > and not the currently correct
< 2, 4 >).

Fig. 2.Cycles 7-10 of ABT - lists of Active Agents in each cycle

To take another example, consider cycle 6. AgentA4 receives the new assignment
of agentA3 and sends it aNogood message. Having erased the assignment ofA3 after
sending theNogood message, it then decides to stay at its current assignment (the value
3), since it is compatible with agentsA1 andA2. AgentA3 is idle in cycle 6, since it
receives no messages from either agentA1 or A2 (who are idle too). So,A4 is the
only active agent at cycle 6. After cycle 10 all agents remain idle, having no constraint
violations with assignments on theirAgent V iews [28].



A different family of distributed search algorithms onDisCSPs, is termedAsyn-
chronous Forward-Checking (AFC). The AFC algorithm processes forward checking
(FC) asynchronously [14]. In theAFC algorithm, the state of the search process is rep-
resented by a data structure calledCurrent Partial Assignment (CPA). TheCPA starts
empty at some initializing agent that records its assignments on it and sends it to the
next agent. Each receiving agent adds its assignment to theCPA, if a consistent assign-
ment can be found. Otherwise, it backtracks by sending the sameCPAto a former agent
to revise its assignment on theCPA.

Each agent that performs an assignment on theCPA sends forward a copy of the
updatedCPA, requesting all agents to perform forward-checking. Agents that receive
copies of assignments filter their domains and in case of a dead-end send back aNot OK
message. The concurrency of theAFC algorithm is achieved by the fact that forward-
checking is performed concurrently by all agents. The protocol of theAFC algorithm
enables agents to process forward checking (FC) messages concurrently and yet block
the assignment process at the agent that violates consistency with future variables. On
hard instances of randomly generatedDisCSPs with different message delays,AFC
outperformsABT by a large factor [14] (see section 5).

Recently, an interesting improvement toAFC was proposed. In addition to concur-
rency of checking forward, a concurrency of backtracking was introduced [19]. When a
backtrack is initiated by aNot OK message, it is sent directly to the culprit agent. This
triggers an additional search process, starting at the backtracking agent. An intuitive
way to understand this improvement toAFC is to say that it adds concurrent back-
tracking processes to its asynchronous forward-checking. All the generated concurrent
search processes, save one, are unsolvable (i.e. contain aNogood that generated the
backtrack message). Consequently, the improvedAFCalgorithm terminates all of these
search processes as soon as their unsolvability is validated (within a small number of
steps). The initial experimental report for the improvedAFC algorithm shows an en-
couraging improvement of performance [19].

A different way of achieving concurrency for search onDisCSPs, both from asyn-
chronous backtracking and from asynchronous forward-checking, is to run multiple
search processes concurrently.Concurrent searchperforms multiple concurrent back-
track search processes asynchronously on disjoint parts of theDisCSPsearch-space.
Each search space includes all variables and therefore involves all agents [35, 9, 37].
One approach to concurrent search was proposed by Hamadi and Bessiere in theinter-
leaved parallel search algorithm - IDIBT[9]. IDIBT runs multiple processes of asyn-
chronous backtracking and its multiplicity is fixed at the start of its run [8, 9]. The
performance of IDIBT was found to deteriorate for more than 2 contexts (i.e. more than
two concurrent ABT processes) [9].

A recent concurrent search algorithm runs multiple backtrack search processes asyn-
chronously. Search processes are initiated and stopped dynamically and this dynamic-
ity was found to enhance the performance ofConcBT andConcDB to outperform
all otherDisCSP search algorithms [37, 38]. Inconcurrent backtracking(ConcBT ),
agents pass their assignments to other agents on aCPA (Current Partial Assignment)
data structure [37]. EachCPArepresents one search process, and holds the agents’ cur-
rent assignments in the corresponding search process. The search ends unsuccessfully,



when allCPAs return for backtrack to the initializing agent and the domain of their
first variable is empty. The search ends successfully whenone CPA contains a complete
assignment, a value for every variable in the DisCSP.

An agent that receives aCPA tries to assign its local variables with values that
are not conflicting with the assignments already on theCPA, using only the current
domains in the search process (SP) that is related to the receivedCPA. Any agent can
generate a set ofCPAs that split the search space of a singleCPA that passed through
that agent, by splitting the domain of one of its variables. Agents can perform splits
independently and keep the resulting data structures (SPs) privately. All other agents
need not be aware of the split, they process allCPAs in exactly the same manner (see
the example in figures 3, 4 and [37, 38]). Splits are performed in search spaces that are
traversed heavily and a nice heuristic trigger for splits is the number of steps performed
without returning to the starting agent and without finding a solution.

All agents participate in all search processes, assigning their variables and check-
ing for consistency with constraining agents. All search processes are performed asyn-
chronously by all agents, thereby achieving concurrency of computation and shortening
the overall time of run for finding a global solution [35]. Agents and variables are or-
dered randomly on each of the search processes, diversifying the sampling of the search
space. Agents generate and terminate search processes dynamically during the run of
ConcBT , thus creating a distributed asynchronous algorithm [37]. The degree of con-
currency during search changes dynamically and enables automatic load balancing.

The best version of concurrent search is Concurrent Dynamic Backtracking (ConcDB),
that performs dynamic backtracking [7] on each of its concurrent sub-search spaces [38].
Since search processes are dynamically generated byConcDB, the performance of
backjumping in one search space can indicate that other search spaces are unsolvable.
This feature, combined with the random ordering of agents in each search process, en-
ables early termination of search processes discovered byDB to be unsolvable.

To visualize the main feature of concurrent search, dynamic splitting of search
spaces, consider the constraint network that is described in figure 3. All three agents
own one variable each, and the initial domains of all variables contain four values
{1..4}. The constraints connecting the three agents are:X1 < X2, X1 > X3, and
X2 < X3. The initial state of the network is described on the LHS of Figure 3. In or-
der to keep the example small, no initial split is performed, only dynamic splitting. The
number of steps that trigger a split in this example is 4. The first 5 steps of the algorithm
run produce the state that is depicted on the RHS of Figure 3. The run of the algorithm
during these 5 steps is described in detail below:

1. X1 assigns 1, and sends aCPA with CPA steps = 1 toX2 .
2. X2 assigns 2, and sends theCPA with CPA steps = 2, toX3.
3. X3 cannot find any assignment consistent with the assignments on theCPA. It

passes theCPA back toX2 to reassign its variable, withCPA steps = 3.
4. X2 assigns 3 and sends theCPA again toX3, raising the step counter to 4.
5. X3 receives theCPA with X2’s new assignment.

In the current step of the algorithm, agentX3 receives aCPA which has reached the
steps limit. Before trying to find an assignment for its variable,X3 sends a split mes-
sage toX1 which is the generator of theCPA, and changes the value of theCPA steps



Fig. 3. Initial state and the state after the CPA travels 5 steps without returning to its generating
agent

counter to 0. Next, it sends theCPA to X2 in a backtrack message. WhenX1 receives
the split message it creates a new search procedure. The newSP has the values 3, 4 in
its domain. These values are deleted from the domain of the existingSP . A newCPA
is created byX1, assigned with the value3 (a value from the new domain) and sent to a
randomly chosen agent. Other agents that receive the newCPA create newSPs with
a copy of their initial domain.

Fig. 4.The new non intersecting search spaces now searched using two differentCPAs



After the split, twoCPAs are passed among the agents. The twoCPAs perform
search on two non intersecting search-spaces. In the originalSP after the split, X1

can assign only values1 or 2 (see LHS of Figure 4). The search on the original SP is
continued from the same state it was in before the split. AgentsX2 andX3 continue the
search using their current domains to assign the originalCPA. Therefore, the domain
of X2 does not contain values 1 and 2 which were eliminated in earlier steps and it
assigns the value 3 onCPA1. In the newly generated search space,X1 has the values
3, 4 in its domain. AgentX1 assigns3 to its variable and the other agents that receive
CPA2 check the new assignment against their full domains (RHS of figure 4).

To see the difference of concurrent search from asynchronous backtracking, let us
take the 4-queens example and runConcBT on it (figures 5 and 6). Three concurrent
search prosses (SPs) are started by agentA1. The three SPs are represented by a trian-
gle, a square and a circle. In the first cycle of computation, agentA1 splits its domain
to three parts and assigns values to the threeSPs. These are values 1, 2, and 3. The
threeCPAs are sent forward to different agents.SP1 (triangle) is sent to agentA2,
SP2 (square) is sent to agentA3 andSP3 (circle) is sent to agentA4. Each agent keeps
a separate data structure for eachSP and computes its assignments, upon receiving
a CPA, separately. In the second cycle of computation, agentsA2, A3, A4 compute
concurrently, each assigning a value to its variable on theCPA it is holding. Each
assignment is consistent with all former assignments on theCPA. AgentA2, for ex-
ample, assigns the value 3 toCPA1. Having performed their assignments, all agents
send theCPAs to unassigned agents.A2 sendsCPA1 to agentA3, agentA3 sends
CPA2 to agentA4, and agentA4 sendsCPA3 to agentA2.

In cycle 3 again agentsA2, A3, A4 are active. AgentA4 performs a compatible as-
signment onCPA2 and sends it further. AgentsA2 andA3 cannot find a compatible
assignment to their variable onCPA3 andCPA1 respectively. As a result, they send
these twoCPAs in a backtrack step. It is easy to follow the next steps of computation
in figure 6. In cycle 5 agentA2 receives two messages. One is from agentA4 that sent it
CPA3, having revised its assignment from value 1 to value 2. The other message con-
tainsCPA2 (square) with agentA4’s assignment. For clarity of presentation agentA2

performs the assignments on these twoCPAs in two separate cycles of computation.
In cycle 5 it assignsCPA3 with the value 1. In cycle 6 it assignsCPA2 with the value
4, thus completing a solution. It is important to note that at the same cycle agentA3

completes another solution concurrently. That ofCPA3.

Fig. 5.First 3 cycles of ConcBT - lists of Active Agents in each cycle



Fig. 6.Cycles 4-6 of ConcBT

2.1 Stochastic search algorithms on DisCSPs

Stochastic search onDisCSPs incorporates agents that perform improvement moves
to their local neighbourhoods [32]. The distributed nature of the algorithms relates to
the fact that each agent computes steps of improvement to its local neighbourhood and
takes into account only its neighbours. The stochastic nature springs from the initial
assignment that is random. Like centralized versions of stochastic search, distributed
stochastic search runs by improving assignment states until no further improvement is
possible or some stopping criterion has been reached [1]. Two important distributed
local search algorithms have been studied in theDisCSP literature. Distributed lo-
cal search algorithm (DSA) [32] and the distributed breakout algorithm (DBA) [28].
The DBA is a natural extension of the breakout algorithm [18] to distributed search on
DisCSPs.

Distributed stochastic search (DSA) starts by each agent selecting a value randomly
for its variable. In each step of the search, each agent sends its assignment to neigh-
bouring agentsif it was changedat that step, and receives messages from neighbouring
agents that changed their assignment [32]. Next, each agent decides whether to keep its
value or select another one. New values are selected to achieve the objective of reducing
the number of violated constraints. Agents will not change their values if no improve-
ment in the violation of constraints can be achieved. Improvements can be achieved by
the use of some strategy for selecting a next value.

There are several strategies for selecting the next value. Selecting values by the
use of different strategies (with some probabilityp) enables DSA to escape from local
minima [32]. Strategies range from selecting only values that strictly improve the cur-
rent state, to selecting values that do not degrade the current state, while there are still
constraint violations. The exact step of improvement, among several agents that can
potentially improve the value of their neighbourhood, is selected by a decision protocol
of all the involved agents. Neighbouring agents propose and compare their potential
improvements, selecting the best candidate.

In the distributed breakout algorithm (DBA), a different approach is utilized for
escaping local minima. Each constraint is associated with a value and the summation of
all constraint violations is used as the cost of a solution. In the process of improving a
solution, neighbouring agents exchange messages of possible improvements. Only the
agent that can maximaly improve the value is allowed to change its value. Initially all



values for all constraints are set to 1. When no improving step can be found, the weights
of the violated constraints are increased by 1. This directs the DBA to find improving
moves that involve constraints that are persistently violated [33, 18].

In both DSA and DBA agents exchange messages and then select a specific improv-
ing move. Thus the algorithms are naturally described in terms of steps or moves. and
one can make two observations:

– Each step must be synchronized among all agents, so that the computation of their
change of value assignments is based on correct data about their neighbours.

– The “weaker” the condition for permitting a change in DSA, the higher the de-
gree of concurrency of the search process. This is due to larger number of agents
performing changes concurrently.

Both of the above observations are related to the efficiency of the algorithm. The policy
employed by DSA, for selecting the next assignment, was compared to the Distributed
Breakout Algorithm (DBA) [33]. Zhang et. al. have found that on the family of Sensor-
CSP problems [2], DSA is superior to DBA. They have also found thrashing behavior of
DSA, when the degree of concurrency was too high (i.e. when too “weak” a condition
for improvement was used) [33].

The fact that steps of a distributed algorithm are synchronized among agents is also
important for assesing its efficiency. It is true that distributed mechanisms for synchro-
nization of actions among agents do exist [11]. Agents can synchronize their steps in a
distributed stochastic search, by enumerating the steps and by exchanging special mes-
sages that ensure the conclusion of each step (cf. [32]). However, these synchronizing
messages must be taken into account when measuring the overall communication load
of a distributed search algorithm. Many current studies use a simple simulator for run-
ningDisCSP search algorithms [27], thus using synchronized steps of computation at
no extra cost. I believe that this experimental setup is quite misleading, as it does not
simulate concurrency.

In order to measure correctly the efficiency of aDisCSP algorithm one needs a
mechanism for counting concurrent steps or concurrent constraints checks (see sec-
tion 5). When messages are delayed, any synchronization mechanism causes linear de-
lays in the run of the algorithm (each agent waiting for all others to complete the current
step). This will become clearer in section 3, where message delays and their impact
on the efficiency ofDisCSP search algorithms are discussed in detail. The impor-
tant point to make is that a correct measure of the efficiency of the existing distributed
stochastic search algorithms must incorporate the mechanism for synchronizing search
steps explicitly.

Incomplete search algorithms are usually used to find the best solutions [1]. This is
natural, since moves of improvement to the overall cost of a solution lead to solutions
of lower cost. The above distributed stochastic search algorithms are therefore suitable
for finding an optimal solution to aDisCSP , on the condition that some overall cost
function is defined. A special case of a global cost function can be defined in terms of
valued constraints. Modi et. al. define a distributed constraints optimization problem
(DCOP) as aDisCSP in which all constraints are valued [16]. Valued constraints
return a value for each pair of assignments to the constrained variables. The sum of



all constraints’ values is defined as the overall cost of the solution and the goal of the
DCOP is to minimize this cost [16, 17].

A complete and asynchronous search algorithm for DCOP was proposed recently
by Modi et. al. [17]. The ADOPT algorithm has agents sending their assignments down
the DFS tree in VALUE messages and sending back COST messages. COST messages
contain a lower bound and an upper bound to the cost of the subtree rooted at the send-
ing agent. Based on the received COST messages from its children, each agent updates
its estimation of the lower and upper bound. Estimations relate to a complete neighbour-
hood of each agent. COSTs from its children combined with the computed cost of its
constraints with its (constraining) ancestors. The central point of the ADOPT algorithm
is its ability to maintain bounds asynchronously [17]. It does so by using thresholds
on cost that agents send down the DFS tree. Thresholds are based on the cost estima-
tion in each agent and are split heuristically among its children. Thresholds improve
the efficiency of the search by pruning assignments that result in costs higher than the
threshold. The algorithm is distributed, asynchronous and complete and is shown to
terminate deterministically upon arrival at an optimal solution [17].

3 Message Delays

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. In order to investigate the impact of message delays on DisCSP
algorithms, two essential requirements have to be satisfied:

– Means of controling the amount and type of delays in the experimental setup.
– A common scale for message delays and the performance measures of distributed

search algorithms.

The first study of the impact of message delays onDisCSP algorithms used ran-
domly generated delays that were measured in real time of runs [6]. The results indi-
cated a strong deterioration in the performance of ABT with random message delays.
However, the scale of delays dictated the measurement of performance in real time.
While this is acceptable, it is highly implementation dependent. As explained in sec-
tion 1, the performance of distributed algorithms is measured by two standard means
that are implementation independent. To achieve such measurement forDisCSP algo-
rithms, one must use a well controlled environment in the form of a simulator. To sim-
ulate asynchronous agents, the simulator implements agents asJava Threads. Threads
(agents) run asynchronously, exchanging messages by using a common mailer. After
the algorithm is initiated, agents block on incoming message queues and become active
when messages are received.

Concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [10, 13, 22]. Every agent holds a counter of computation
steps. Every message carries the value of the sending agent’s counter. When an agent



receives a message it updates its counter to the largest value between its own counter
and the counter value carried by the message. By reporting the cost of the search as the
largest counter held by some agent at the end of the search, we achieve a measure of
concurrent search effort that is similar to Lamport’s logical time [10].

On systems with message delays, the situation is more complex. For the simplest
possible algorithm, Synchronous Backtrack (SBT ) [27], the effect of message delay is
very clear. The number of computation steps is not affected by message delay and the
delay in every step of computation is the delay on the message that triggered it. There-
fore, the total time of the algorithm run can be calculated as the total computation time,
plus the total delay time of messages. In the presence of concurrent computation, the
time of message delays must be added to the total algorithm timeonly if no computation
was performed concurrently. To achieve this goal, the algorithm of theAsynchronous
Message-Delay Simulator(AMDS) counts message delays in terms of computation
steps and adds them to the accumulated run-time when no computation is performed
concurrently [39].

In order to simulate message delays, all messages are passed by a dedicatedMailer
thread. The mailer holds a counter of concurrent computation steps performed by agents
in the system. This counter represents the logical time of the system and we refer to it as
theLogical Time Counter(LTC). Every message delivered by the mailer to an agent,
carries theLTC value of its delivery to the receiving agent. To compute the logical time
that includes message delays, agents perform a similar computation to the one used
when there are no message delays [13]. An agent that receives a message updates its
own LTC to the largest value between its own and theLTC on the message received.
Then the agent performs the computation step, and sends its outgoing messages with
the value of itsLTC incremented by 1.

The mailer simulates message delays in terms of concurrent computation steps. To
do so it uses its own (global)LTC. When the mailer receives a message, it first checks
if the LTC value that is carried by the message is larger than its own value. If so,
it increments the value of theLTC. This generates the value of the global clock (of
the Mailer) which is the largest of all logical times of all agents. Next, a delay for the
message (in number of steps) is selected. Different types of selection mechanisms can
be used, from fixed delays, through random delays, to delays that depend on the actual
load of the communication network [39]. To achieve delays that simulate dependency
on network load, for example, one can assign message delays that are proportional to
the size of the outgoing message queue.

Each message is assigned adelivery time which is the sum of the current value of
the Mailer’sLTC and the selected delay (in steps), and placed in theoutgoing queue.
Finally, the Mailer delivers all messages withdelivery time less or equal to the
mailer’s currentLTC value, to their destination agents.

When there are no incoming messages, and all agents are idle, if theoutgoing queue
is not empty (otherwise the system is idle and a solution has been found) theMailer
increases the value of theLTC to the value of thedelivery time of the first message in
the outgoing queue and callsdeliver messages. This is a crucial step of the simulation
algorithm. Consider the run of a synchronous search algorithm. ForSynchronous Back-
tracking(SBT ) [27], every delay needs the mechanism of updating the Mailer’sLTC.



This is because only one agent is computing at any given instance, in synchronous
backtrack search.

The concurrent run time reported by the algorithm, is the largestLTC held by some
agent at the end of the algorithm run. By incrementing theLTC only when messages
carryLTCs with values larger than the mailer’sLTC value, steps that were performed
concurrently are not counted twice. This is an extension of Lamport’s logical clocks
algorithm [10], as proposed for DisCSPs by [13], and extended here for message delays.
A sample of results of runs with random message delays, for algorithms described in
section 2, is given in section 5.

4 Privacy of DisCSP search algorithms

An important goal of search algorithms for the distributed constraint satisfaction prob-
lem is to support agents’ privacy. During cooperative search for a globaly consistent
solution, agents exchange messages about their assignments and about conflicts with
other agents’ assignments. This creates a natural trade-off between information disclo-
sure and the efficiency (and correctness) of the distributed search process. The first to
investigate measures of privacy for DisCSPs were Meseguer and Jimenez [15]. They
presented separate algorithms for maintaining two types of privacy during the run of
the asynchronous backtracking (ABT) algorithm. One for maintaining privacy of val-
ues, where agents do not disclose their assignments, and one for maintaining privacy of
constraints.

Privacy of constraints occurs when agents keep part of the constraints between them
and a constraining agent private. A vivid example is to have a problem in which two
agents, one acting like a queen on a chessboard and the other like a knight, have to
find a consistent assignment for themselves. Each one knows what positions of the
other agent are forbidden by its own type of moves. However, if the agents keep their
constraints private, none of them knows which positions are forbidden by the types of
moves of the other agent [5]. It turns out that both types of privacy can be maintained
simultanously by an interesting version of asynchronous backtracking. It involves two
runs of the ABT algorithm, in two opposite directions. This privacy keeping version of
ABT was proposed by Brito and Meseguer in 2003 [5].

Securing complete privacy for two agents exchanging information by messages can
be also tackled by the use of secure protocols. This approach has been proposed by
Yokoo et. al. in [30]. In their work, Yokoo et. al. use an additional set of agents that act
as trusted parties for exchanging assignment proposals and constraints checks among
the DisCSP agents. Thus, a standard method of third party secure exchange of in-
formation is established [30]. No investigation was reported, to try and find the added
cost, in both computation and network load, due to such a secure asynchronous search
protocol.

A different approach for investigating the privacy of distributed search was pre-
sented first by Wallace and Freuder [26]. The idea is to investigate the trade-off between
privacy loss and the efficiency of distributed search by using a specific scenario of a dis-
tributed CSP. The selected family of distributed search problems was that of Scheduling
Meetings among multiple agents. This concrete family of problems was used to com-



pare the amount of needed computations for finding a solution, when different quantities
of information were exchanged among the searching agents. The meeting scheduling
problem (MSP) was studied in a very restricted form in [26]. The tradeoff between the
privacy of agents’ meetings (as appear in their own calendar) and the efficiency of the
search process was studied by using instances of MSPs that have only one meeting to
coordinate, which all agents have to attend [26]. Agents must be able to get from their
private meetings to the scheduled meeting according to the traveling time constraints.
Each agent has its own private calendar that defines its constraints regarding the time
and location of the meetings.

In [25], the family of MSPs as been extended to be the graph coloring problem forn
meetings (variables). The problem is to assign time-slots to alln variables (meetings),
such that each variable is owned by more than one agent. The constraints among the
values assigned to meetings which include a specific agent are inequality constraints.
This creates a graph coloring problem of a distributed nature. Each agent owns the
variables corresponding to meetings in which it participates and an inequality constraint
holds among them [25]. However, the investigation of privacy-efficiency trade-off in
[25] uses “synchronous distributed backtracking” for solving the problem. It can be
shown that for asynchronous search algorithms, such as ABT, the notion of privacy is
much more difficult to establish [12].

To overcome the above problem an investigation of the general MSP problem (with
general arrival-time constraints) that uses an enhanced version of the asynchronous
backtracking (ABT) algorithm was recently performed [12]. It measures the effect of
asynchronous exchange of additional information on asynchronous search, to find that
volunteering information by agents reduces search effort. The main idea is to volunteer
additional information during the sending back ofNogoods. Additional Nogoods re-
duce the amount of messages sent and the number of concurrent steps of computation
[12]. This mechanism has the nice quality thatNogoods remain valid and can retain
their relevance all through the asynchronous search process.

For the general MSP the issue of privacy is problematic because the two existing
approaches in theDisCSP literature cannot be extended in a natural way. The study
of privacy trade-off [26, 25] uses the refusals to a proposed meeting, to construct a
“shadow schedule”. Thus, accumulating information on the schedules of other agents.
This cannot be done for the general MSP, where conflicts arise from meetings that are
being scheduled asynchronously. The other approach to privacy enables to keep the pri-
vacy of constraints and assignments [5]. For the general MSP, any proposed meeting is
by definition equal to the proposer’s assignment. All inter-agent constraints are equality
constraints (i.e. meeting at the same time and the same place). This rules out keeping
assignments private, they are constrained to be equal. Unfortunately, this also rules out
the standard privacy of constraints, in which constraints between two agents are split
among the agents [5]. Equality constraints are symmetric and keeping them private to
one of the agents that participate in a meeting does not seem to make any sense [12].



5 Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance - time, in the form of steps of com-
putation [11, 27], and communication load, in the form of the total number of messages
sent [11]. Comparing the number of concurrent steps of computation of search algo-
rithms on DisCSPs, measures the time of run of the algorithms.

Concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [10, 13]. Every agent holds a counter of computation
steps. Every message carries the value of the sending agent’s counter. When an agent
receives a message it updates its counter to the largest value between its own counter
and the counter value carried by the message. By reporting the cost of the search as the
largest counter held by some agent at the end of the search, we achieve a measure of
concurrent search effort that is close to Lamports logical time [10]. If instead of steps of
computation we count the number of concurrent constraints check peformed (CCCs),
we take into account the local computational effort of agents in each step [13].

An important part of the experimental evaluation is to measure the impact of im-
perfect communication on the performance of concurrent search. Message delay can
change the behavior of distributed search algorithms [6]. In the presence of concurrent
computation, the time of message delays must be added to the total algorithm timeonly
if no computation was performed concurrently. To achieve this goal, we use a simula-
tor which counts message delays in terms of computation steps and adds them to the
accumulated run-time when no computation is performed concurrently [39].

Experiments were conducted on random networks of constraints ofn variables,k
values in each domain, a constraints density ofp1 and tightnessp2 (which are com-
monly used in experimental evaluations of CSP algorithms cf. [21, 23]). All sets of
experiments were conducted on networks with either 15 or 10 agents (n = 10, 15) and
10 values for each variable (k = 10). Two values of constraints density were used in
different experiments,p1 = 0.4 andp1 = 0.7. The tightness valuep2, is varied between
0.1 and 0.9, to cover all ranges of problem difficulty.

5.1 Asynchronous forward-checking vs. ABT

The performance ofAFC is compared to Asynchronous BackTracking (ABT ) [27].
In our implementation ofABT , theNogoods are resolved and stored according to the
method presented in [3]. Based on Yokoo’s suggestions [28] the agents read, in every
step, all messages in their mailbox before performing computation.

Figure 7 presents a comparison of the computational effort performed byAFC
andABT on randomly generatedDisCSPs. The advantage in concurrent constraints
checks (figure 7(a)) ofAFC overABT is more pronounced then in concurrent steps
(figure 7(b)). This indicates that the distributed procedure which maintains local con-
sistency inAFC is efficient. It needs fewer constraints checks per computation step on
the average. The communication load, as measured by the total number of messages
sent during search, is also lower for AFC than for ABT (see [14]).



(a) (b)

Fig. 7. (a) Number of concurent constraints checks in AFC, and ABT, (b) Number of concurrent
steps for both algorithms.

5.2 ConcDB vs. Asynchronous Backtracking

The performance of concurrent dynamic backtracking (ConcDB) can be compared to
asynchronous backtracking (ABT ) [27]. In ABT agents assign their variables asyn-
chronously, and send their assignments inok? messages to other agents to check against
constraints. A fixed priority order among agents is used to break conflicts. Agents in-
form higher priority agents of their inconsistent assignment by sending them the incon-
sistent partial assignment in aNogood message. Our implementation ofABT is the
same is in the above comparison toAFC [3]. Based on Yokoo’s suggestions [27] the
agents read, in every step, all messages received before performing computation.

(a) (b)

Fig. 8.(a) Number of concurrent constraints checks performed by ConcDB and ABT, (b) Number
of concurrent steps for both algorithms.

The LHS of figure 8 presents the comparison of the number of concurrent con-
straints checks performed byConcDB andABT on problems with low dinsity (p1 =
0.4). For the harder problem instances,ConcDBoutperformsABT by a factor of 3.
On the RHS of figure 8 The results are presented in the number of concurrent steps
of computation. The smaller factor of difference can be related to the larger amount of
local computationABT perfoms in each step since it reads all the messages which it
received up to this step.



(a) (b)

Fig. 9.Total number of messages sent by ConcDB and ABT on DisCSPs with low density (a) and
high density (b).

When it comes to communication load, the advantage of concurrent search over
asynchronous backtracking is very pronounced. As can be seen in figure 9, for harder
problem instancesABT sends 4 times more messages than ConcDB. For higher prob-
lem density (figure 9(b)) the factor is even higher.

5.3 The impact of message delays

In another set of experiments, each message was delayed by a random number of log-
ical concurrent constraints checks, between 5 and 15. TheAFC algorithm was com-
pared toABT . The results in figure 10 show as expected, that the performance of both
algorithms deteriorates with message delays. The difference in concurrent constraints
checks, betweenAFC andABT is smaller on systems with random message delay.
The difference in the total number of messages however, is larger (RHS of figure 10).
In both casesAFC has an advantage overABT .

When messages are delayedABT cannot read multiple messages before perform-
ing computation. Therefore the actual steps it performs and the number of messages it
sends grow by a significant factor.AFC is slowed down by message delay when the
CPA is delayed, or aNot OK message indicating a need for backtrack is delayed,
while theCPA is moving forward. In other words, message delay disables some of the
pruning ofAFC. It delays the backtrack triggered by forward checking.

In contrast to both AFC and ABT, concurrent search is quite robust to message
delays. Figure 11 presents the results of the set of experiments in which ConcDB and
ABT were run on a system with random message delay. Each message was delayed
between 5 to 10 steps and the results in logical steps are presented for low and high
density (p1 = 0.4 on the LHS andp1 = 0.7 on the RHS of figure 11). Random message
delay deteriorates the performance of asynchronous backtracking while the effect on
concurrent dynamic backtracking is minor. The results in figure 11 show a larger factor
of difference between the two algorithms.

6 Discussion

Distributed constraints satisfaction problems (DisCSPs) are composed of agents that
own parts of the CSP. In a DisCSP search algorithm, all agents cooperate in search for a



(a) (b)

Fig. 10. (a) Number of logical concurrent steps performed by AFC and ABT on DisCSPs with
random message delays, (b) Total Number of messages sent with random message delays.

(a) (b)

Fig. 11. (a) Number of logical concurrent steps performed by ConcDB and ABT on low density
DisCSPs, (b) on high density DisCSPs.

globally consistent solution to the problem. Since agents own variables, DisCSP algo-
rithms involve assignments of values to variables by agents and communication among
agents in order to arrive at a consistent solution. DisCSPs can serve as a general model
for distributed problem solving - from timetabling a set of departments to cooperative
search on a graph.

Two general families of search algorithms on DisCSPs have been presented. One
family maintains a single search process at all times and the other family has multi-
ple concurrent search processes. The classical single search algorithm is asynchronous
backtracking (ABT) and a recent member of this family is asynchronous forward-
checking (AFC). Both have been presented in section 2 in their updated versions.
ABT reads all messages at each step and resolves Nogoods [3] and AFC backtracks
by maintaining (shortly) obsolete search processes [14, 19]. A very successful multi
search process algorithm is concurrent dynamic backtracking (ConcDB). ConcDB
splits the search space dynamically during search and utilizes interaction among search
spaces [38]. The interaction results from backjumping, that abolishes adjacent sub
search spaces (see section 2).

A major issue of DisCSP algorithms is that of distributed efficiency measures. Asyn-
chronous algorithms cannot be measured simply by the total number of computational



operations that are performed by all agents. The best proposed measure to date is to
compute the number of concurrent computation steps or the number of concurrent con-
straints checks (CCCs) [13]. This measure generalizes Lamport’s idea of clock syn-
chronization [10] to the case of Constraints checks for asynchronous DisCSP search
algorithms. Our experimental evaluation used these concurrent performance measures
for DisCSP algorithms on randomly generated problems.

An extensive experimental evaluation of all completeDisCSP algorithms has been
presented. The experimental behavior of the multi search algorithm on random DisCSPs
clearly indicates its efficiency, compared to algorithms of a single search process like
ABT . Experiments were conducted for different constraints densities, a wide range of
constraints tightness and in systems with random message delays. In all experiments
and for three different measures of performance,ConcDB outperformsABT by a
large margin.

The delay of messages can have a strong impact on the efficiency of distributed
search algorithms onDisCSPs [6]. The study of the behavior ofDisCSP algorithm
under message delays was presented as part of the experimental evaluation (section 5).
Use was made of an asynchronous simulator that runs theDisCSP algorithms with dif-
ferent types of message delays and measures performance in concurrent steps of com-
putation. In asynchronous backtracking, agents perform assignments asynchronously.
As a result of message delay, some of their computation can be irrelevant (due to incon-
sistentAgent views while the updating message is delayed).

The results presented in section 5 strengthen the results reported by [6], and do so
for a larger family of random problems. In contrast, the impact of random message
delays on concurrent search algorithms is minor. This is very apparent in Figure 11,
where the number of steps of computation ofConcDB is lower than that ofABT
by a factor of 4.5 in the presence of message delays (compared to a factor of 3 only,
with no message delays in figure 8(b)). In terms of network load, the results of the
experimental investigation show that asynchronous backtrack puts a heavy load on the
network, which doubles in the case of message delays. The number of messages sent in
concurrent algorithms is much smaller than the load of asynchronous backtracking and
is not affected by message delays.

The trade-off between privacy and efficiency forDisCSP algorithms was inves-
tigated by Wallace [26]. Two partial privacy-keeping versions ofABT were proposed
by [5]. These investigations leave much room for future research, since privacy is a
central issue to distributed search. In section 4 a recent result that uses the meeting
scheduling problem was described [12]. For MSPs, volunteering additional information
(in the form ofNogoods) improves the performance ofABT . This generalizes former
findings of [26], for general MSPs. An interesting generalization of this result is that
volunteering additional information can enhance the efficiency of asynchronous search
on general DisCSPs.

Acknowledgement:My deepest thanks to Roie Zivan, whose work with me on DisCSP
search algorithms and on the impact of message delays has triggered this Turotial.
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