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Abstract—Asymmetric Distributed Constraint Optimization
Problems (ADCOPs) are a useful model for representing real-life
problems of distributed nature. Constraining agents in ADCOPs
have different gains (or costs) for the constraints that involve
them. All former ADCOP search algorithms assume cooperation
among the agents and do not capture the possibility of strategic
behavior by the searching agents. The present paper extends
a recent approach that uses side payments among constraining
agents in ADCOP local search, and proposes an improved such
algorithm for strategic agents. Enabling search for strategic
agents is especially suitable for asymmetric DCOPs, where the
agents gain differently from the constraints and would naturally
pursue personal gains.

The proposed method uses a specially designed mechanism
that enforces truthful behavior for agents placing bids of side
payments during search. This in turn guarantees that the
(strategic) agents’ bids will form bids of maximal payoffs. The
resulting search algorithm is an anytime algorithm that converges
to stable solutions of higher social welfare that are local optima of
the global social welfare, and computes the payments (contracts)
that stabilize its outcome as a pure Nash equilibrium (PNE).
The experimental evaluation shows that the payments charged
by the mechanism in order to enforce truthful behavior are small
compared to the total increase in the social welfare, and that the
vast majority of the agents have improved personal gains when
the algorithm terminates.

Index Terms—distributed constraints optimization, side pay-
ments, efficient PNEs

I. INTRODUCTION

The Distributed Constraint Optimization Problem (DCOP
[18], [20], [29], [30]) is a general model for solving real-
life problems that are distributed by nature and cannot or
should not be solved centrally [8], [35]. DCOPs are composed
of agents, each holding one or more variables with a finite
domain of possible value assignments. Constraints among
variables (possibly held by different agents) assign costs to
combinations of value assignments. Agents assign values to
their variables and communicate with each other, attempting
to generate a solution that is globally optimal with respect to
the costs of the constraints.

The model of Asymmetric DCOPs (ADCOP [9]) gener-
alises DCOPs and accommodates the common situation where
agents have different costs for mutual assignments profile.
Instead of assuming equal payoffs for constrained agents,
every ADCOP constraint explicitly defines the exact payoff
for each participant [9], [11]. That is, assignment profiles
are mapped to a tuple of costs, one for each constrained
agent. ADCOPs are naturally represented by graphs in which

agents are represented by nodes and each constraint between
two agents is represented by an edge on the graph. Since
a constraint among two agents is a bi-matrix assigning the
cost (or gain) of each of the constrained agents for every
assignment combination, one can think of a constraint as a
normal form game played by the constrained agents. This
family of games has been termed graphical games [13].

Since ADCOPs are NP-hard, different incomplete algo-
rithms were proposed for solving them ( [9], [27], [34]).
Recently, an innovative approach to local search on ADCOPs
was proposed, that uses the (multi-agent) game-like nature of
these problems [15]. This new family of search algorithms uses
side payments contracted and exchanged among constraining
agents. As a result of using these incentives, the algorithms
can guarantee finding solutions of higher global social welfare.
The Bidding Enhanced Efficiency Contracts (BEECon [26])
algorithm is the most recent member of this family, and
was experimentally shown to be the best performing local
search ADCOP algorithm. Of particular interest is the fact
that since ADCOPs are analogous to games on networks,
the BEECon algorithm guarantees the finding of stable solu-
tions (i.e., pure Nash equilibria - PNEs) of higher efficiency.
However, BEECon and all former ADCOP algorithms assume
cooperative behavior of the participating agents and ignore the
possibility of strategic (i.e., selfish) agents that may prefer their
own utility over the global social welfare. Such an agent may
misreport its private information and undermine the stability
and efficiency guarantees of algorithms that use side payments
among agents [15], [26].

The present paper proposes the integration of a truthful
bidding mechanism into the search process of BEECon. The
resulting search is robust to simple strategic manipulations
by the participating agents, and guarantees all the advantages
of BEECon. Among other guarantees, it converges to a local
maximum of the social welfare.

Section II describes shortly the use of side payments in
ADCOP search and focuses on the BEECon algorithm. The
required preliminaries on mechanisms are introduced in Sec-
tion III and Section IV presents the integration of a bidding
mechanism into the BEECon algorithm. A preliminary exper-
imental evaluation of the proposed method and algorithm is in
Section V. The experimental results show that the payments
taxed under the proposed algorithm in order to stabilize its
outcome are small compared to the increase in global social
welfare, and that most agents are better off upon termination



of the algorithm.

II. LOCAL SEARCH WITH SIDE PAYMENTS ON ADCOPS

All search algorithms on DCOPs and ADCOPs assume co-
operation by the participating agents [16], [18]–[20], [29], [30]
and for local search algorithms this takes the standard form
of synchronous steps in which agents form a decision about
their next assignment by consulting their neighbors (e.g., their
constraining agents). In the MGM (Maximum Gain Message)
algorithm agents exchange messages with their neighbors,
report their expected gains from potential assignments among
neighbors, and select the largest improvement among all pos-
sibilities [17]. In the DSA (Distributed Stochastic Algorithm)
algorithm the agents select their assignment randomly [32].
Other local search algorithms use different selection criteria,
but all of them share information completely [12]. The same
cooperation is assumed also when the problems become asym-
metric (e.g., ADCOPs) [7], [9], [34].

Recently, an innovative class of local search algorithms
for ADCOPs was proposed, that uses side payments among
neighboring agents [15], [26]. By using side payments agents
can incentivise their neighbors to select some preferred as-
signment. Since asymmetric DCOPs have constraints among
agents that are analogous to normal form games, one can
think of ADCOPs as multi-agent games [9], [11], [15]. This
new class of local search algorithms can be looked at as an
extension of the best response mechanism [21] in multi-agents
games, that guarantees convergence to stable solutions for
general games and not just potential games [21]. The next
subsection presents the currently best ADCOP local search
algorithm, its use of side payments among the agents and its
efficiency and stability guarantees.

A. Side payments in ADCOP search - the BEECon algorithm

The agents run BEECon algorithm in a fixed order - each
agent in its turn (see Algorithm 1). The agent whose turn it
is to act is termed the current agent. On its turn, the current
agent i chooses a set of possible value assignment V s

i ⊆ Vi

for its variable (line 2. For the rest of the paper it is assumed
that V s

i = Vi), and publishes Vi to its neighbors Ni (line 3).
In response, every neighboring agent j ∈ Ni calculates and
offers a side payment T vi

j,i that it offers the current agent for
each possible assignment vi ∈ Vi (procedure reply()). The side
payments {T vi

j,i | j ∈ Ni} offered by the neighboring agents
for an assignment vi are considered irreversible contracts
- to be paid only in case the current agent i chooses vi
as the assignment for its variable upon termination of the
search process. If, however, the current agent changes its value
assignment in any stage during the run of Algorithm 1 - the
corresponding contract is nullified. The current agent considers
all possible value assignments in Vi (line 7), sums up its own
utility and the contracts proposed by its neighboring agents
for each option, and selects the assignment that maximizes its
own utility (lines 8-12). Finally, the current agent updates its
neighbors about the chosen assignment, and it is now the turn
of the next agent to act as the current agent.

Algorithm 1 Bidding Enhanced Efficiency Contracts

onTurn(i)
1: let vi ← the current strategy of agent i
2: choose V s

i ⊆ Vi

3: send(choice, V s
i ∪ {vi}) to all j ∈ Ni

4: receive T s
j,i foreach s ∈ V s

i ∪ {vi} from all j ∈ Ni

5: let T←
∑

j∈Ni
T vi
j,i

6: v′i ← vi
7: for all s ∈ V s

i do
8: let T s ←

∑
j∈Ni

T s
j,i

9: if ui(s, v−i) + T s > ui(vi, v−i) + T then
10: v′i ← s
11: T← T s

12: end if
13: end for
14: send(update,v′i) to all j ∈ Ni

reply(choice, V s
i )

1: for all vk ∈ V s
i do

2: let T vk
j,i ← calculate bid()

3: end for
4: let bids ← [T v1

j,i , . . . , T
v|V s

i
|

j,i ]
5: return bids

Function calculate bid() in procedure reply of Algorithm
1 is left undefined here. This function determines the bids
(side payment) that a neighboring agent j places for each
assignment proposed by the current agent i. In [26], the bids
are non-strategic and are termed maximal payoffs contracts.
In order to compute maximal payoffs the following method is
used:

1) A neighboring agent j computes its utility sjvk =
uj(vi, v−i) for each vi ∈ Vi,

2) selects the “worst” value assignment sjmin =
min{svi | vi ∈ Vi}, that produces its lowest gain.

3) uses sjmin as a reference point, and bids the difference
sjvi − sjmin for each vi ∈ Vi.

The pseudo-code of computing maximal payoffs in [26]
is given in 2. This type of bids is termed maximal payoffs
contracts because a neighboring agent j that wants the current
agent i to select some assignment vi, is willing to sacrifice its
entire relative benefit sjvi − sjmin from the assignment. Obvi-
ously, a selfish (i.e., rational) agent j that tries to maximize
its utility will attempt to gain something by placing a lower
bid in most cases.

In the next subsection, the most important properties of
the BEECon algorithm under maximal payoffs are listed
from [26]. The challenge tackled by Section IV is the design
and integration a bidding mechanism that enforces maximal
payoffs on strategic agents and thereby achieves the guarantees
of the BEECon algorithm for strategic agents.



Algorithm 2 Computing Maximal Payoffs Contracts

reply(choice, V s
i )

1: for all vk ∈ V s
i do

2: let svk ← uj(v1, . . . vk, . . . vn)
3: end for
4: let smin ← min{sv1 , . . . , sv|Vi|

}
5: let bids ← [sv1

− smin, . . . , sv|Vi|
− smin]

6: return bids

B. Properties and guarantees of the BEECon algorithm

The central feature of BEECon (assuming maximal payoffs)
is that it transforms a general ADCOP into an exact potential
game. Maximal payoffs summed-up with the utility of the
current agent (line 9) guarantee that when the current agent
chooses strategy vi, the change in its own utility - including all
contracts - equals the change in the global social welfare (this
and the following properties are fully proved in [26]). This
fact implies that a current agent that chooses an assignment
that maximizes the potential function, causes an increase
in the social welfare. That is, BEECon is an anytime [33]
local search algorithm. Moreover, maximal payoffs contracts
guarantee that whenever there is an assignment-deviation of
the current agent that can increase the social welfare, this
assignment will be selected such that the algorithm converges
to a local optimum of the social welfare. In other words,
BEECon uniquely guarantees that upon convergence no single
assignment deviation of any agent can improve the social
welfare:

∀i ∈ N : ∄v′ ∈ Vi s.t.
∑
j∈N

uj(v
′, v−i) >

∑
j∈N

uj(vi, v−i)

The above sample of properties and guarantees of the BEECon
algorithm make it the best performing local search ADCOP
algorithm [26]. Since these guarantees apply only under max-
imal payoffs, the next section turns to the task of designing a
mechanism that will force strategic agents to propose maximal
payoff bids during search.

III. A BIDDING MECHANISM FOR SIDE PAYMENTS DURING
SEARCH

It is best to describe the goals of mechanisms by using the
term of social choice. A social choice is an aggregation of
the preferences of the different agents toward a single joint
decision. Mechanism design attempts to implement a desired
social choice in a strategic setting - assuming that the different
members of society each act rationally in a game theoretic
sense [22].

A main concern when designing a bidding mechanism is
the possibility of strategic bidding by the agents. A strategic
bid is one that tries to take advantage of the participants in
the social choice action. Take for example a government that
considers undertaking a public project of cost C (e.g., building
a bridge), and let the government policy be: each citizen i
declares the payment vi it is willing to pay for the completion
of the project. The project is accomplished if

∑
i vi ≥ C, and

each citizen i is charged vi. Such a straight forward policy
might lead some citizens to free-ride and declare a payment
of 0, hoping for the rest of the payments to exceed the cost of
the project. In this simple example, free-riding can result in
a social choice that is undesired by the government (and the
citizens).

Given n players with B1, . . . , Bn bids for each of the
alternatives in A, a mechanism is a function f : B1 × · · · ×
Bn → A and a vector of payment functions p1, . . . , pn, where
pi : B1 × · · · × Bn → R. Function f considers the bids of
all agents and determines the social choice a ∈ A, and the
payment functions {pi | i ∈ N} determine the payment of
each agent.

In the context of an ADCOP local search algorithm, the
players are the current agent i who proposes a set of assign-
ments Vi for its variable, and its neighboring agents Ni. The
alternatives are A = {(v, v−i) | v ∈ Vi}, and the utility
of a neighboring agent j from each alternative (v, v−i) is
uj(v, v−i). As BEECon uses bids for side payments (see
Section II), strategic bidding for payments may harm the
guarantees of either the efficiency or the stability of the
algorithm. Consequently, a mechanism is needed to guarantee
truthful bidding for payments. In other words, enforce the
bidding agents to offer side payments similarly to the maximal
payoffs bids of section II. Mechanisms that are designed to be
truthful impose rules under which it is a dominant strategy
for each agent to bid its true utility for every alternative. A
well known example of a mechanism class that satisfies this
requirement is the class of Vickrey-Clarke-Groves [5], [10],
[28] (VCG) mechanisms.

A mechanism (f, p1, . . . , pn) is a VCG Mechanism if it
satisfies the following conditions:

• f(b1, . . . , bn) ∈ argmaxa∈AΣibi(a); that is, f maxi-
mizes the (reported) social welfare.

• For some functions h1, . . . , hn, where hi : B−i → R,
it holds that pi(b1, . . . bn) = hi(b−i) −∑

j ̸=i bj(f(b1, . . . , bn)). The main implication of
this feature is that the payment a player is charged is
independent of its own bid.

A common choice of hi is hi = maxa′∈A

∑
j ̸=i bi(a

′). Such
functions lead to the Clarke pivot payments [5] pi(a) =
maxa′∈A

∑
j ̸=i bi(a

′)−
∑

j ̸=i bj(f(b1, . . . , bn)). Clarke pivot
payments are composed of two terms: maxa′∈A

∑
j ̸=i bi(a

′)
denotes the social welfare of all players except i if player i
does not submit its bid, and the term

∑
j ̸=i bj(f(b1, . . . , bn))

denotes the utilities of the other players from the chosen
alternative given the bid of agent i. Intuitively, player i pays
the total damage it exerts on the other players [23], [25].

IV. DISTRIBUTED SEARCH BY STRATEGIC AGENTS

The pseudo-code for the proposed algorithm that uses a
mechanism to incorporate side payments during search by
strategic agents is presented in Algorithm 3. As in the BEECon
algorithm, agents run in a fixed order. The agent whose turn
it is to act is denoted i. In each turn, a set of possible value
assignment V s

i ⊆ Vi is explored by a mechanism (line 2.



Algorithm 3 Distributed Search by Strategic Agents

onTurn(i)
1: let vi ← the current strategy of agent i
2: choose V s

i ⊆ Vi

3: M queries agent i for its utilities {ui(s, v−i) | s ∈ V s
i }

4: M queries all j ∈ Ni for their utilities {uj(s, v−i) | s ∈
V s
i }

5: M spots the assignment v′i that maximizes the reported
utilities ui(v

′
i, v−i) +

∑
j∈Ni

uj(v
′
i, v−i)

6: M computes Clarke pivot payments for agent i and for all
j ∈ Ni

7: send(update,v′i) to all j ∈ Ni

Assume V s
i = Vi). The mechanism M queries agent i (line

3) and all agents j ∈ Ni (line 4) for their utilities for each
alternative {(s, v−i) | s ∈ Vi}. The mechanism selects the
assignment that maximizes the (reported) social welfare (line
5), computes the side payment contracts (line 6), and publishes
the social choice (line 7). The contracts may change during
the run of the algorithm, but are charged only once - upon
termination.

Proposition 1. If the agents bid truthfully, the search con-
verges to a local optimum of the social welfare.

Proof. With truthful bidding (i.e., maximal payoffs), the al-
gorithm acts exactly like BEECon - it iterates over the
agents and for each agent i the assignment vi that maxi-
mizes ui(vi, v−i) +

∑
j∈Ni

uj(vi, v−i) is selected. From the
correctness of BEECon, this algorithm also converges to a
local optimum.

Proposition 2. A bidding rational agent that only considers
the current bid and ignores future turns will bid truthfully.

Proof. Follows directly from the truthfulness of VCG mech-
anisms.

It is important to understand that Proposition 2 does not
guarantee for agents that consider future turns. This issue
is discussed at Section A of the Appendix. 2 simple 2-agents
ADCOPs show that a strategic manipulation that considers
future turns might work, although it is very likely to fail.
However, while computing a strategic bid is computationally
easy on a small 2-agents ADCOP, it is practically infeasible
on a general ADCOP with hundreds of agents that hold
private information and can place any bid. Especially among
computational agents, it has already been argued that the
complexity of a manipulation can rule it out in practice [6].

Ruling out strategic bidding that uses future steps consid-
erations leaves one with guaranteed convergence (by Proposi-
tion 1). That is, the algorithm converges to a local optimum
of the social welfare and computes the contracts that stabilize
the outcome as a pure Nash equilibrium (PNE) from which
no selfish agent deviates.

number of agents in the network
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40000

50 60 70 80 90 100 125 150 175 200

global gain total payments

Fig. 1: Random networks with 10 neighbors per agent: increase
in global social welfare, and total amount of payments

V. EXPERIMENTAL EVALUATION

Experiments were conducted on two families of randomly
generated ADCOPs. One family of uniformly distributed den-
sities and the other of scale-free networks (e.g., Barabasi-
Albert [2]). Both types of networks were of various sizes
and densities. Barabasi-Albert networks can be categorized
by a parameter m - the number of nodes that connect each
new node to the already existing network during its construc-
tion [24] and are considered to resemble closely the structure
of social networks [1]. The domain size of the agents in all of
our experiments is 10, and the utilities in the game matrices
were randomly and uniformly selected in the range [0,100].
For each configuration (type of network, size, and density),
the results are averaged over 30 runs on randomly generated
networks.

One important parameter that was evaluated experimentally
is the sum of all payments charged by the mechanism com-
pared to the improvement in global gain. The other interesting
parameter is the fraction of agents that are better off when the
algorithm terminates, taking their payments into account.

Figures 1,2 presents the results of running Algorithm 3 on
random networks of various sizes. It is easy to see (Figure 1)
that the payments charged by the mechanism in order to
enforce truthfulness are small (around 25%) compared to the
global gain. Most of the agents (83-84%) are better of upon
termination (Figure 2).

The results of running Algorithm 3 on scale-free networks
(of 500 agents) are presented in Figure 3. Interestingly, the
proportion of the total payments to the global gain decreases
with the density of the network, from 34% for networks with
m = 2 to 23% when m = 10. Additionally, the proportion of
agents that are better off upon termination increases with the
density, from 77% when m = 2 to 83% when m = 10 (not
in figure).

VI. CONCLUSION

Although asymmetric constraints have different personal
gains for the searching agents, all former ADCOP search algo-
rithms routinely assume full cooperation among all agents [9],
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Fig. 2: Random networks with 10 neighbors per agent: number
of agents that are better off upon termination
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Fig. 3: Social welfare and total amount of payments on scale-
free networks (Barabasi-Albert) of 500 agents and different
densities

[16], [34]. Recently proposed ADCOP search algorithms ex-
ploit the game-like nature of ADCOPs and use side payments
among agents during search to guarantee convergence to effi-
cient and stable solutions [15], [26], enhancing even further the
need to address strategic behavior of the searching agents. The
present study proposes a local search algorithm for strategic
agents that uses a mechanism of a well known family to
guarantee truthful bids of side payments during search. The
proposed algorithm extends the former best performing local
search algorithm, preserves its guarantees and obtains two ob-
jectives - it converges to a local optimum of the social welfare,
and computes the contracts that stabilize this outcome as a pure
Nash equilibrium. The experimental evaluation demonstrates
that the increase in the global social welfare when integrating
a bidding mechanism is large compared to the payments that
the mechanism charges in order to guarantee truthfulness, and
that most of the agents are found experimentally to be better
off when the algorithm terminates. An incentive-based multi
agent search algorithm has recently been proposed for the
Public Goods Game (PGG) [14]. An interesting next step
will be to design a similar mechanism for PGGs. Based on
the importance of PGGs [3], [4], [31], the present approach
forms a meaningful step in obtaining multi agent (distributed)

solutions to PGGs and more scenarios on networks.
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APPENDIX

The proposed mechanism for strategic agents guarantees
truthfulness when a single step of bidding is considered (see
Sections III, IV), in other words - when the agents in the
neighborhood of the current agent consider only the bid in
the present step. In order to start some considerations about
strategic agents that attempt to take into account also future
steps, let us look at the following two very simple examples.

Example 1 uses the constraints in table Ia and example 2
uses the constraints in table Ib. In both examples agent A is
a truthful agent that plays the rows, and agent B is a strategic
agent that plays the columns. The initial assignment profile is
(a,x).

From Proposition 2, only multi-step manipulations (strategic
bids that consider also future turns) may succeed against the
proposed mechanism. Consequently, let us consider that agent
B places its bids strategically such that assignment profile
(b,y) will be selected (while truthful bids result in assignment
profile (a,x) in both examples). Example 1 shows the run of
the proposed algorithm on the ADCOP represented in Table Ia.

Example 1.
The algorithm begins exploring the two possible assignment

a,b of agent A. Agent B realizes that its greatest utility
comes from assignment profile (b,y) and overbids the option of
assignment b for the variable of agent A. The damage exerted
on agent A is 10. Now the algorithm explores the possible
assignments x,y of agent B, assignment profile (b,y) is reached
and agent B gains 50. The overall gain of agent B is 50 - 10
= 40. In contrast - was agent B to bid truthfully all the way
throughout the run of the algorithm, its gain would have been
only 30, i.e., the strategic manipulation succeeds.

Although Example 1 shows that agent B can profitably
manipulate the mechanism, it is enough to slightly modify
the example into Example 2 in which the same strategic
manipulation is not profitable. Example 2 shows the run of
the proposed algorithm on the ADCOP represented by Table
2.

Example 2.
The algorithm begins exploring the two possible assignment

a,b of agent A. Agent B realises that its greatest utility comes
from assignment profile (b,y) and overbids the option of
assignment b for the variable of agent A. The damage exerted
on agent A is 40. Now the algorithms explores the possible
assignments x,y of agent B, assignment profile (b,y) is reached
and agent B gains 50. The overall gain of agent B is 50 - 40
= 10. In contrast - was agent B to bid truthfully all the way
throughout the run of the algorithm, its gain would have been
30, i.e., the strategic manipulation failed.

The above two very simple examples demonstrate that
although a multi-step manipulation is in principle possible,
its success depends on the details of the potential future steps
and in particular on private information of the other agents
involved in future steps (not to mention that the future steps
may involve totally unrelated agents in a different region of

(a) Table 1
A\B x y

a 10,30 0,0
b 0,0 0,50

(b) Table 2
A\B x y

a 40,30 0,0
b 0,0 0,50

the network). It is easy to conclude that such manipulations
are computationally too complex to succeed.
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