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Abstract—The “best-shot” public goods game is a network
game, defined on a social network. As in most strategic games, it
contains a structured tradeoff between stability and efficiency.
The present study considers a multi-agent system, in which
each agent represents a player in the “best-shot” game. It is
demonstrated that any Pure-strategy Nash Equilibrium (PNE) of
the “best-shot” game is Pareto efficient and that best-response
dynamics converge into a PNE within a linear number of steps.
It is also shown that the game is a potential game. The potential
function can be utilized for the search of PNEs with certain social
properties. In order to improve efficiency beyond the limited set
of stable states, a mechanism of side payments is proposed. We
prove that by using side payments an outcome that maximizes
social welfare can be stabilized. A distributed protocol based on
asymmetric distributed constraints optimization, which enables
the search for efficient outcomes, is proposed. Finally, an extensive
experimental evaluation compares the actual social welfare in
outcomes achieved by different search paradigms for common
social networks structures.

Keywords—Efficient equilibria; public goods games; side pay-
ments; ADCOP

I. INTRODUCTION

In network games the utilities of players depend both on
their own actions and on the actions taken by their neighbors
in the network. A well-known example of network games are
“best-shot” public goods games [1], [2], in which players share
common goods. Each player chooses whether to take some
action or avoid it. The action is associated with an investment
in some local public good. The action might be in the form
of performing some computational effort, where computation
results can be easily shared locally. It can also be buying a
book or some other product that is easily lent from one player
to another. Each player wants to have at least one player in her
neighborhood taking the action, including herself. However,
there is a cost associated with taking the action, so if any of
the player’s neighbors takes the action then the player would
prefer to avoid it.

Typically, there are many Pure-strategy Nash Equilibria
(PNEs) in a “best-shot” game, each corresponds to a maximal
independent set of vertices in the network [3]. We refer to
these outcomes as stable. Finding a maximal independent set
is trivial, and therefore it is easy to find some stable outcome.
However, finding a PNE with a maximal social welfare (SW)
(i.e., a PNE with minimal number of players taking the action)
is computationally intensive [2]. Such PNEs are commonly
considered efficient. Nevertheless, some outcomes may possess
greater SW, but some players may remain unsatisfied in such
outcomes. This tradeoff between efficiency and stability moti-

vates the use of an incentive mechanism to promote stability
in efficient states.

A possible approach in order to incentivize unsatisfied
players to agree on some preferred outcomes, is the side
payments mechanism. Side payments allow transfers of utility
(money) between players, such that players who gain from
some outcome may want to pay others that are unsatisfied by
it. Side payments can help promote efficiency by providing
incentives to some players for seeing more fully the impact of
their actions [4]. Regarding the “best-shot” game, one expects
that in efficient outcomes “central players” will take the action,
while “peripheral players” will free-ride their neighbors [5]1.
Intuitively, side payments allow central players to take the
action and be compensated by peripheral players.

Another version of the game proposed a relaxation of the
complete information assumption. In this version, the players
are only informed of their own degree and do not know the
whole network. This results in the existence of a Bayesian
Nash Equilibrium (BNE) in which players with low degree
choose to take the action, and players with high degree choose
to free-ride their neighbors [5]. Since the result is likely to be
inefficient, Grubshtein and Meisels [6] proposed a distributed
and cooperative approach for finding an outcome that Pareto
dominates the BNE outcome. Such outcomes were proved to
be Pareto efficient, but not necessarily a PNE.

A centralized probabilistic approach for finding approxi-
mation to the most efficient PNEs, using simulated annealing,
was proposed by DallAsta et al. [7]. However, even the most
efficient PNE is not guaranteed to maximize SW among all
possible outcomes. DallAsta et al. [7] also showed convergence
of best-response dynamics to a PNE outcome under some prior
conditions.

The present study proves that a procedure of best-response
dynamics (starting at any outcome) converges to a PNE within
at most 2·n improving steps (where n is the number of agents).
It is also shown that a PNE is Pareto efficient, and that the
“best-shot” public goods game is in fact a potential game.
Furthermore, we prove that an outcome of maximal SW can
be stabilized using side payments. An ADCOP representation,
together with the mechanism of side payments, creates a
distributed framework that enables the agents to compute a
stable outcome of maximal SW (stable in the sense that each
of the players does not wish to deviate unilaterally).

The plan of the paper is as follows. In Section II the
game is defined formally, followed by theoretical properties

1For the intuitive meaning of central player or peripheral player on a social
network see Figures 1 and 2 in Section III-C.



of the game and its PNEs that are presented in Section III.
Section IV presents the mechanism of side payments and
proves its ability to secure efficiency, while in Section V
an ADCOP representation of the problem is defined so that
a solution can be computed in a distributed manner. An
extensive experimental evaluation and discussion are given in
Sections VI and VII, respectively.

II. THE GAME MODEL

A common and compact representation for network games
is the graphical model proposed by Kearns et al. [8], where
a game is based on some underlying graph describing the
players’ interactions network. Consider a finite set of players
N = {1, ..., n} who are connected in a network G = {N,E}.
Each vertex in G represents a player, and edges represent the
interaction structure in the game. Given a player i ∈ N , denote
the set of i’s neighbors by Ni. These are the players whose
actions impact i’s payoff. The neighborhood of i is the set
{i} ∪ Ni. Each player chooses an action ai ∈ Si = {T, F}.
Denote the choice ai = T as taking the action, and the choice
ai = F as avoiding it. The utility of player i for some outcome
v ∈ S = S1× ...×Sn, and action-cost c, 0 < c < 1, is defined
as follows:

ui(v) :=


1− c, if ai(v) = T

1, if ai(v) = F,∃j ∈ Ni : aj(v) = T

0, if ai(v) = F,∀j ∈ Ni : aj(v) = F

We say that a player i has a null-neighborhood if ai(v) = F ,
and ∀j ∈ Ni : aj(v) = F .

Given a “best-shot” public goods game on a network G =
{N,E}, and an outcome v ∈ S, the possible states of a player
i ∈ N can be divided into the next four distinct types:

1) TT: ai(v) = T and ∃j ∈ N(i) : aj(v) = T
2) TF: ai(v) = T and ∀j ∈ N(i) : aj(v) = F
3) FT: ai(v) = F and ∃j ∈ N(i) : aj(v) = T
4) FF: ai(v) = F and ∀j ∈ N(i) : aj(v) = F

Note that the states TF, FT are stable from a player’s point of
view. A player in one of these states has no incentive to change
her strategy unilaterally. The states TT, FF are not stable. A
player in state FF (with a null-neighborhood) would prefer to
change her strategy to T, and a player in state TT would prefer
to change her strategy to F.

III. STABILITY OF THE “BEST-SHOT” GAME

Nash Equilibrium is an important notion in game theory.
We say that an outcome is a PNE, if every player does not
prefer to change her own strategy, given the strategies of all
other players in this outcome. It is considered desirable to
arrive at PNE outcomes that are efficient. Common definitions
for efficiency are Pareto Efficiency (PE) and Social Welfare
(SW) [9]. The notion of PE is considered first and SW
efficiency measures will be discussed later on at Section III-C.

Proposition 1. A PNE in a “best-shot” public goods game is
PE. That is, there is no other outcome which further increases
the utility of some players without reducing the utility of at
least a single player.

Proof: Assume by contradiction that some outcome v is
a PNE and is not PE. Since v is not PE there exists some
outcome v′, such that v′ dominates v. i.e., for each player i,
ui(v) ≤ ui(v

′) and there exists a player j such that uj(v) <
uj(v

′). In every PNE there are no null-neighborhoods. Hence,
for some player j, uj(v) < uj(v

′) if and only if in outcome v
player j takes the action, while in outcome v′, j free-rides one
of her neighbors (i.e., i is in state FT). Consider a neighbor k
of player j such that ak(v′) = T – if ak(v) = T , then v is not
a PNE, in contradiction (since j could choose F and free-ride
k). However, if ak(v) = F then uk(v) = 1 (since aj(v) = T ).
It is also known that ak(v′) = T , so uk(v′) = 1−c. Therefore,
uk(v

′) = (1 − c) < 1 = uk(v) in contradiction to Pareto
dominance of v′ over v.

A. Convergence of Best-Response

PNEs in a “best-shot” game are in some sense efficient.
A question remains whether and how players reach such
outcomes. DallAsta et al. [7] have shown that simple local
search algorithms can find a PNE and from certain types of
outcomes best-response dynamics are guaranteed to converge
into a PNE. Next, a proof is presented that best-response
dynamics converge into a PNE from any outcome, in any order
of the players, within at most 2 · n steps of best response.

Proposition 2. Best-response dynamics in a “best-shot” pub-
lic goods game converge into a PNE within at most 2 ·n steps.

Proof: Consider a process of best-response dynamics.
Each player i, in turn, chooses her best strategy given the
strategy profile of all other players. The process continues
until no player can improve her utility by changing strategy
unilaterally. Note that this type of process is not necessarily
guaranteed to converge in every game. In a “best-shot” game,
there are two possible improving responses for a player:

1) moving from FF to TF
2) moving from TT to FT

Lemma 3. No player reaches a TT state as a result of a best-
response step (of any player).

Proof: In every unilateral deviation, the only players
whose state is affected are the deviating player and her
neighbors. If a player is at state FF and changes strategy
to TF (move 1), the deviating player clearly will not reach a
TT state. All neighbors of the deviating player have strategy F.
Hence, they are all in state FT after the deviation. If a player
is at state TT and changes strategy to FT (move 2), clearly,
the deviating player does not reach a TT state. Let i denote
the deviating player, and j denote some neighbor of i. Before
deviation, i was at state TT and j could have been at state TT
or FT. If j was at state TT before, it is not possible that i’s
deviation moved her to TT (because it was j’s state a priori).
If j was at state FT her new state is now FT or FF. In both
cases, i’s deviation could not move players to state TT from
any other state.

Lemma 4. In best-response dynamics, each type of improving
response can occur only once for some player i.

Proof: Once a player made a move of type 1, she is in
state TF and remains in this state since: (a) No other player
reaches a TT state as a result of a best-response play of some



player, and (b) A player in state TF will not change strategy,
so states FF or FT are not possible. Once a player made a
move of type 2, she is in state FT and will not be in state TT
again. Hence, it is not possible for i to deviate once again
from TT to FT.

To conclude the proof of Proposition 2, each player in the
game can perform at most 2 improving responses in best-
response dynamics, before her state becomes stable (FT or
TF). After at most 2 · n plays, all players are stable, therefore
they have reached a PNE.

B. A Potential-Game Perspective

The concept of a potential game is used to define games in
which the change in players’ utility corresponds to the change
in some global Potential Function [10], [11]. A game is
an (ordinal) potential game if for every change in a player’s
strategy, the sign of the change in the player’s utility is equal
to the sign of the change in the global potential function. The
potential function can be a useful tool to analyze equilibrium
attributes of the game, as will be demonstrated below.

Proposition 5. The “best-shot” public goods game is an
ordinal potential game.

Proof: The potential function (for a single player i)
fi : S1 × ...× Sn −→ R+ is defined as follows:

fi(v) :=


0 if ai(v) = T, ∃j ∈ Ni : aj(v) = T

c if ai(v) = F

1 if ai(v) = T, ∀j ∈ Ni : aj(v) = F

(1)

A global potential function F : S1 × ...× Sn −→ R+

is: F (v) :=
∑

i∈N fi(v). One needs to show that
for every i ∈ N , every v−i ∈ S−i, and every
v1i , v

2
i ∈ Si it holds that ui(v

1
i , v−i)− ui(v2i , v−i) > 0

iff F (v1i , v−i)− F (v2i , v−i) > 0.

Consider some player i ∈ N . For the first direction,
we assume that ui(v1i , v−i) − ui(v

2
i , v−i) > 0 and want

to show that F (v1i , v−i) − F (v2i , v−i) > 0. The relation
ui(v

1
i , v−i)− ui(v2i , v−i) > 0 holds when player i performs

an improving step (moves from v2i to v1i ). When a player
moves from TT to FT the change in her utility is c, and the
change in the potential function is (c + M), where M is
the number of other players that as a result of the change
in i’s strategy moved from state TT to state TF. Therefore,
F (v1i , v−i)−F (v2i , v−i) > 0 as required. When a player moves
from state FF to state TF the change in her utility is (1− c),
and the change in the potential function is also (1− c) since
every one of i’s neighbors chooses F, so their potential remains
the same. The only change is in i’s potential, from c to 1.

For the second direction, assume ui(v
1
i , v−i) −

ui(v
2
i , v−i) ≤ 0 and show that F (v1i , v−i) − F (v2i , v−i) ≤ 0

similarly to the first direction.

The potential function defined above has an interesting
feature: its global maximum is not only a PNE (as every local
maximum of the potential function), but it is also the PNE
with the lowest SW of all PNEs. This holds since in each
local maximum all players are at state FT or state TF and
according to Equation 1 the global maximum of the potential

function is the outcome with most possible players that choose
T, between all stable outcomes. In contrast, the PNE with the
highest SW is the outcome giving the minimal local maximum
of the potential function.

C. Equilibrium Efficiency vs. Stability

PNEs in “best-shot” games were proven to be PE. However,
consider the example in Figure 1, which has two possible
PNEs. In one PNE, the central player chooses T and all others
free ride. In the other PNE the central player chooses F and
all others choose T. From a global perspective, the network is
better off in the first outcome, that maximizes SW.

 . 
.   

. 

Fig. 1. Pareto efficiency vs. Social welfare.

To emphasize the tradeoff between efficiency and stability,
consider the game instance described in Figure 2. The outcome
that maximizes SW is the one in which players a and b choose
T and the rest of the players choose F. This outcome is clearly
not a PNE since both a and b are in state TT. In the best PNE, 5
players choose T. It can be achieved for example when player
a and all peripheral players around b choose T, and the rest of
the players choose F. The PNE with the worst SW is when all
peripheral players choose T and the central players, a and b,
choose F. The existence of such instances of the game, with
inefficient stable states, motivates the pursue of a mechanism
that can secure efficiency.

a b 

Fig. 2. Efficiency vs. Stability.

IV. EFFICIENCY WITH SIDE PAYMENTS

Side payments are defined as a transfer function between
players, where each player may pay (or receive payment from)
each one of its neighbors [4].

Definition 1. Given a “best-shot” game G = {N,E},
side payments are defined by a transfer function
τ : N ×N × S1 × ...× Sn −→ R+, where τi,j(v) denotes
the payment being transferred from player i to player j in
outcome v. We restrict our attention to transfer functions such
that if j /∈ Ni then ∀v : τi,j(v) = 0.



Definition 2. Given some outcome v in game G

• The incoming transfer of each player i in outcome v
is τ ini (v) :=

∑
j∈Ni

τj,i(v)

• The outbound transfer of each player i in outcome v
is τouti (v) :=

∑
j∈Ni

τi,j(v)

Definition 3. We say that some outcome v in G is
Side-Payments Enforceable (SPE) if there exists a trans-
fer function τ defining side payments in G, such that:
∀i ∈ N∀v′i ∈ Si : ui(v) + τ ini (v)− τouti (v) ≥ ui(v′i, v−i)

A. Securing Maximal Social Welfare

Proposition 6. For every “best-shot” public goods game, a
maximal SW outcome is SPE.

Proof: Consider an outcome v∗ of maximal SW. We want
to show that v∗ is SPE. Since v∗ maximizes SW, obviously
there are no players in state FF. (A player in state FF could
change its strategy to T and the SW of the resulting outcome
would increase, in contradiction). Moreover, players in states
TF, FT do not require any incentives to keep their chosen
strategy. One only needs to show that players in state TT can
receive enough incentives so they would keep their choice (T ).

For some outcome v if a player j with strategy F has
exactly one neighbor i with strategy T, we say that j depends
on i. We argue that in outcome v∗, for every player i at state
TT, there exists at least one player j that depends on i. Assume
by contradiction that for some player i with state TT, there is
no player j that depends on i. Then, if i would change her
strategy to F , all players would still have at least one neighbor
that chooses T , and the aggregated cost would be smaller than
in v∗ (i does not pay, all others stay with the same strategy).
That contradicts the assumption of maximum SW in v∗.

For each player in state TT, the loss from choosing T
instead of F is exactly c. It was shown that for each player i
in state TT, there exists at least one player j that depends on
i. j’s gain from i’s choice is also c since uj(v∗) = 1 and j’s
maximal utility given i chooses F is 1− c. Define the transfer
function τ :

τj,i(v
∗) :=

{
c

di(v∗) if F
0 otherwise

where di(v∗) denotes the number of players in N that depend
on i in outcome v∗, and F requires:

• ai(v
∗) = T

• aj(v
∗) = F

• @k ∈ Nj , k 6= i : ak(v
∗) = T

In addition, note that for all outcomes v 6= v∗ it holds that
∀j, i ∈ N : τj,i(v) = 0.

Altogether, each player at state TT receives exactly c from
the neighbors that depend on her, and do not want to deviate.
Each player j that depends on some neighbor i, transfers
payments only to i (since she depends on only one player by
definition) and the payments are at most c. Hence, for each
paying player j: uj(v∗)+τ inj (v∗)−τoutj (v∗) = 1−τoutj (v∗) ≥
(1− c) = uj(T, v

∗
−j) as required.

Given an outcome v∗ that maximizes SW, one can infer
from the above proof a trivial distributed procedure for com-
puting the side payments transfers. Each player i in state TT
demands a payment of c, and each neighbor of i that depends
on her, performs a transfer of c

di(v∗) to i. In the following we
concentrate on the search method for the required outcome
and ignore the side payments mechanism that can be easily
computed by the above result.

V. ADCOP-BASED SEARCH

Given a “best-shot” public goods game one wants to find
outcomes with special attributes. Our interest is in outcomes
maximizing SW and in the optimal PNE outcomes (when
side payments are not allowed), as well as in the worst PNE
outcomes (like the Price of Anarchy and Price of Stability
measures [12]). Search can be performed by modeling the
“best-shot” game as an asymmetric distributed constraints
optimization problem (ADCOP) [13], similarly to Grubshtein
and Meisels [6]. Once an ADCOP is constructed, it can be
solved by an appropriate algorithm such as K-ary SyncABB-
1ph [14].

An ADCOP is a tuple < A,X,D,R > where
A = {A1, A2, ..., An} is a finite set of agents.
X = {X1, X2, ..., Xm} is a finite set of variables. Each
variable is held by a single agent. D = {D1, D2, ..., Dm} is
a set of domains. Each domain Di consists of the finite set
of values that can be assigned to variable Xi. R is the set of
relations (constraints). Each constraint C ∈ R is a function
C : Di1 × Di2 × ... × Dik →

∏k
j=1 R≥ that defines a non-

negative cost for every participant in every value combination
of a set of variables. The asymmetry of constraints in an
ADCOP relates to the different costs for every participant. An
assignment is a pair including a variable, and a value from
it’s domain. A complete assignment consists of assignments
to all variables in X . A solution to an ADCOP is a complete
assignment of minimal cost.

A. Maximal Social Welfare Search

Given a public goods game G = {N,E}, one defines an
ADCOP as follows:

• Each agent Ai ∈ A = {A1, ..., An} corresponds to a
single player and holds a single variable Xi.

• Each variable Xi has a domain Di = {T, F}.

• For every agent Ai construct a constraint over players
in Ai’s neighborhood. The cost incurred is (1 − ui),
where ui is the utility of player i ∈ N given the
choices of i’s neighbors.

The optimal solution is an assignment that corresponds to
a maximum-SW outcome in the underlying “best-shot” game.

B. Potential-Based Search

Max-Potential Search: The agents, variables and domains
are the same as above. The change is in the constraints.
For every agent Ai construct a constraint over players in i’s
neighborhood and the cost incurred is (1− fi) if the outcome
produces a local maximum in the potential function, and n+1



otherwise. (Where fi is i’s potential, from Equation 1). The
optimal solution is a global maximum of the potential function,
which is a PNE that minimizes the SW.

Min-Max-Potential Search: The only change in the con-
straints construction is that the cost incurred is fi if the
outcome produces a local maximum in the potential function,
and n + 1 otherwise. Since there exists at least one local
maximum, the returned solution will be a local maximum.
Due to the cost of fi, the solution will be a minimal local
maximum, which corresponds to a PNE that maximizes the
SW, as required.

VI. EXPERIMENTAL EVALUATION

It was shown in Section IV that a Maximal SW outcome
can become stable when using a side payments mechanism.
The example in Figure 2 demonstrates an outcome maximizing
SW that is more efficient than the best PNE outcome. An
empirical evaluation is required in order to examine the actual
improvement in SW of a PNE when cooperation and side
payments are allowed.

In the evaluation four different types of outcomes were
examined:

• Max-SW – An outcome of maximal SW, not necessar-
ily a PNE. Such an outcome can easily become a PNE
if we use the side payments approach of Section IV.

• Best PNE – A PNE outcome that maximizes SW
(without using side payments). This outcome is
reached by searching a Min-Max-Potential outcome.

• Worst PNE – A PNE outcome that minimizes the SW.
This outcome is reached by searching a Max-Potential
outcome.

• Best-Response PNE – An outcome reached by the
use of best-response dynamics (we choose an outcome
randomly, choose a random order of players, and let
each player choose her best response in turn).

It is important to note that best-response PNEs are found
in linear time, due to convergence within at most 2 · n steps.
The other three types require solving an ADCOP. Therefore,
run time measures are compared only between these three
approaches. The best-response run time is negligible in com-
parison to the run time required for solving an ADCOP, but
does not guarantee any type of optimality.

A. Problem Generation

Two types of networks are used: Erdös-Rényi random
networks and Barabási-Albert scale-free networks. For each
setting, 100 random network instances were generated and the
different search processes and outcomes were evaluated.

Erdös-Rényi random networks (ER Networks) are de-
fined by 2 parameters: the number of vertices n, and an
edge probability ep [15]. Instances of such networks were
constructed by generating n vertices, and for each pair of
vertices i,j the edge {i, j} was added with a probability ep.
Results for n = {10, ..., 20} and ep = 0.2 are presented in
Figure 3.

Barabási-Albert scale-free networks (BASF Networks)
are defined by 4 parameters: n, m0, ep and m. n is the number
of vertices, m0 and ep define the basic network, and m ≤
m0 defines the number of links created from each new vertex
to an existing vertex. The process creates random scale-free
networks, that are widely observed in social networks [16].
Results for m0 = 4, m = 1, ep = 0.75, c = 0.9 are presented
in Figure 4.

B. Experimental Results

It is known that SW(Max-SW) ≥ SW(Best PNE) ≥
SW(Best-Response PNE) ≥ SW(Worst PNE). It is also known
that the Max-Potential solution is a worst PNE and the Min-
Max-Potential solution is a best PNE. Figure 3 shows an
interesting result for Erdös-Rényi random graphs: the best PNE
is almost optimal, on average. One can also observe that an
average best-response process converges to a PNE with SW
that is far worse than the best PNE and is much better than
the worst PNE.
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Fig. 3. Social welfare in ER Networks.

For Barabási-Albert scale-free networks the results are
different (Figure 4). Here, the SW of the best PNE becomes
worse in comparison to the optimal SW as the number of
agents n increases. Another interesting result is that an average
best-response process in these networks reaches almost the
worst PNE outcome. Note that it is typical for scale-free
networks to have some central players with many peripheral
neighbors. In order to understand the difference between the
optimal SW and the SW of the best PNE, recall the network in
Figure 2. In the optimal outcome, the central players (a and b)
choose T , while peripheral players choose F . This is clearly
not a PNE since the central players are connected. The same
intuition holds for scale-free networks, that are likely to have
such central players. In order to explain the convergence of
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Fig. 4. Social welfare in BASF Networks.



best-response processes to a “bad” PNE, consider the network
in Figure 1. In order for the central player to choose T in
a best-response step, all other players’ choices need to be F
when her turn arrives. Since the probability is very low for
such a coincidence when we have few central players and
many peripheral players, one expects central players to choose
F and peripheral players to choose T . Hence, we get low SW
for best-response dynamics.

Regarding the run time measures, we used the standard
measures for ADCOP and DCOP algorithms (cf. [17]). Fig-
ure 5 presents the average number of Non-Concurrent Con-
straint Checks (NCCC) for each of the approaches. Note that
the graph uses logarithmic scale. It is clear that the search for
a Max-SW outcome is much more computationally intensive
than searching for a best/worst PNE. This is expected since
whenever one searches for a PNE the stability of each local
neighborhood is required. Therefore, substantial pruning is
enabled – any partial assignment of choices that includes
unstable local neighborhoods cannot be extended into a valid
solution. When one searches for a Max-SW outcome such kind
of pruning is not possible.
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Fig. 5. Run time performance in BASF Networks.

VII. CONCLUSIONS

The “best-shot” public goods game is investigated. Every
PNE was shown to be Pareto efficient and any best-response
dynamic converges into a PNE within at most 2 ·n steps. The
“best-shot” game was shown to be a potential game, and the
potential enables the finding of PNEs with minimal or maximal
social welfare.

A new approach to secure an efficient Nash equilibrium
by the use of side payments in network games is proposed.
For the “best-shot” public goods game, the proposed approach
guarantees a maximal-social-welfare PNE by using the side
payments mechanism. Both the search for such an outcome
and the search for the required side payments are performed in
a distributed manner, by modeling the problem as an ADCOP.

An extensive experimental evaluation demonstrates the
effectiveness of the proposed side payments approach in

Barabási-Albert scale-free networks. For Erdös-Rényi random
networks the improvement in social welfare is small. Hence, it
might be sufficient to search for the best PNE outcome which
according to the evaluation requires less computational effort.
In all cases, a random best-response process usually converges
into a PNE with relatively low social welfare.

One may also want to extend the side payments approach to
other network games, or to more generalized classes of games.
In order to do so, a complete characterization is required for
games in which maximal-social-welfare outcomes are side-
payments enforceable.
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[3] Y. Bramoullé and R. Kranton, “Public goods in networks,” Journal of
Economic Theory, vol. 135, no. 1, pp. 478–494, 2007.

[4] M. O. Jackson and S. Wilkie, “Endogenous games and mechanisms:
Side payments among players,” The Review of Economic Studies,
vol. 72, no. 2, pp. 543–566, 2005.

[5] A. Galeotti, S. Goyal, M. O. Jackson, F. Vega-Redondo, and L. Yariv,
“Network games,” The review of economic studies, vol. 77, no. 1, pp.
218–244, 2010.

[6] A. Grubshtein and A. Meisels, “A distributed cooperative approach
for optimizing a family of network games,” in Intelligent Distributed
Computing V. Springer, 2012, pp. 49–62.

[7] L. DallAsta, P. Pin, and A. Ramezanpour, “Optimal equilibria of the
best shot game,” Journal of Public Economic Theory, vol. 13, no. 6,
pp. 885–901, 2011.

[8] M. J. Kearns, M. L. Littman, and S. P. Singh, “Graphical models for
game theory,” in UAI, Seattle, WA, USA, 2001, pp. 253–260.

[9] M. Osborne and A. Rubinstein, A Course in Game Theory. The MIT
Press, 1994.

[10] R. W. Rosenthal, “A class of games possessing pure-strategy Nash
equilibria,” International Journal of Game Theory, vol. 2, no. 1, pp.
65–67, 1973.

[11] D. Monderer and L. S. Shapley, “Potential games,” Games and Eco-
nomic Behavior, vol. 14, pp. 124–143, 1996.

[12] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, 2007.

[13] T. Grinshpoun, A. Grubshtein, R. Zivan, A. Netzer, and A. Meisels,
“Asymmetric distributed constraint optimization problems,” Journal of
Artificial Intelligence Research, vol. 47, pp. 613–647, 2013.

[14] V. Levit, T. Grinshpoun, A. Meisels, and A. L. C. Bazzan, “Taxation
search in Boolean games,” in AAMAS, Saint Paul, MN, USA, 2013, pp.
183–190.
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