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ABSTRACT
Multi-agent games on networks have nodes that represent agents

and edges that represent interactions among agents. An important

example in economics and in multi-agent research is the model of

public goods games (PGGs). In PGGs agents can either contribute

the cost of a single good or free-ride, and agents benefit from copies

of the good bought by their neighboring agents. Solutions to games

on networks are stable states (i.e., pure Nash equilibria), and in

general one is interested in efficient solutions (i.e., of high social

welfare). A multi-agent search algorithm for PGGs is proposed. The

algorithm uses side payments among the agents during search and

a major contribution is the proof that it converges to solutions

that are more efficient than the initial strategy profile. An exper-

imental evaluation on randomly generated scale-free networks

demonstrates that the proposed algorithm outperforms both best-

response dynamics and a former incentive-based PGGs algorithm.

The experimental evaluation also explores the behavior of agents’

gains with respect to their social capital. This new kind of explo-

ration succeeds in observing patterns over a recently proposed

network-based typology of social capital, on solutions of PGGs on

networks.
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1 INTRODUCTION
Multi-agent games on networks are commonly represented by the

model of graphical games [11]. A node in the network represents an

agent, and its neighboring nodes represent the agents that interact

with the agent in the game. Each agent has a finite domain of

strategies and a personal utility function. An important example

that has drawn much interest in economics and in multi-agent

search is public goods games (PGGs) on networks [3, 4, 6, 22]. In a

PGG, agents can either contribute to a public good or free-ride [3, 4].

Agents benefit from copies of the good bought by their neighbors
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on the network and the benefit for an agent is larger than its cost

of the good. A more general version of this game has agents benefit

proportionally to the number of their neighboring agents that have

bought the good [3].

Solutions to games on networks are stable states (i.e., pure Nash

equilibria - PNEs), and in general one is interested in efficient so-

lutions (of high social welfare). The use of side payments among

agents as a mean of achieving solutions of higher efficiency in

games on networks was first proposed by [7, 10]. A recent exten-

sion in this direction is an incentive-based PGGs search algorithm

that uses side payments among agents during the iterative search

process [13]. Analogous algorithms have been proposed for multi-

agent (distributed) optimization problems [18, 19]. The present

study proposes a multi agent search algorithm for PGGs on net-

works that uses side payments among the agents during search. The

major result of this paper is that the proposed algorithm converges

to a solution with a higher social welfare (SW) than the initial out-

come for general PGGs. This is an important improvement over [13]

that has no guarantee on the efficiency of its final solution even

when it converges.

Performing search on PGGs on networks generates a unique

situation in which one can observe the features of solutions exper-

imentally. Experimental studies of multi-agent search on games

on networks have the potential of widening the scope of former

studies, that considered solution quality [5]. The present study

presents an extensive experimental evaluation of solutions (PNEs)

for PGGs, and explores the behavior of special classes of agents. One

important classification of agents involves their social capital. A
recent definition of social capital that is based on the local network

features of the agents is addressed [9]. The experimental evaluation

of the present study solves PGGs on networks and evaluates the

effect of the social capital of agents on their personal gains.

Section 2 introduces the three aspects of the paper. Best Shot

Public Goods Games (BSPPGs) are introduced first, together with

their utility functions and main features. The second aspect is the

use of side payments among agents during search and their role as

contracts among neighboring agents. The third part of Section 2

presents the basic definitions of social capital, as proposed by [9].

These features are later used to investigate the behavior of classes

of agents in solutions for PGGs on networks, in the experimental

evaluation.

Section 3 starts by describing a small example that motivates

the need for an improved algorithm for proposing side payments

among neighboring agents during search. The algorithm that is at

the focus of the present study is described and its main guarantees

are proven in Section 3.

An extensive experimental evaluation is presented in Section 4,

comparing the SW under the proposed algorithm and former ones.

The experimental evaluation also studies the recent network-based



definition of features that define social capital in [9]. It does so by

computing simple correlations among the gain of individual agents

in the network and their social capital. The last section lists the

conclusions and points at the direction of future research.

2 PRELIMINARIES
2.1 Best Shot Public Goods Games
Many collective decision-making settings feature a tension between

the individual interest of the agents and promoting a common good.

One model that captures this tension is the public goods game

(PGG). Each player in a PGG can decide whether or how much

effort to invest for the common good. Everyone in the group (in-

cluding the individual) profits from all membersâĂŹ efforts, while

an investment incurs a cost for the investing agent. Examples of

such scenarios include decisions whether or not to report crime in

a neighborhood, keep oneâĂŹs yard representable, or purchase a

tool that oneâĂŹs friends or neighbors can share ( [12]).

A PGG is a networked game of N = {1, . . . ,n} agents that reside
on a network G = {N ,E}. Each vertex in N represents an agent,

and the edges E represent the interaction structure of the game. In

the “best shot” public goods game (BSPGG) each player i chooses
an action vi ∈ Vi , where Vi is the set {T ,F }. The choice vi = T
denotes investing in some local public good, whereasvi = F denotes

avoiding investment. Investment by player i incurs a cost ci , while
the utility of agent i depends also on the investment of its neighbors

Ni . A player that can avoid investment and free-ride, relying on the

investments of its neighbors, gains the maximal utility. The simplest

version of BSPGGs has maximal gain when a single neighbor of an

agent buys the good and more general versions have the gain of an

agent increasing when more of its neighbors buy the good [3, 4, 13].

We assume that the utility of player i is non-decreasing in the

investments of {i} ∪ Ni , and is capped by some K, denoting the

maximal number of neighbors that buy the good.

Some common notions are used throughout the paper.v denotes

a strategy profile, i.e., a vector containing the strategies of all players.
vi is the strategy of player i in v , and v−i represents the strategies
of all players excluding player i . Each player i tries to maximize

its utility ui . The strategy that maximizes the utility of a player i
given v−i is its best-response. A well known iterative procedure is

best-response dynamics, which is also referred-to as “’best-response

algorithm” (or simply “best-response”). Best-response algorithm

iterates over all agents in a fixed order and selects the best-response

strategy of each agent on its turn.

Denoting by li = |{j ∈ Ni : vj = T }| the number of investing

neighbors of player i , the utility of player i under strategy profile v
is defined to be

ui (v ) =



min(K,li + 1) − ci , if vi = T

min(K,li ), if vi = F
(1)

It is very convenient to also define

u ′i (v ) =



min(K,li + 1), if vi = T

min(K,li ), if vi = F

(the utility of agent i when its cost ci is ignored).
A well known class of general games has the feature that when

an agent changes its strategy, its utility change corresponds to the

change in some global potential function. This class of games is

termed potential games [15, 16]. A game is an ordinal potential game
if there exists a potential function Φ : V1 × . . . ×Vn → R such that

∀v ∈ V1 × . . . ×Vn , ∀v
′
i ∈ Vi it holds that

ui (v
′
i ,v−i ) − ui (vi ,v−i ) > 0 ⇐⇒

Φ(v ′i ,v−i ) − Φ(vi ,v−i ) > 0

It has been shown that a BSPGG with the utility function defined

by Equation 1 is an ordinal potential game [13]. This in turn implies

the convergence of the game to a stable state - a pure Nash Equilib-

rium (PNE) - under best-response dynamics. A PNE is a state from

which no selfish agent would deviate. More formally, a strategy

profile v is a PNE if:

∀i ∈ N ,∀v ′i ∈ Vi : ui (vi ,v−i ) ≥ ui (v
′
i ,v−i )

2.2 Incentive-Based Local Search
Incentive-based search algorithms endow agents with the possi-

bility of sacrificing part of their payoff in order to convince other

agents to play a certain strategy. The idea to allow agents to offer

payments to neighbors during the search process for a good solu-

tion to a BSPGG was proposed in [13]. The side payments offered

and accepted among agents are defined by transfer functions. A

transfer function τi,j (v ) expresses the payment that agent i offers
player j if the latter plays vj under strategy profile v . Incentive-
based algorithms iterate over all agents in some fixed order, and the

use of side payments have been shown to outperform standard local

search for distributed optimization problems [18]. The algorithm

for BSPGGs on networks proposed by [13] is Algorithm 1. The

agents in Algorithm 1 act in a predefined order: each agent in its

turn executes procedure on turn. The agent whose turn it is to act

(that is, select its strategy) is referred to as the current agent. The
state of the current agent i in strategy profile v is termed statei (v )
throughout the paper; it is either Tl or Fl where T (or F ) is the
strategy of agent i and l = |{j ∈ Ni : vj = T }| is the number of its

investing neighbors in v . In Algorithm 1 side payments are only

offered by neighbors of the current agents in order to convince it to

remain in its current strategy. If the current agent’s best-response

is investing (line 1), it updates its strategy accordingly (line 2). If

the current agent’s best-response is avoiding (line 4), the agent

notifies its neighbors about its possible strategy deviation (line 5).

An agent j ∈ Ni whose utility may decrease as a result of i’s choice
of avoiding investment can offer a side-payment in order to make

the current agent keep investing (procedure when received). Of-
fers of side-payments are binding contracts - they are paid upon

termination of the algorithm’s run, and only if the strategy they

refer to is still played upon termination. The current agent sums

up all offered payments, and stops investing only if its cost from

investing exceeds the sum of all payments (lines 7-8). Similarly to

standard best-respone, the algorithm terminates when a pass over

all agents does not yield any change in the playersâĂŹ strategies.

Algorithm 1 is guaranteed to converge when the contracts are made

according to procedure when received [13].

Levit et al. [13] exploit the fact that BSPPGs with the utility

function defined in Equation 1 are potential games to evaluate

Algorithm 1 by comparing it to the best-response algorithm, as

both are guaranteed to converge. In an extensive experimental



Algorithm 1 Incentive-Based Search Algorithm

on turn(i)
1: if statei (v ) = Fl<K then
2: vi ← T
3: end if
4: if statei (v ) = Tl ≥K then
5: send(StrategySelect, i) for all j ∈ Ni
6: let τj,i (v ) be the reply of neighbor j
7: if ci >

∑
j ∈Ni τj,i then

8: vi ← F
9: end if
10: end if

when received(StrategySelect, i)
1:

τj,i (v ) =




1 if statej (v ) = T0<l<K
1 if statej (v ) = F

0<l<K

c j if statej (v ) = FK

0 otherwise

2: return τj,i (v )

evaluation on randomly generated BSPGGs of a variety of network

forms Algorithm 1 was found to converge to solutions of higher

SW than best-response [13].

2.3 Social Capital
Social capital plays a central role in many real-life scenarios, from

the founding of a company, through the reaching out to get help in

a product design, to how workers get hired [9]. It is fundamental

to the understanding of welfare of a society and should not be

neglected when modeling human interaction.

A complete typology of social capital has been proposed recently

by Jackson [9]. That typology is based on the local network topol-

ogy of agents residing on a social network. Jackson proposes to

base the social capital of an agent on its advantages in acquiring

information in the social network, its ability to coordinate other

player’s behavior, and on more features that are listed below. I.e,

agent’s network topology “represents the consequences of social

position in facilitating acquisition of the standard human capital

characteristics" [14], and can be thought of as social capital [9].

Jackson counts seven types of social capital:

• Information capital: the ability to acquire/spread valuable
information to other people through social connections.

• Brokerage capital: being in a position to serve as an inter-

mediary between others.

• Coordination and leadership capital: being connected to
others who do not interact with each other.

• Bridging capital: being an exclusive connector between

otherwise disparate parties.

• Favor capital: the ability to exchange favors with others.

• Reputation capital: having others believe that a person or

organization is reliable.

• Community capital: the ability to sustain cooperative be-

havior in others.

It is notable that Jackson proposes severalmeasurable param-

eters that capture the social capital of an agent, given its local

network topology. The present study investigates three of these

parameters:

• Decay centrality (defined at [8]): denote Nd
i the players

whose distance from player i is exactly d (N 1

i are the imme-

diate neighbors of i , also denoted Ni ). For 0 < p < 1 and

some T , Dec (i ) =
∑T
d=1 p

d · |Nd
i |. Implies the information

capital of player i:pd of the information of distanced passes

on to player i , with a cap of T times the information can be

relayed. The experiments on Section 4 assume p = 0.8 and

T = 2.

• Godfather index: a count of the number of pairs of a player’s

neighbors who are not neighbors of each other - GF (i ) =
|{(j,k ) : j ∈ Ni ,k ∈ Ni , j < Nk }|. Implies the brokerage and
coordination capital of player i - the potential to serve as

a mediator between neighboring players.

• Support index: a count of the number of neighbors that

a player has who are supported by a common neighbor:

Supp (i ) = |{j ∈ Ni : ∃k ∈ Ni ,k ∈ Nj }|. Implies the favor
capital of player i - a neighbor j is more likely to deliver a

favor to player i if they have a common connection.

It is natural to expect the power (i.e., social capital) of an agent in

a game to determine in many ways its utility from playing on a net-

work. The experiments on Section 4 explore the correlation between

these two important entities and find a social capital predictor for

the agent’s utility in the solutions found by the incentive-based

search algorithm that is proposed by the present study.

3 SECURING EFFICIENT EQUILIBRIA
The need for a different incentive-based search algorithm arises

from drawbacks of Algorithm 1. Consider the example in Figure 1.

Let K = 1 and also let all the costs of investment for all agents be

the same (0 < c = 0.5 = c1 = c2 = c3 = c4 < 1). Let the order

of agents be their numerical order and the initial strategies of the

game be T ,F ,F ,F in that order. A run of Algorithm 1 in the same

order of agents behaves as follows: in the first iteration, agent 1 with

state T0<K does not consider a strategy change, because it cannot

improve its gain. Agent 2 acts next and stays with strategy F , as
again no improvement of its state is possible. Continuing in the

same order, agents 3, 4 change their strategy toT because they have

no investing neighbor. None of the agents is offered side payments,

because neither of them proposes a change from strategyT to F . In
the second iteration no agent selects to change its strategy and the

algorithm terminates with the outcome (T ,F ,T ,T ). In this solution

three agents invest and the global SW is therefore 4−3 ·c . Note that
this is also the final outcome of standard best-response dynamics.

It is important to observe that the example problem has also a

more efficient solution, in which the only investing agent is agent 2.

The algorithm proposed by the present paper uses side payments in

a way that scans all viable states in the neighborhood of the current

agent during search. The algorithm is presented next (Algorithm 2).

Similarly to Algorithm 1, the agents execute procedure on turn
in a fixed order. But now the current agent first asks its neighboring

agents for the payments they are willing to offer in order to make

it invest (line 1). Unlike Algorithm 1, the current agent does so



1 2

3 4

Figure 1: A four agents network example

Algorithm 2 Secure an Efficient Equilibrium

on turn(i)
1: send(RequestBid, i) to all j ∈ Ni
2: let τj,i (v ) be the reply of neighbor j
3: if ci ≤ (u ′i (T ,v−i ) − u

′
i (F ,v−i )) +

∑
j ∈Ni τj,i (v ) then

4: vi ← T
5: else
6: vi ← F
7: end if

when received(RequestBid, i)
1:

τj,i (v ) =




1 if statej (v ) = B
0≤l<K−1 (B ∈ {F ,T })

1 if statej (v ) = Bl=K−1 and vi = T

c j if statej (v ) = Fl=K−1 and vi = F

c j if statej (v ) = Fl=K and vi = T

0 otherwise

2: return τj,i (v )

regardless of its current strategy. If an agent’s utility from investing

(line 3), summed-up with the proposed side-payments, exceeds

(or equals) the current agent’s cost of investing, then it chooses

to invest (line 4). Otherwise (line 5), it avoids investing (line 6).

Side-payments act as binding contracts, as in Algorithm 1, and are

paid upon termination only if the agent under contract keeps-up to

the strategy that the contract refers to. The algorithm terminates

when a pass through all the agents does not yield any change in

the playersâĂŹ strategies.

The computation of the contracts in Algorithm 2 (procedure

when received) is different than in Algorithm 1. In case agent j
has less than K − 1 investing neighbors, it gains 1 if an additional

neighbor i chooses to invest. In case agent j has exactly K − 1

investing agents and agent i is one of them, it gains 1 if agent i
keeps investing. When agent j’s state is FK−1 and vi = F , agent j is
only willing to pay c j in order to make agent i invest. The payment

cannot exceed c j , which is the cost it takes agent j to make the

investment itself. When agent j’s state is FK and vi = T , agent j is
willing to pay c j in order to make agent i keep investing. In any

other case the payment agent j is willing to offer is 0.

Let us follow the run of Algorithm 2 on the same example. In

the first iteration, agent 1 sends a RequestBid message to agent 2.

The response of agent 2 is τ2,1 (v ) = c2 = 0.5. Because it holds that

c1 = 0.5 <= (u ′
1
(T ,v−i ) − u

′
1
(F ,v−i )) + τ2,1 = (1 − 0) + 0.5 = 1.5,

agent 1 keeps investing. When agent 2 is the current agent, it send

a RequestBid message to its neighbors and the responses are τ1,2 =
0, τ3,2 = τ4,2 = 0.5. Now it holds that c2 = 0.5 <= (u ′

2
(T ,v−i ) −

u ′
2
(F ,v−i )) + τ1,2 + τ3,2 + τ4,2 = (1 − 1) + 0 + 0.5 + 0.5 = 1 and

agent 2 chooses to invest. Next are the turns of agents 3 and 4 who

choose not to invest, because ci ∈{3,4} = 0.5 > (u ′i ∈{3,4} (T ,v−i ) −

u ′i ∈{3,4} (F ,v−i )) + τ2,i ∈{3,4} = (1 − 1) + 0 = 0. In the next round

agent 1 computes that it can avoid investing and still gain maximal

utility (specifically, c1 = 0.5 > (u ′
1
(T ,v−i ) − u

′
1
(F ,v−i )) + τ2,1 =

(1 − 1) + 0 = 0). The algorithm completes the second iteration over

all agents and terminates because none of the agents changes its

strategy. The algorithm terminates with outcome (F ,T ,F ,F ). Note
that Algorithm 2 converged to the more efficient strategy profile

(F ,T ,F ,F ) where the SW is 4 − c > 4 − 3 · c . In fact, to an optimal

strategy on this simple example.

It is important to observe that the use of side payments by Algo-

rithm 2 is substantially different than that of Algorithm 1. The new

algorithm proposed by the present paper (Algorithm 2) uses side

payments to encourage free-riding agents to invest.

3.1 Convergence to Efficient Solutions
The general idea of the proof that Algorithm 2 converges to a so-

lution of higher global social welfare is to demonstrate that some

function monotonically increases through changes of assignments

during the run of the algorithm. It is clear from the definition of

the function Φ (Equation 2) that it is bounded and this implies con-

vergence. Furthermore, it will be shown that a run of Algorithm 2

results in an increase of the social welfare. It is most important to

note that the following proof holds also for the general version of

PGGs where the utility of an agent i is capped by a specific value

Ki that holds for (the individual) agent i and might be different for

the other agents. This result is new, because both Algorithm 1 and

standard best-response dynamics were only shown to converge,

and not necessarily to a better solution. In addition, former studies

assumed a global K that caps the utility of all participating agents

in [13].

Let us start by defining the following function

Φ(v ) =
∑
i ∈N

ϕi (v ) (2)

with

ϕi (v ) =




min(Ki ,li + 1) − ci , if vi = T

Ki − ci , if statei (v ) = FKi−1

min(Ki ,li ), if statei (v ) = Fl,Ki−1

Observe the behavior of Φ(v ) during a run of Algorithm 2 on a

BSPGGs. To follow a run of Algorithm 2, one only needs to look

at rational strategy changes - strategy changes that increase the

utility of the deviating agent (i.e., the current agent), given the side

payments it is offered (as defined in procedure when received).
Note that when agent i performs a strategy change - the value of

ϕj (v ) can change only for agent i and for agents in its neighborhood
Ni .

During the proof,v denotes the strategy profile fromwhich agent

i deviates, and v ′ denotes the resulting strategy profile. Another



notation that is used in the proof is ϕ (Bl ), which stands for “the

value of ϕ for an agent whose state is Bl ” (B is either T or F ).

Lemma 3.1. Φ(v ′) ≥ Φ(v ) for any rational deviation of agent i
from F to T .

Proof. Agent i may change its strategy for one of two reasons -

either to increase its own utility (case 1), or due to side payments

offered to it by its neighbors (case 2).
Case 1: Φ(v ′) ≥ Φ(v ) because the following arguments hold:

• agent i has less then Ki investing agents and it always holds
that ϕ (Tl<Ki ) > ϕ (Fl<Ki ).
• for each neighboring agent it always holds that ϕ (Bl+1) ≥
ϕ (Bl ).

Case 2: agent i has at least Ki investing agents, which implies

that ϕi (v
′) − ϕi (v ) = −ci . However, there must be a nonempty set

of agents J ⊆ Ni who offered agent i side payments that sum up

to

∑
j ∈J c j ≥ ci to make agent i change to strategy T . For each of

these agents it holds that ϕj increased by at least c j (if agent j has
exactly Kj investing agents in the new strategy profile v ′), and the

overall increase sums up to at least ci . This implies that the relation

ϕi (v
′) +
∑
j ∈J ϕj (v

′) ≥ ϕi (v ) +
∑
j ∈J ϕj (v ) still holds. For every

other agent k ∈ Ni , k < J we have ϕk (v
′) ≥ ϕk (v ) as in case 1,

and Φ(v ′) ≥ Φ(v ) as required. �

Now we come to the more interesting lemma, that proves the

increase of the function even for changes of strategy that have the

potential to decrease the value of the function. These changes are

from the value T to F . The proof relies on changes of strategy that

follow Algorithm 2 and are rational for the current agent. In other

words, that do not decrease its gain.

Lemma 3.2. When agent i rationally deviates from T to F , it holds
that Φ(v ′) > Φ(v ).

Proof. For a rational change of strategy of agent i from strategy

profile v to take place, two conditions must hold:

(1) no agent j ∈ Ni is in state Tl ≤Kj−1.

(2) no agent j ∈ Ni is in state Fl ≤Kj−1.

To see why these conditions must hold, observe that a neighbor-

ing agent in either of the above states offers a side payment of 1

(under procedure when received of Algorithm 2) to the current

agent i in order to make it not deviate. A rational agent i who is

offered such a payment will keep investing.

To complete the proof let us consider agents in Ni for which

ϕj (v
′) < ϕj (v ). Let us denote this set of agents by J . For this de-

crease in ϕj to hold for agent j ∈ J , the agent must have exactly Kj
investing agents in the strategy profile v . It is easy to see that for

these agents ϕj (v ) − ϕj (v
′) = c j . This group of agents offer pay-

ments that sum up to

∑
j ∈J c j , but since the current agent i chooses

to stop investing one can deduce that ci >
∑
j ∈J c j . As was just

shown,ϕi (v
′)−ϕi (v ) = ci and

∑
j ∈J ϕj (v )−

∑
j ∈J ϕj (v

′) =
∑
j ∈J c j

which implies that Φ(v ′) − Φ(v ) = ϕi (v
′) − ϕi (v ) +

∑
j ∈J ϕj (v

′) −∑
j ∈J ϕj (v ) = ci −

∑
j ∈J c j > 0 as required. �

Now the convergence proof is immediate:

Proposition 3.3. A run of Algorithm 2 on a BSPGG converges.

Proof. From Lemma 3.1, a deviation F → T doesn’t decrease

Φ(v ). From Lemma 3.2, a deviation T → F increases Φ(v ) so there

can be only finitely many such deviations during a run of Algo-

rithm 2 on a BSPGG. In addition, there can be only a finite number

of F → T deviations before either a T → F deviation takes place,

or the algorithm terminates, �

The fact that Φ is non-decreasing implies a unique property of

Algorithm 2 - the outcome it converges to is at least as efficient as

its initial outcome. This is not guaranteed by either best-response

dynamics or by Algorithm 1 (except for the restricted case of K =
1 [13]) and is a major result of the present study.

Corollary 3.4. The global utility in outcome v ′ of a run of Al-
gorithm 2 on a BSPGG is higher than the global utility in the initial
strategy profile v .

Proof. For a general strategy profile s , observe that
∑
i ∈N ui (s ) ≤∑

i ∈N ϕi (s ):

• For an agent i with statei (s ) , FKi−1, it holds that ϕi (s ) =
ui (s ).
• For an agent i with statei (s ) = FKi−1, it holds that ϕi (s ) =
Ki − ci > Ki − 1 = ui (s ).

In addition, when the algorithm terminates no agent i can be in

state FKi−1. This is because such an agent can change its strat-

egy to T and increase its utility. Consequently,

∑
i ∈N ui (v

′) =∑
i ∈N ϕi (v

′) upon termination.

Alongwith the guaranteeΦ(v ′) ≥ Φ(v )wehave that
∑
i ∈N ui (v ) ≤∑

i ∈N ϕi (v ) ≤
∑
i ∈N ϕi (v

′) =
∑
i ∈N ui (v

′). �

4 EXPERIMENTAL EVALUATION
All experiments were conducted on randomly generated scale-free

networks (Barabasi-Albert networks [1]) with 500 agents and vari-

ous densities. Scale-free networks are commonly taken to resemble

real world social networks [2, 21]. The density of a Barabasi-Albert

network can be represented by a parameter m - the number of

nodes that connect each new node to the already existing network

during construction [17]. All results were averaged over 100 runs

for each configuration.

The first set of experiments evaluates Algorithm 2 against both

best-response dynamics and Algorithm 1.

Algorithm 2 outperforms both algorithms. The parameter K is

first taken to be 5. On low density networks with density 5, the

improvement is 44% over best-response and 12% over Algorithm 1.

The improvement decreases as the density grows, to 19% over best-

response and 1% over Algorithm 1 on dense networks with density

15 (Figure 2). The improvement of Algorithm 2 is more significant

when K = 15. It performs 31% better than best-response and 8%

better than Algorithm 1 on low density networks with density 5.

The improvement peaks to 42% over best-response and 25% over

Algorithm 1 when the density is 10, and goes down to 36% and 9%

as the density reaches 15 (Figure 3).

All algorithms terminate within few iterations. It takes Algo-

rithm 2 less iterations than best-response to converge, but more

than Algorithm 1 (Figures 4, 5).

The second set of experiments explores the correlation between

the social capital of agents and the utility they gain in solutions
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Figure 2: SW for solutions of the 3 Algorithms. K = 5
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Figure 3: SW for solutions of the 3 Algorithms. K = 15
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Figure 4: Number of Iterations for the 3 Algorithms. K = 5

to the public goods game. In order to do so, the best-response

algorithm was applied to randomly generated problems until con-

vergence (the resulting outcomes of this method are PNEs - the

common solution concept for games). Next, the Pearson correlation

coefficients between the measurable social capital parameters of

network density, represented by the parameter m
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Figure 5: Number of Iterations for the 3 Algorithms. K = 15

agents (as described in Section 2.3) and their utility in all solutions

were computed.

The problem of directly measuring the correlation between the

proposed measures of social capital and agents’ utilities is that the

parameters proposed by [9] also correlate with the degree of the

agents on the network, and the degree naturally correlates with

the utilities of the agents. Take for example an agent i with a high

godfather index (recall Section 2.3). It has a higher number of pairs

of unconnected neighbors than some other agent j with a lower

godfather index. Therefore, i is also likely to have more neighbors

than j in general. In BSPGGs, where the utility is determined by the

total number of investing neighbors, agent i is expected to end up

with a higher utility than agent j, regardless of its godfather index.
To try and overcome this bias, the correlation between social capital

and utility was computed only for agents with similar number of

neighboring agents. Specifically, we explored only the set of agents

that have exactly K neighbors.
The first experiment was performed on networks with density

m = 5 (and K = 5). A negative correlation of -0.47, -0.25 was ob-

served between both decay centrality, support index and the utilities

of agents with exactly K neighbors. In contrast, the Godfather index
was found to be positively correlated (0.26) with the utility of the

agents. The second experiment was performed on dense networks

ofm = 15 (K = 15). The results were similar in that a negative cor-

relation of -0.64, -0.4 was observed between both decay centrality,
support index and the utilities of agents with exactly K neighbors.

The Godfather index was found to be positively correlated (0.55)

with the utility of the agents.

The positive correlation of godfather index as well as the neg-

ative correlation of both decay centrality, support index with the

utility seem to imply a single predictor for the utilities of agents in

solutions of the best-shot public goods game on networks: The less
connected one’s neighbors in a game, the greater its utility
is going to be. This predictor is obviously positively correlated

with the godfather index and negatively correlated with both decay
centrality, support index).

The last experiment on the effect of network topology on agents’

utility is presented in Figure 6. In this experiment, the average

utility of agents with exactlyK = 5 neighbors residing on networks
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Figure 6: Utility of agents with K (5) neighbors

of various densities is examined. The utility of this set of agents is

relatively high on low density networks withm = 5. It is interesting

to see that their average utility decreases as the density of the

network increases. This result shows that the power of an agent

drops as its “relative degree” decreases such that the rest of the

agents in the game can make “relations” and deal with more agents.

5 CONCLUSION
An incentive-base search algorithm for finding efficient PNEs in

public goods games on networks is proposed. The proposed al-

gorithm is a part of a new approach to public goods games on

networks, that uses side payments among the searching agents

and guarantees the finding of good solutions for large games. The

outcome of the algorithm is at least as efficient as the initial strat-

egy profile. This is a new result for the proposed algorithm, that is

not guaranteed by former local search algorithms. The extensive

experimental evaluation of the proposed algorithm was performed

on large randomly generated scale-free networks of 500 agents and

a variety of densities. All runs converged very quickly (within a

few iterations) to efficient solutions.

An additional new direction that opens when one actually solves

PGGs on networks, is to consider the individual gains of agents.

The approach taken by the present study is to investigate the cor-

relation of individual gains with the social capital of agents. To
this end the recent typology of social capital by Jackson [9] was

used. The typology bases social capital features on agents’ local

network topology. The extensive experimental evaluation explores

correlations of the personal gain of agents in solutions obtained by

best-response dynamics with several important features of social

capital according to the model. The experiments show that local

network topology plays an important role in determining the gain

of agents in general public goods games on networks.

It is important to observe that the side-payments in the proposed

algorithm (as well as in the former study [13]) are not strategic. A

selfish neighboring agent might bid strategically and offer a lower

payment that could still be sufficient for the current agent to invest.

Future study of incentive-based search for public goods games

on networks should integrate a truthful bidding mechanism into

the search process and eliminate selfish behavior. This was done

recently for ADCOPs search [20] and needs to be adapted for the

different versions of PGGs.
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