
Message delay and Asynchronous DisCSP search?

Roie Zivan and Amnon Meisels
{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Distributed constraint satisfaction problems (DisCSPs) are composed
of agents, each holding its own variables, that are connected by constraints to vari-
ables of other agents. Due to the distributed nature of the problem, message delay
can have unexpected effects on the behavior of distributed search algorithms on
DisCSPs. This has been shown in experimental studies of asynchronous back-
tracking algorithms [1, 9].
To evaluate the impact of message delay on the run of DisCSP search algorithms,
a model for distributed performance measures is presented. The model counts the
number of non concurrent constraints checks, to arrive at a solution, as a non
concurrent measure of distributed computation. A simpler version measures dis-
tributed computation cost by the number of non-concurrent steps of computation.
An algorithm for computing these distributed measures of computational effort is
described. The realization of the model for measuring performance of distributed
search algorithms is a simulator which includes the cost of message delays.
The performance of two asynchronous search algorithms is measured on ran-
domly generated instances of DisCSPs with delayed messages. The Asynchronous
Weak Commitment (AWC) algorithm and Asynchronous Backtracking (ABT ).
The intrinsic reordering process ofAWC dictates a need for a more complex
count of non-concurrent steps of computation. The improved counting algorithm
is also needed for Dynamic orderedABT . The delay of messages is found to
have a strong negative effect onAWC and a smaller effect on dynamically or-
deredABT .

Key words: Distributed Constraint Satisfaction, Search, Distributed AI.

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf. [13,
11]). Agents check the value assignments to their variables for local consistency and

? Research supported by the Lynn and William Frankel center for Computer Sciences and the
Paul Ivanier Center for Robotics and Production Management.



exchange messages among them, to check consistency of their proposed assignments
against constraints with variables that belong to different agents [13, 2].

Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - run time, which measures the com-
putational effort and network load [5]. The time performance of search algorithms on
DisCSPs has traditionally been measured by the number of computation cycles or steps
(cf. [13]). In order to take into account the effort an agent makes during its local assign-
ment the computational effort can be measured by the number of constraints checks that
agents perform. However, care must be taken to measure thenon-concurrentconstraints
checks. In other words, count computational effort of concurrently running agentsonly
once during each concurrent running instance ([6, 8]). Measuring the network load
poses a much simpler problem. Network load is generally measured by counting the
total number of messages sent during search [5].

The first attempts to compare run times of distributed search algorithms on DisC-
SPs used a synchronous simulator and instantaneous message arrival. During one step
of computation (cycle) of the simulator all messages of all agents are delivered and
all resulting computations by the receiving agents are completed [13]. The number of
these synchronous steps of computation in a standard simulator served to measure the
non-concurrent run-time of a DisCSP algorithm [13]. It is clear that the comparison
of asynchronous search algorithms by synchronizing them to run on a simulator is not
satisfactory. In fact, comparing concurrent run-times of distributed computations must
involve some type of asynchronous time considerations [4, 6].

The need to define a non-concurrent measure of time performance arises even for an
optimal communication network, in which messages arrive with no delay. It turns out
that for ideal communication networks one can use the number of non-concurrent con-
straints checks (NCCCs), for an implementation independent measure of non-concurrent
run time [6]. When messages are not instantaneous, the problem of measuring dis-
tributed performance becomes more complex. On realistic networks, in which there are
variant message delays, the time of run cannot be measured in steps of computation.
Take for example Synchronous Backtracking (SBT ) [13]. Agents inSBT perform
their assignments one after the other, in a fixed order, simulating a simple backtrack
algorithm. Since all agents are completely synchronized and no two agents compute
concurrently, the number of computational steps is not affected by message delays.
However, the effect on the run time of the algorithm is completely cumulative (delaying
each and every step) and is thus large (see section 6 for details).

The present paper proposes a general method for measuring run time of distributed
search algorithms on DisCSPs. The method is based on standard methods of asyn-
chronous measures of clock rates in distributed computation [4] and uses constraints
checks as a logical time unit [6]. In order to evaluate the impact of message delays
on DisCSP search algorithms, we present anAsynchronous Message Delay Simulator
(AMDS) which measures the logical time of the algorithm run. TheAMDS mea-
sures run time in non-concurrent steps of computation or in non-concurrent constraints
checks and simulates message delays accordingly. TheAMDS and its underlying asyn-
chronous measuring algorithm for comparing concurrent running times is described in

2



detail in section 3. The validity of theAMDS’ counting algorithm, to measure concur-
rent logical time, is proved in section 4. It can simulate systems with different types of
message delays. From fixed message delays, through random message delays, to sys-
tems in which the length of the delay of each message is dependent on the current load
of the network. The delay is measured in non-concurrent computation steps (or non-
concurrent constraints checks). The final logical time that is reported as the cost of the
algorithm run, includes steps of computation which were actually performed by some
agent, and computational steps which were added as message delay simulation while
no computation step was performed concurrently (see section 3).

The AMDS presented in section 3 enables a deeper exploration of the behavior
of different search algorithms for DisCSPs on systems with different message delays.
Message delays emphasize properties of algorithms which are not apparent when the
algorithms are run in a system with perfect communication. Experimental evidence for
such behavior was found recently for asynchronous backtracking algorithms [1, 9]. The
study of [1] measured run times on a multi-machine implementation of the compared
algorithms. While serving as a first attempt to study the impact of communication de-
lays on DisCSP algorithms, such an implementation does not enable simple duplication
of experiments, for diverse algorithms and measures, as does the present well-defined
simulation algorithm.

Measuring asynchronous backtracking search algorithms with dynamic agent order-
ing [12, 16] generates an additional problem which is not present for standardDisCSP
algorithms. For both theAWC algorithm of [12] and theDynamic Ordering ABTalgo-
rithm of [16], assignment messages are sent by agents to all their neighbors including
higher priority neighbors. Such messages carry information which does not trigger and
is not evaluated in the following computation of the receiving agent. The method of the
AMDS simulator proposed in this study ensures that logical steps (constraints checks
or computation steps) are counted twice only if they could not have been performed
concurrently.

The plan of the paper is as follows. Distributed constraint satisfaction problems
(DisCSPs) are presented in section 2. A detailed introduction of the simulator that is
used in our experiments, and of the method of evaluating the run time ofDisCSP al-
gorithms in the presence of message delays, is presented in section 3. Section 4 contains
a proof of the validity of the simulating algorithm. Section 5 presents the twoDisCSP
search algorithms Asynchronous Backtracking (ABT ) and Asynchronous Weak Com-
mitment search (AWC). Section 6 presents extensive experimental results, comparing
the two algorithms on randomly generatedDisCSPs with different types of message
delays. A discussion of the performance and advantages of the algorithms, on differ-
ent DisCSP instances and communication networks, is presented in section 7. Our
conclusions are in section 8.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSP) is composed of a set ofk agentsA1, A2, ..., Ak. Each agentAi contains a
set of constrained variablesXi1 , Xi2 , ..., Xini

. Constraints orrelations R are subsets

3



of the Cartesian product of the domains of the constrained variables [3]. Abinary
constraint Rij between any two variablesXj andXi is defined as:Rij ⊆ Dj × Di.
In a distributed constraint satisfaction problemDisCSP, the agents are connected by
constraints between variables that belong to different agents (cf. [13, 11]). In addition,
each agent has a set of constrained variables, i.e. alocal constraint network.

An assignment (or a label) is a pair< var, val >, wherevar is a variable of some
agent andval is a value fromvar’s domain that is assigned to it. Apartial assignment
(or a compound label) is a set of assignments of values to a set of variables. Asolution
to aDisCSPis an assignment that includes all variables of all agents, that is consistent
with all constraints. Following all former work onDisCSPs, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents [13].

The delay in delivering a message is assumed to be finite [13]. One simple protocol
for checking constraints, that appears in many distributed search algorithms, is to send a
proposed assignment< var, val >, of one agent to another agent. The receiving agent
checks the compatibility of the proposed assignment with its own assignments and with
the domains of its variables and returns a message that either acknowledges or rejects
the proposed assignment. The following assumptions are routinely made in studies of
DisCSPs and are assumed to hold in the present study [13, 2].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception

is finite.
3. Messages sent by agentAi to agentAj are received byAj in the order they were

sent.
4. Every agent can access the constraints in which it is involved and check consistency

against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. To simulate asynchronous agents, the simulator implements
agents asJava Threads. Threads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Non-concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [4, 6]. Every agent holds a counter of computation steps
which it increments each time it performs a step. Every message carries the value of the
sending agent’s counter. When an agent receives a message it updates its counter to the
largest value between its own counter and the counter value carried by the message. By

4



– upon receiving messagemsg:
1. LTC←max(LTC, msg.LTC)
2. delay← choose delay
3. msg.delivery time←msg.LTC + delay
4. outgoing queue.add(msg)
5. deliver messages

– when there are no incoming messages and all agents are idle
1. LTC← outgoing queue.first msg.LTC
2. deliver messages

– deliver messages
1. foreach (message m in outgoing queue)
2. if (m.delivery time ≤ LTC)
3. deliver(m)

Fig. 1.The Mailer algorithm

reporting the cost of the search as the largest counter held by some agent at the end of
the search, a non-concurrent measure of search effort is achieved (see [4]).

On systems with message delays, the situation is different. To introduce the prob-
lems of counting in the presence of message delays, let us start with the simplest pos-
sible algorithm. Synchronous backtracking (SBT ) performs assignments sequentially,
one by one and no two assignments are performed concurrently [13]. Consequently, the
effect of message delay is very clear. The number of computation steps is not affected
by message delay and the delay in every step of computation is the delay on the mes-
sage that triggered it. Therefore, the total time of the algorithm run can be calculated
as the total computation time, plus the total delay time of messages. In the presence of
concurrent computation, the time of message delays must be added to the run-time of
the algorithmonly if no computation was performed concurrently. To achieve this goal,
the simulator counts message delays in terms of computation steps and adds them to the
accumulated run-time. Such additions are performed only for instances when no com-
putation is performed. In other words, when the delay of a message causes all agents to
wait, performing no computation.

In order to simulate message delays, all messages are passed by a dedicatedMailer
thread. The mailer holds a counter of non-concurrent computation steps performed by
agents in the system. This counter represents the logical time of the system and we re-
fer to it as theLogical Time Counter(LTC). Every message delivered by the mailer
to an agent, carries theLTC value of its delivery to the receiving agent. An agent that
receives a message updates its counter to the maximum value between the received
LTC and its own value. Next, it performs the computation step, and sends its outgoing
messages with the value of its counter, incremented by 1. The same mechanism can
be used for computing computational effort, by counting non-concurrent constraints
checks. Agents add to the counter values in outgoing messages the number of con-
straints checks performed in the current step of computation.

The mailer simulates message delays in terms of non-concurrent computation steps.
To do so it uses theLTC, according to the algorithm presented in figure 1. Let us go

5



over the details of theMailer algorithm, in order to understand the measurements
performed by the simulator during run time.

When the mailer receives a message, it first checks if theLTC value that is carried
by the message is larger than its own value. If so, it increments the value of theLTC
(line 1). In line 2 a delay for the message (in number of steps) is selected. Here, different
types of selection mechanisms can be used, from fixed delays, through random delays,
to delays that depend on the actual load of the communication network. To achieve
delays that simulate dependency on network load, for example, one can assign message
delays that are proportional to the size of the outgoing message queue.

Each message is assigned adelivery time which is the sum of the value of the
message’sLTC and the selected delay (in steps), and placed in theoutgoing queue
(lines 3,4). Theoutgoing queue is a priority queue in which the messages are sorted by
delivery time, so that the first message is the message with the lowestdelivery time.
In order to preserve the third assumption from section 2, messages from agentAi to
agentAj cannot be placed in the outgoing queue before messages which are already
in the outgoing queue which were also sent fromAi to Aj . This property is essential
to asynchronous backtracking which is not correct without it (cf. [2]). The last line of
theMailer’s code calls methoddeliver messages, which delivers all messages with
delivery time less or equal to the mailer’s currentLTC value, to their destination
agents.

When there are no incoming messages, and all agents are idle, if theoutgoing queue
is not empty (otherwise the system is idle and a solution has been found) the mailer in-
creases the value of theLTC to the value of thedelivery time of the first message in
the outgoing queue and callsdeliver messages. This is a crucial step of the simula-
tion algorithm. Consider the run of a synchronous search algorithm. ForSynchronous
Backtracking(SBT ) [13], every delay needs the mechanism of updating the Mailer’s
LTC (line 1 of the second function of the code in figure 1). This is because only one
agent is computing at any given instance, in synchronous backtrack search.

The non-concurrent run time reported by the algorithm, is the largestLTC value
that is held by any agent at the end of the algorithm’s run. By incrementing theLTC
only when messages carryLTCs with values larger than the mailer’sLTC value, steps
that were performed concurrently are not counted twice. This is an extension of Lam-
port’s logical clocks algorithm [4], as proposed for DisCSPs by [6], and extended here
for message delays.

A similar description holds for evaluating the algorithm run in non-concurrent con-
straints checks. In this case the agents need to extend the value of theirLTCs by the
number of constraints checks they actually performed in each step. This enables a con-
current performance measure that incorporates the computational cost of the local step,
which might be different in different algorithms. It also enables to evaluate algorithms
in which agents perform computation which is not triggered or followed by a message.

3.1 Adjusting the measuring method for dynamic order algorithms

In asynchronous backtracking with dynamic agent ordering [16] as in the Asynchronous
Weak Commitment search algorithm, agents hold in theirAgent Viewsassignments of
both higher and lower priority agents. The agents check their current assignment only

6



against assignments of agents with higher priority according to the current order. How-
ever, since the priority order is dynamic, an assignment of a lower priority agent which
is currently irrelevant, may become relevant as a result of a change in the order of priori-
ties, thus such lower priority assignments are not discarded from the agent’sAgent View.
The agents performing asynchronous backtracking with dynamic ordering (ABT DO)
or Asynchronous Weak Commitment (AWC), send their assignments to all their neigh-
bors (and not only to their current lower priority neighbors) for the same reason [13,
16].

Messages which carry the assignments of lower priority agents to higher priority
agents do not trigger immediate computation since the assignment in the received mes-
sage cannot rule out the local assignment even if they are in conflict.

A small change in the agents actions would adjust the measuring method ofAMDS
presented above for counting non-concurrent logic steps to deal with messages which
do not trigger immediate computation, and their data is stored for later use. In order
to preserve the concept ofnon-concurrentlogic steps, for every message received, be-
fore updating the localLogic Time Counter(LTC) the agent must make sure that the
computation performed in order to produce the data carried by the messagecould not
have been performedconcurrently with the steps of computation it is about to perform.
Another way to look at it is to ask whether the computation steps about to be performed
could have been performed if the message carrying the corresponding data was delayed.
This can be done by the agents by delaying the update of theirLTC in cases where the
receivedLTC is larger. Instead the agents store the data in the received message to-
gether with the correspondingLTC. When the stored data is first used for computation,
the correspondingLTC is compared with the localLTC and the last is updated with
the largest among the two.

4 Validity of the AMDS

The validity of the proposed simulation algorithm can be established in two steps. First,
its correspondence to runs of aSynchronous (cycle-counting) Simulatoris presented.
Understanding the nature of this correspondence, enables to show that a corresponding
synchronous cycle simulator cannot measure concurrent delayed steps and theAMDS
is necessary.

In a Synchronous Cycle Simulator(SCS) [13], each agent can read all messages
that were sent to it in the previous cycle and perform a single computation step. The
computation is followed by the sending of messages (which will be received in the next
cycle). Agents can be idle in some cycles, if they do not receive a message which trig-
gers a computation step. The cost of the algorithm run, is the number of synchronous
cycles performed until a solution is found or a non solution is declared (see [13]). Mes-
sage delay can be simulated in such a synchronous simulator by delivering messages to
agents several cycles after they were sent. Our first step is to show the correspondence
of AMDS and anSCS.

Theorem 1. Any run ofAMDS can be simulated by aSynchronous Cycle Simulator
(SCS). Each cycleci of theSCS corresponds to anLTC value ofAMDS.

7



Proof. Every messagem sent by an agentAi to agentAj , using theAMDS, can be
assigned a valued which is the largest value between theLTC carried bym in the
AMDS run and the value of theLTC held by Aj when it receivesm. Running a
Synchronous Cycle Simulator(SCS) and assigning each messagem with the value
d calculated as described above, the message can be delivered toAj in cycle d. The
outcome of this specialSCS is that every agent in every cycleci receives the exact
messages as the agents in the correspondingAMDS and the histories of all these mes-
sages are equivalent. In this context the meaning of equivalent histories of messages is
that at each step, the message has the same list of senders/receivers, each recording its
step number which is the same. This means that agents have the same knowledge about
the other agents as the agents performing the corresponding steps in theAMDS run.
Assuming the algorithm is deterministic, each agent will perform the same computation
and send the same messages. If the algorithm includes random choices the run can be
simulated by recordingAMDS choices and forcing the same choice in the synchronous
simulator run.2

The theorem demonstrates that for measuring the number of steps of computation,
the asynchronous simulator is equivalent to a standardSCS that does not wait for
all agentsto complete their computation in a given cycle, in order to move to the next
cycle. Message delays are simulated simply by theSCS delivering messages in delayed
cycles.

The validity and importance of the asynchronous simulator can now be understood.
Consider the important case where computational effort needs to be measured, in terms
of constraints checks for example. At each cycle agents perform different amounts of
computation, depending on the algorithm, on the arrival of messages, etc. TheSCS
has no way to “guess” the amount of computation performed by each agent in any
given step or cycle. It therefore cannot deliver the resulting message in the correct cycle
(one that matches the correct amount of computation and waiting). The natural way
to incorporate the computational cost into the performance measure is to ”clock” the
simulator by CCs (for example). But this is equivalent to using theAMDS as proposed
in section 3.

5 Asynchronous Backtracking search algorithms

This study focuses on asynchronous backtracking algorithms. The algorithms com-
pared are standard asynchronous backtracking (ABT ) [13], asynchronous backtracking
with dynamic agent ordering (ABT DO) [16] and asynchronous weak commitment
(AWC) [13]. These algorithms are described in the following subsections.

5.1 Asynchronous Backtracking

TheAsynchronous Backtrack algorithm (ABT ) was presented in several versions
over the last decade and is described here in accordance with the more recent papers [13,
2]. In the ABT algorithm, agents hold an assignment for their variables at all times,
which is consistent with their view of the state of the system (i.e. theirAgent view).
When the agent cannot find an assignment consistent with itsAgent view, it changes

8



– when received(ok?, (xj , dj)) do
1. add(xj , dj) to agent view;
2. check agent view;end do;

– when received(nogood, xj , nogood) do
1. add nogood to nogood list;
2. whennogood contains an agentxk that is not its neighbordo
3. requestxk to addxi as a neighbor,
4. and add(xk, dk) to agent view; end do;
5. old value← current value; check agent view;
6. whenold value = current value do
7. send (ok?, (xi, current value)) to xj ; end do; end do;

– procedurecheck agent view
1. whenagent view andcurrent value are not consistentdo
2. if no value inDi is consistent withagent view then backtrack;
3. elseselectd ∈ Di whereagent view andd are consistent;
4. current value← d;
5. send(ok?,(xi, d)) to low priority neighbors; end if ;end do;

– procedurebacktrack
1. nogood← resolve Nogoods;
2. whennogood is an empty setdo
3. broadcast to other agents that there is no solution;
4. terminate this algorithm;end do;
5. select(xj , dj) wherexj has the lowest priority in nogood;
6. send(nogood, xi, nogood) to xj ;
7. remove(xj , dj) from agent view; end do;
8. check agent view

Fig. 2.The ABT algorithm with fullNogood recording

its view by eliminating a conflicting assignment from itsAgent view data structure
and sends back aNogood.

TheABT algorithm [13], has a total order of priorities among agents. Agents hold a
data structure calledAgent view which contains the most recent assignments received
from agents with higher priority. The algorithm starts by each agent assigning its vari-
able, and sending the assignment to neighboring agents with lower priority. When an
agent receives a message containing an assignment (anok? message [13]), it updates
its Agent view with the received assignment and if needed, replaces its own assign-
ment, to achieve consistency. Agents that reassign their variable, inform their lower
priority neighbors by sending themok? messages. Agents that cannot find a consistent
assignment, send the inconsistent tuple in theirAgent view in a backtrack message
(a Nogood message [13]). TheNogood is sent to the lowest priority agent in the in-
consistent tuple, and its assignment is removed from theirAgent view. Every agent
that sends aNogood message, makes another attempt to assign its variable with an
assignment consistent with its updatedAgent view.

Agents that receive aNogood, check its relevance against the content of their
Agent view. If the Nogood is relevant, the agent stores it and tries to find a consis-

9



tent assignment. In any case, if the agent receiving theNogood keeps its assignment,
it informs theNogood sender by re-sending it anok? message with its assignment. An
agentAi which receives aNogood containing an assignment of agentAj which is not
included in itsAgent view, adds the assignment ofAj to it’s Agent view and sends a
message toAj asking it to add a link between them. In other words,Aj is requested to
inform Ai about all assignment changes it performs in the future [2, 13].

The performance ofABT can be strongly improved by requiring agents to read
all messages they receive before performing computation [13]. A formal protocol for
such an algorithm was not published. The idea is not to reassign the variable until all
the messages in the agent’s ’mailbox’ are read and theAgent view is updated. This
technique was found to improve the performance ofABT on the harder instances of
randomly generated DisCSPs by a factor of 4 [14]. However, this property makes the
efficiency ofABT dependent on the contents of the agent’s mailbox in each step, i.e.
on message delays (see section 6). The consistency of theAgent view held by an agent
with the actual state of the system before it begins the assignment attempt is affected
directly by the number and relevance of the messages it received up to this step.

Another improvement to the performance ofABT can be achieved by using the
method for resolving inconsistent subsets of theAgent view, based on methods of
dynamic backtracking. A version ofABT that uses this method was presented in [2].
In [14] the improvement ofABT using this method overABT sending its fullAgent view
as aNogood was found to be minor. In all the experiments in this paper a version of
ABT which includes both of the above improvements is used. Agents read all incoming
messages that were received before performing computation andNogoods are resolved,
using the dynamic backtracking method [2].

TheABT algorithm is presented in figure 2 [13]. The first procedure is performed
when anok? message is received. The agent adds the received assignment to itsAgent view
and calls procedurecheck agent view. The second procedure is performed when a
Nogood is received. TheNogood is stored (line 1), and a check is made whether it
contains an assignment of a non neighboring agent. If so, the agent sends a message to
the unlinked agent in order to establish a link between them and adds its assignment
to itsAgent view (lines 2-4). Before calling procedurecheck agent view, the current
value is stored (line 5). If for any reason the current value remains the same after calling
check agent view, anok? message carrying this assignment is sent to the agent from
whom theNogood was received (lines 6,7).

In procedurecheckagentviewif the current value is not consistent with theAgent view
the agent searches its domain for a consistent value. If it does not find one, it calls pro-
cedurebacktrack (line 2). If there is a consistent value in its domain, it is placed as the
current value andok? messages are sent through all outgoing links (lines 3-5).

In procedurebacktrack the agent resolves its storedNogoods and chooses the
Nogood to be sent (line 1). If theNogood selected is empty, the algorithm is termi-
nated unsuccessfully (lines 2-4). In other cases the agent sends theNogood to the agent
with the lowest priority whose assignment is included in theNogood, removes that
assignment from theAgent view and callscheck agent view.

10



5.2 ABT with Dynamic Ordering (ABT DO)

For simplicity of presentation we assume that agents sendorder messages to all lower
priority agents. In the more realistic form of the algorithm, agents sendorder messages
only to their lower priorityneighbors.

Each agent inABT DO holds aCurrent order which is an ordered list of pairs.
Every pair includes the ID of one of the agents and a counter. Each agent can propose
a new order for agents that have lower priority, each time it replaces its assignment. An
agentAi can propose an order according to the following rules:

1. Agents with higher priority thanAi andAi itself, do not change priorities in the
new order.

2. Agents with lower priority thanAi, in the current order, can change their priorities
in the new order but not to a higher priority thanAi itself.

The counters attached to each agent ID in theorder list form a time-stamp. Initially,
all time-stamp counters are zero and all agents start with the sameCurrent Order.
Each agent that proposes a new order changes the order of the pairs in its ordered list
and updates the counters as follows:

1. The counters of agents with higher priority thanAi, according to theCurrent order,
are not changed.

2. The counter ofAi is incremented by one.
3. The counters of agents with lower priority thanAi in theCurrent order are set to

zero.

Consider an example in which agentA2 holds the followingCurrent order:
(1, 4)(2, 3)(3, 1)(4, 0)(5, 1). There are 5 agentsA1...A5 and they are ordered according
to their IDs from left to right. After replacing its assignment it changes the order to:
(1, 4)(2, 4)(4, 0)(5, 0)(3, 0). In the new order, agentA1 which had higher priority than
A2 in the previous order keeps its place and the value of its counter does not change.A2

also keeps its place and the value of its counter is incremented by one. The rest of the
agents, which have lower priority thanA2 in the previous order, change places as long
as they are still located lower thanA2. The new order for these agents isA4, A5, A3

and their counters are set to zero.
In ABT , agents sendok? messages to their neighbors whenever they perform an

assignment. InABT DO, an agent can choose to change itsCurrent order after
changing its assignment. If that is the case, beside sendingok? messages an agent sends
order messages to all lower priority agents. Theorder message includes the agent’s
newCurrent order. An agent which receives anorder message must determine if the
received order is more updated than its ownCurrent order. It decides by comparing
the time-stamps lexicographically. Since orders are changed according to the above
rules, every two orders must have a common prefix of the agents IDs since the agent
that performs the change does not change its own position and the positions of higher
priority agents. In the above example the common prefix includes agentsA1 andA2.
Since the agent proposing the new order increases its own counter, when two different
orders are compared, at lease one of the time-stamp counters in the common prefix is
different between the two orders. The more up-to-date order is the one for which the

11



first different counter in the common prefix is larger. In the example above, any agent
which will receive the new order will know it is more updated than the previous order
since the first pair is identical, but the counter of the second pair is larger.

When an agentAi receives an order which is more up to date than itsCurrent order,
it replaces itsCurrent order by the received order. The new order might change the lo-
cation of the receiving agent with respect to other agents (in the newCurrent order).
In other words, one of the agents that had higher priority thanAi according to the old
order, now has a lower priority thanAi or vise versa. Therefore,Ai rechecks the con-
sistency of its current assignment and the validity of its storedNogoods according to
the new order. If the current assignment is inconsistent according to the new order, the
agent makes a new attempt to assign its variable. InABT DO agents sendok? mes-
sages to all constraining agents (i.e. their neighbors in the constraints graph). Although
agents might hold in theirAgent views assignments of agents with lower priorities,
according to theirCurrent order, they eliminate values from their domainonly if they
violate constraints with higher priority agents.

A Nogood message is always checked according to theCurrent order of the re-
ceiving agent. If the receiving agent is not the lowest priority agent in theNogood
according to itsCurrent order, it sends theNogood to the lowest priority agent and
sends anok? message to the sender of theNogood. This is a similar operation to that
performed in standardABT for any unacceptedNogood.

Figures 3 and 4 present the code of asynchronous backtracking with dynamic or-
dering (ABT DO).

When anok? message is received (first procedure in Figure 3), the agent updates
theAgent view and removes inconsistentNogoods. Then it callscheck agent view
to make sure its assignment is still consistent.

A new order received in an order message is accepted only if it is more up to date
than theCurrent order (second procedure of Figure 3). If so, the received order is
stored andcheck agent view is called to make sure the current assignment is consistent
with the higher priority assignments in theAgent view.

When aNogood is received (third procedure in Figure 3) the agent first checks if it
is the lowest priority agent in the receivedNogood, according to theCurrent order. If
not, it sends theNogood to the lowest priority agent and anok? message to theNogood
sender (lines 1-3). If the receiving agent is the lowest priority agent it performs the same
operations as in the standardABT algorithm (lines 4-12).

Procedurebacktrack (Figure 4) is the same as in standardABT . TheNogood is
resolved and the result is sent to the lower priority agent in theNogood, according to
theCurrent order.

Procedurecheck agent view (Figure 4) is very similar to standardABT but the
difference is important (lines 5-9). If the current assignment is not consistent and must
be replaced and a new consistent assignment is found, the agent chooses a new order
as itsCurrent order (line 7) and updates the corresponding time-stamp. Next,ok?
messages are sent to all neighboring agents. The new order and its time-stamp counters
are sent to all lower priority agents.

12



when received (ok?,(xj , dj) do:
1. add(xj , dj) to agent view;
2. remove inconsistentnogoods;
3. check agent view;

when received (order,received order) do:
1. if (received order is more updated thanCurrent order)
2. Current order ← received order;
3. remove inconsistent nogoods;
4. check agent view;

when received(nogood, xj , nogood) do
1. if (nogood contains an agentxk with lower priority thanxi)
2. send (nogood, (xi, nogood)) to xk;
3. send (ok?, (xi, current value) to xj ;
4. else
5. if (nogood consistent with{Agent view ∪ current assignment} )
6. storenogood;
7. if (nogood contains an agentxk that is not its neighbor)
8. requestxk to addxi as a neighbor;
9. add(xk, dk) to agent view;
10. check agent view;
11. else
12. send (ok?, (xi, current value)) to xj ;

Fig. 3.The ABT DO algorithm (first part)

5.3 Asynchronous Weak Commitment search

The Asynchronous Weak Commitment (AWC) search algorithm presented in [12] was
constructed to increase the efficiency of theABT algorithm. The major difference be-
tweenAWC and standardABT is that the priority order among agents is dynamic in
AWC. An agent that cannot find a consistent assignment with it’sAgent view, beside
sending aNogood, changes it’s priority to be higher than all other agents [12].

In AWC, as inABT DO, ok? messages must be sent by agents to all their neigh-
bors in the constraints network, not just the agents with lower priority.ok? messages
must carry the agent’s current priority, since the priorities change, and the other agents
relate to the message received by comparing the received priority, with their own.

Unlike ABT DO, in case of a backtrack operation,Nogoods are sent to all agents
whose assignment is included in theNogood. Agents store allNogoods they receive.
Agents also hold a list of theNogoods they have already sent to avoid sending the same
Nogood again. An exponential sizeNogood list is needed. This of course means that
traversing theNogood list requires exponential computational cost.

The expected advantage of theAWC algorithm overABT stems from its dynamic
ordering of variables.AWC is more flexible thanABT DO since its completeness is

13



procedurecheck agent view
1. if (current assignment is not consistent with all

higher priority assignments inagent view)
2. if (no value inDi is consistent with all higher priority

assignments inagent view)
3. backtrack;
4. else
5. selectd ∈ Di whereagent view andd are consistent;
6. current value← d;
7. Current order← choosenew order
8. send(ok?,(xi, d)) to neighbors;
9. send(order,Current order) to lower priority agents;

procedurebacktrack
1. nogood← resolve inconsistent subset;
2. if (nogood is empty)
3. broadcast to other agents that there is no solution;
4. stop;
5. select (xj , dj) wherexj has the lowest priority in nogood;
6. send (nogood, xi, nogood) to xj ;
7. remove(xj , dj) from agent view;
8. remove allNogoods containing(xj , dj);
9. check agent view;

Fig. 4.The ABT DO algorithm(second part)

achieved by storing a complete list ofNogoods. Thus, its reordering is not restricted
by the structure of the search tree. The main heuristic idea ofAWC ′s reordering is to
move an agentAi, which cannot assign its variable due to conflicting assignments of
agents with higher priority, to the head of the priority order. This is expected to force the
agents with the conflicting assignments to check for a value assignment in their domain,
consistent with the assignment ofAi [12].

Figure 5 presents thecheck agent view andbacktrack procedures ofAWC (the
other procedures are similar to standardABT ). Procedurecheck agent view is very
similar to that of the dynamic ordered ABT (ABT DO). The consistent asignment is
checked to be consistent only against the assigtnments in theAgent view which have
higher priority. However, a check must be made that it does not violate any of the stored
Nogoods. Once a consistent assignment is found, it is sent to all the agent’s neighbors.
In procedurebacktrack there are two major difference fromABT . First the produced
Nogood is sent to all the agents whose assignment is included in theNogood (and not
just to the last one). Second, the agent changes its priority to the highest one, before
attemting to find a consistent assignment.

14



procedurecheck agent view
1. whenagent view andcurrent value are not consistent
2. if (no value inDi is consistent withagent view)
3. backtrack;
4. else
5. selectd ∈ Di whereagent view andd are consistent;
6. current value← d;
7. send(ok?,(xi, d)) to neighbors;

procedurebacktrack
1. nogood← resolve inconsistent subset;
2. if (nogood is empty)
3. broadcast to other agents that there is no solution;
4. stop;
5. send (nogood, xi, nogood) to all agents innogood;
6. priority ← maxpriorityinagent view + 1
7. selectd ∈ Di whereagent view andd are consistent;
8. current value← d;
9. send(ok?,(xi, d)) to neighbors;

Fig. 5.The AWC algorithm

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by se-
lecting the probabilityp1 of a constraint among any pair of variables and the probability
p2, for the occurrence of a violation among two assignments of values to a constrained
pair of variables. Such uniform random constraints networks ofn variables,k values
in each domain, a constraints density ofp1 and tightnessp2, are commonly used in
experimental evaluations of CSP algorithms (cf. [7, 10]). The experiments were con-
ducted on networks with 15 Agents (n = 15) and 10 values (k = 10). Two density
parameters were used,p1 = 0.4 andp1 = 0.7. The value ofp2 was varied between0.1
to 0.9. This creates problems that cover a wide range of difficulty, from easy problem
instances to instances that take several CPU minutes to solve. For every pair (p1,p2) in
the experiments we present the average over 50 randomly generated instances.

In order to evaluate the algorithms, two measures of search effort are used. One
counts the number of non-concurrent constraint checks (NCCCs) [6, 15], to measure
computational cost. This measures the combined path of computation, from beginning
to end, in terms of constraint checks. The other measure used is the communication
load, in the form of the total number of messages sent [5]. In order to evaluate the
number of non-concurrent CCs including message delays, the simulator described in
section 3 is used.

In the first set of experiments the impact of message delay was tested on theABT
algorithm with and without dynamic agent ordering. Figure 6 presents the number of
non-concurrent constraints checks performed byABT and dynamic orderedABT on

15



Fig. 6. Non-concurrent constraint checks performed by ABT and ABTDO with and without
message delays (p1 = 0.4)

Fig. 7. Number of messages sent by ABT and ABTDO with and without message delays (p1 =
0.4)

systems with optimal communication (i.e. with no message delays) and on systems
with random message delays between 50 and 100CCs. It is apparent that the impact of
meaasge delays on standardABT is larger than on dynamically orderedABT . Figure 7
presents the total number of messages sent by the agents performing the algorithms.
The effect of message delays is similar on both algorithms. The number of messages
increases by about30%.

Figures 8 and 9 present similar results for more denseDisCSPs (p1 = 0.7). The
factor of deterioration in the presence of message delays is similar to the factor in sparce
DisCSPs.

In the second set of experiments, the well knownAWC algorithm was evaluated
on systems with optimal communication and on systems with random message delays.

16



Fig. 8. Non-concurrent constraint checks performed by ABT and ABTDO with and without
message delays (p1 = 0.7)

Fig. 9. Number of messages sent by ABT and ABTDO with and without message delays (p1 =
0.7)

Experiments were performed on smaller systems with 10 agents sinceAWC does not
complete its runs in a reasonable time for larger problems in the presence of message
delays.

Figure 10 presents the number of non-concurrent constraints checks performed by
AWC on sparse systems (p1 = 0.4). The factor of deterioration inNCCCS for
AWC is smaller than the factor forABT and closer to the factor of deterioration for
ABT DO. However, in the case of network load, as presented in Figure 11, the factor
of deterioration in the presense of message delays is much larger than for both versions
of ABT .

Figures 12 and 13 present similar results for denseDisCSPs (p1 = 0.7).

17



Fig. 10.Non-concurrent constraint checks performed by AWC with and without message delays
(p1 = 0.4)

Fig. 11.Number of messages sent by AWC with and without message delays (p1 = 0.4)

7 Discussion

Two sets of experiments to investigate the effect of message delays on the performance
of Asynchronous Backtracking algorithms forDisCSPs were performed.

In order to simulate message delays and include their impact in the experimental
results, an asynchronous simulator which delivers messages to agents according to a
logical time counter (LTC) of non-concurrent steps of computation (or non-concurrent
constraints checks) was introduced. When computing logical time, the addition of mes-
sage delay to the total cost occurs only when no concurrent computation is performed.

While in systems with perfect communication, where there are no message delays,
the number of synchronous steps of computation (on a synchronous simulator) is a good
measure of the time of the algorithm run, the case is different on realistic systems with
message delays. The number of non-concurrent constraints checks has to take delays

18



Fig. 12.Non-concurrent constraint checks performed by AWC with and without message delays
(p1 = 0.7)

Fig. 13.Number of messages sent by AWC with and without message delays (p1 = 0.7)

into account. When the number of non-concurrent CCs is calculated, it reveals a large
impact of message delay on the performance of asynchronous backtracking algorithms..

In order to adjust the non-concurrent computational effort counting method of [6],
for algorithms with dynamic ordering in which not every message triggers computation,
the agents of the simulator store the information they receive and relate to the counters
which represent their corresponding sending time, only when the data carried by the
message is first used for computation.

19



In asynchronous backtracking, agents perform assignments asynchronously. As a
result of random message delays, some of their computation can be irrelevant due to
inconsistentAgent views while the updating message is delayed. This can explain the
large impact of message delays on the computation performed by ABT in our experi-
ments and in a former study [1].

In terms of network load, the results of section 6 show that asynchronous backtrack-
ing puts a heavy load on the network, which grows in the case of message delays. The
number of messages sent by the asychronous weak commitment algorithm (AWC) is
larger than inABT . This can be explained due to the fact that the number of messages
sent in every step byAWC is larger than inABT . Therefore, increase in the number
of steps has a lager impact on the network load.

8 Conclusions

A study of the impact of message delay on the performance of DisCSP search algo-
rithms was presented. A method for simulating logical time, in logical units such as
non-concurrent steps of computation or non-concurrent constraint checks, has been in-
troduced. The number of non-concurrent constraints checks takes into account the im-
pact of message delays on the actual runtime of DisCSP algorithms. The impact of
mesage delays on asynchronous backtracking, (ABT ), is large. Both the computational
effort and the load on the network grow by a large factor. This strengthens the results
of [9, 1].

The effect of message delay onABT with dynamic ordering is smaller but still
significant. The runtime performance of theAWC algorithm reacts similarlly toABT
with dynamic ordering in the presence of message delays. However, it imposes a larger
load on the network.

Acknowledgment: The authors wish to thank Moshe Zazone for programming and
performing the experiments with theAWC algorithm.

References

[1] R. Bejar, C. Domshlak, C. Fernandez, , K. Gomes, B. Krishnamachari, B.Selman, and
M.Valls. Sensor networks and distributed csp: communication, computation and complex-
ity. Artificial Intelligence, 161:1-2:117–148, January 2005.

[2] C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking without
adding links: a new member in the abt family.Artificial Intelligence, 161:1-2:7–24, January
2005.

[3] Rina Dechter.Constraints Processing. Morgan Kaufman, 2003.
[4] L. Lamport. Time, clocks, and the ordering of events in distributed system.Communication

of the ACM, 2:95–114, April 1978.
[5] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
[6] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of distributed

constraints processing algorithms. InProc. AAMAS-2002 Workshop on Distributed Con-
straint Reasoning DCR, pages 86–93, Bologna, July 2002.

20



[7] P. Prosser. An empirical study of phase transitions in binary constraint satisfaction prob-
lems.Artificial Intelligence, 81:81–109, 1996.

[8] M. C. Silaghi. Asynchronously Solving Problems with Privacy Requirements. PhD thesis,
Swiss Federal Institute of Technology (EPFL), 2002.

[9] M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in distributed
constraint satisfaction.Artificial Intelligence, 161:1-2:25–54, January 2005.

[10] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems.Arti-
ficial Intelligence, 81:155 – 181, 1996.

[11] G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed constraint
satisfaction problems (dcsps). InConstraint Processing-96, pages 561–2, New Hamphshire,
October 1996.

[12] M. Yokoo. Asynchronous weak-commitment search for solving distributed constraint sat-
isfaction problems. InProc. 1st Intrnat. Conf. on Const. Progr., pages 88 – 102, Cassis,
France, 1995.

[13] M. Yokoo. Algorithms for distributed constraint satisfaction problems: A review.Au-
tonomous Agents & Multi-Agent Sys., 3:198–212, 2000.

[14] R. Zivan and A. Meisels. Synchronous vs asynchronous search on discsps. InProc. 1st
European Workshop on Multi Agent System, EUMAS, Oxford, December 2003.

[15] R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csps. InCP-
2004, pages 782–7, Toronto, 2004.

[16] R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on discsps. In
CP-2005, pages 32–46, Sigtes (Barcelona), Spain, 2005.

21


