
Distributed Meeting Schedule through
Cooperative Mediation:

analysing OptAPO’ s performance
in a complex scenario

Paulo R. Ferreira Jr. and Ana L. C. Bazzan

Instituto de Informática, UFRGS
Caixa Postal 15064

91.501-970 Porto Alegre, RS, Brazil
phone +55 51 3316 6823

{prferreiraj, bazzan}@inf.ufrgs.br

Abstract. In multiagent systems, Distributed Constraint Optimization
Problem (DCOP) has been used as a formalism to model a wide range
of agents’ coordination issues. An approach based on cooperative me-
diation was recently proposed as a new way to find the optimal solu-
tion to DCOP. An important question about any solution to DCOP is
whether it is fast enough to be applied in real-world applications, such
as Distributed Meeting Scheduling problems. Here, we map the DMS
as a DCOP, use cooperative mediation, and compare the performance
of this approach with the results achieved by another algorithms for
DCOP. Given the time complexity of the complete solutions, we propose
a modified approach for the cooperative mediation, in which the idea is
to trade the completeness of the search mechanism for the performance
of a heuristic search, which yields a good solution in a feasible time.

1 Introduction

The multiagent paradigm has coordination as a central issue. Coordination is a
process in which agents engage to ensure that a community of individual agents
acts in a coherent manner; when distributed agents work towards a common goal
they should act as an unit coordinating interdependent actions, minimizing re-
dundant efforts, sharing resources, etc. Research on coordination aspects has mo-
tivated many approaches and methods. Despite these many possibilities, no one
is universally accepted as a complete solution. Thus, the literature presents some
classical problems in agents’ coordination such as distributed resource allocation
problems, distributed scheduling problems, distributed planning problems, and
so forth.

Distributed Constraint Optimization Problem (DCOP) is a formalism to
model a wide range of the classical problems mentioned above. It is a dis-
tributed version of constraint optimization problems, which derived from con-
straint satisfaction problems. Differently from COP, in DCOP collaborative

agents must find solutions over a distributed set of constraints. A DCOP consists
of n variables V = {x1, x2, ..., xn} that can assume values from a discrete domain
D1, D2, ..., Dn respectively. Each variable is assigned to one agent that has the
control over its value. The goal of the agents is to choose values for the variables
to optimize a global objective function. This function is described as the sum
over a set of valued constraints related to pairs of variables. Thus, for a pair of
variables xi, xj , there is a cost function defined as fij : Di × Dj → N . DCOP
generalizes the Distributed Constrains Satisfaction Problem (DisCSP) [8], which
has a limited power of representation since every constraint is required to be
boolean. This requirement is inadequate to represent many real-world problems
where several degrees of quality or cost are necessary. Besides, real problems are
often over-constrained, meaning that is impossible to satisfy all constraints.

In [6] an asynchronous complete method for distributed constraint optimiza-
tion (called Adopt) is proposed to find the optimal solution for problems for-
malized as DCOP. Adopt provides quality/optimality guarantees on system per-
formance and asynchrony on communication among agents. Besides, Adopt is
known as the most efficient algorithm for DCOP [4]. Modi et al. discuss the main
differences between Adopt and previous approaches, showing its achievements
and limitations.

Another approach, this time based on cooperative mediation, was recently
proposed by Mailler and Lesser [5] as a new way to find the optimal solution
to DCOP. Cooperative mediation is a partial centralization technique and it
is the basis of the optimal asynchronous partial overlay (OptAPO) algorithm.
OptAPO is also a complete, distributed algorithm to solve DCOP. Furthermore,
the authors show that OptAPO performs better than Adopt in an abstract
problem of graph coloring that is an instance of the MaxSAT problem.

An important question about all solutions to DCOP is whether the proposed
algorithms are fast enough to be applied in real-world applications. An important
question here is whether the number and size of exchanged messages makes the
approach feasible. In distributed approaches, the communication among agents
usually poses demands that can cause network overload. Is the total time con-
sumed acceptable in these situations? Real-world problems usually mean that
the planning (for coordination) and action should be treated as quickly as pos-
sible. Most of the proposed approaches yields good results in simple scenarios,
but there is a lack of analysis in complex real-world ones.

One of these scenarios is the Distributed Meeting Schedule problem (DMS)
[7]. In a DMS, a group of persons wish to attend several meetings. The attendees
try to optimize their calendars according to personal preferences maintaining the
privacy of their information. Each meeting is subject to many constraints. The
negotiation proxies to produce a schedule can incur in high communication costs
and unacceptable time.

In [4], a DMS is mapped to a DCOP using a systematic reusable framework
called Distribute Multi-Event Scheduling (DiMES). Agents’ goal is to generate
a coordinate schedule for the execution of joint activities or resource usage in
a multiple-events scenario. Besides presenting DiMES, the authors have also

tested the efficiency of Adopt in some real-world problems mapped as DCOP
using DiMES, and presented two heuristics to improve Adopt’s performance.
They show that the convergence time of Adopt in the tested scenarios was one
hundred times higher than expected, illustrating the existence of a significant
difference in Adopt’s performance between simple abstract and complex real-
world problems. The presented heuristics reduce the convergence time to the
expected values and could potentially make Adopt able to deal with complex
problems.

In the present paper we discuss the difficulties of applying the cooperative
mediation (OptAPO) algorithm in a real-world problem. To illustrate this, we
use the Distributed Meeting Scheduling problem mapped as a DCOP using the
DiMES framework. The goal here is twofold. First, to check how OptAPO han-
dles a real-world DMS problem, given that the evaluation of OptAPO was ini-
tially based on an abstract scenario. We compare its performance with the re-
sults achieved by the Adopt, with and without heuristics. Second, we propose
to change OptAPO’s centralized search mechanism. The idea is to trade the
completeness of search (which is achieved via branch-and-bound) for the perfor-
mance of a heuristic search (using a genetic algorithm). The motivation behind
this trade-off is that in real-world applications such as meeting scheduling, to
have a good solution in a short time is better than achieving the optimal solution
in a long time.

In order to show these points, in Section 2 we summarize the cooperative
mediation approach and explain how the OptAPO works. In Section 3 we de-
scribe the DMS problem and its mapping to a DCOP using DiMES. In section
4 we discuss the OptAPO’s performance and show the results, comparing them
to those achieved by Adopt and a centralized approach based on branch-and-
bound (B&B). Given the performances, also in Section 4 we propose to replace
the B&B by a genetic algorithm (GA). Finally, in Section 5 we conclude giving
further directions for this work.

2 Cooperative Mediation and the OptAPO

The optimal asynchronous partial overlay (OptAPO) [5] is a cooperative medi-
ation based DCOP protocol. As said, OptAPO (as well as Adopt) is a complete
method, meaning that its final solution is the optimal one. The algorithm allows
the agents to extend the context they use for local decision-making to a rela-
tionship graph. Within this graph, one of the agents has to act as a mediator,
computing a solution for this extended context and recommending values for the
variables associated with the agents involved in the mediation session. This is
possible because agents construct a good list – which holds the names of agents
that have direct or indirect relationship to the list owner – and an agent view
– to hold the names, values, domains, and functional relationships of related
agents.

During the problem-solving process, each agent tries to improve the value of
its subproblem (the one it can solve within its relationship graph). The priority

to take the mediation role is be given to the agent with more information about
the problem. A connected graph models the DCOP where each node is an agent
(plus its values), and the links are the problem constraints. Each constraint or
functional relationship has an associated cost. The algorithm has three stages:
initialization, checking the agent view, and mediation. Details of these stages
can be found in [5]; we give here a brief description. During the initialization,
the agent sets its variables: current value (di), variable’s name (xi), priority (pi),
domain (Di), functional relationships (Ci), good list and agent view.

The agent’s goal is to improve the solution for its subproblem (represented by
Fi). Thus, during the second stage, the agent view is used to calculate the current
cost Fi within the relationship subgraph given by i’s good list. If Fi > F ∗i (F ∗i
being the optimal value of the subsystem), than agent i conducts either a passive
or an active mediation session, after which the value of F ∗i is recomputed. Agent
i sets a passive mediation if its priority to mediate is lower than the priority of
another agent in the subsystem; otherwise it sets a temporary mediation flag
(m

′
i) to active. If an active mediation flag is on, the agent can actually mediate

only if there is no other agent with a higher priority to mediate and with an
active mediation flag. The agent tests if a change in its local value would cause
a local cost to reach the optimal cost. If it does, then the agent changes its value
and does not start the mediation process. If the agent has a passive mediation
flag, it starts a passive mediation process.

In the mediation stage, agents receiving a mediation request either evalu-
ate it or send a wait message. Evaluation means looking at each of the domain
elements, labelling them with the names of the agents which share functional
relationships with cost fi > f∗i , and returning these in a message. The mediator
conducts a branch-and-bound (B&B) search to minimize the cost of the sub-
problem in its good list, as well as the costs for agents outside the mediation
session.

In [5] the OptAPO algorithm was applied to the MaxSAT 3-coloring problem
with assignments for different number of variables (agents): 8, 12, 16, etc. Two
series of tests were run with under- and over-constrained instances of the prob-
lem. These experiments compute the total number of messages, cycles, and time
consumed to achieve the solution (measured in seconds using a standard PC
configuration). Two conclusions of this evaluation should be pointed out here:

– OptAPO outperforms Adopt in terms of cycles (a round of message changing
among agents), messages and runtime;

– and the OptAPO runtime is not a byproduct of the centralized search (B&B).

In Section 4 we show that in a more complex scenario (DMS problem) these
conclusions could not be observed.

3 Distributed Meeting Scheduling as a DCOP

In Distributed Meeting Scheduling (DMS) a group of persons wishes to attend
several meetings that should be scheduled in a distributed fashion. The schedule

is built interactively by a cooperative network of decision-makers. When doing
this within a multiagent system, each agent normally has knowledge only about
the meetings it participates and its preferences concerning the schedules. The
agents must negotiate to build a consistent global schedule that fits the attendees
agenda and respects individual preferences. Additionally, in real-world scenarios
of DMS, the attendees try to optimize their agendas according to personal pref-
erences maintaining the privacy of their information. As said, all this negotiation
process may produce high communication cost and take an unacceptable time.

In DiMES, a DMS problem is formalized as follows:

– the group of attendees (agents) are represented as a resource set R =
{R∞, ...,R\} of cardinality N where Rn refers to the n-th resource (at-
tendee);

– the agenda is represented by a fractionated time interval. Let T ∈ N be a
natural number and ∆ be a length such that T ·∆ = Tlatest − Tearliest. The
possible time intervals to schedule the meetings (time domain) are repre-
sented by the set T = {∞, ..., T } of cardinality T where t ∈ T refers to the
time interval [Tearliest + (t− 1)∆,Tearliest + t∆];

– the meetings are represented as an event set E = {E∞, ..., E‖} of cardinality
K where Ek refers to the k-th event. The k-th event Ek is characterized
as the triple (Ak; Lk;V k) where Ak ⊂ R is the subset of resources that
are required by the event, Lk ∈ T is the number of contiguous time slots
necessary to schedule the event, and V k is the vector of preferences of each
resource to each event as described next;

– the preferences of an attendee is represented by a vector V k whose length is
the cardinality of Ak. If Rn ∈ Ak, then V k

n is an element of V k denoting the
value per time slot of the n-th resource to schedule event (meeting) k. The
n-th resource also has a value V 0

n (t) : T → R+ to keep the time slot t free
of meetings.

In summary, the DMS problem is about how to distribute the meetings
through the agendas’ time slots in order to maximize the attendees preferences.
Let us define a schedule S as a mapping from the event set to the time domain
where S(Ek) ⊂ T denotes the time slots committed for event k. All resources
in Ak must agree to allocate time slots S(Ek) to event Ek. So, formally the
problem, which is NP -hard, is: maxs(

∑K
k=1

∑
n∈Ak

∑
t∈S(Ek)(V

k
n −V 0

n (t))) such
that S(Ek1) ∪ S(Ek2) = ∅ ∀k1, k2 ∈ {1, ..., K}, k1 6= k2, Ak1 ∩Ak2 = ∅.

In [4], it is shown how to convert a DMS problem to a DCOP in which the
goal is to optimize a global objective function. This function is described as
the sum over a set of valued constraints related to pairs of variables. Usually, a
DCOP is represented by a graph, where nodes represent the set of variables and
the edges represent the utility function determined by the values of the adjacent
nodes. For each edge e(i, j) ∈ E there is a function fij(xi, xj) : Di ×Dj → R.
To solve the problem, one assignment a∗ ∈ A = D1 × ...×DN must be chosen,
such that a∗ = argmaxa∈A

∑
(i,j)∈E fij(xi = ai, xj = aj).

According to Maheswaran et al. there are three possible approaches for the
DMS–DCOP mapping:

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

ACDB

AD

BDC

ACDB ACDB

BDC

BDC

ACDB

AD

BD

C

A

Fig. 1. DCOP graph using PEAV approach

– time slots as variables (TSAV): in the TSAV each variable xn(t) represents a
time slot (t) of a resource (n), which means T ×N variables. The domain of
this variables are the set of events, and all variables having the same resource
belongs to the same agent. This approach leads to a very dense graph;

– events as variables (EAV): in the EAV each variable represents the start
time xk of an event Ek. The domain of these variables is the set of time slots
which is early enough so that the event can be accommodated. Each variable
is assigned to one of the agents that attends the event. This approach results
in a simple graph. Furthermore, the agents make decisions about multiple
resources. To make this decision, the information about preferences must be
shared among agents. In real-world scenarios, where an agent represents a
resource (attendee), this approach is not realistic due to the issue of lack of
privacy;

– private events as variables (PEAV): the PEAV is an alternative to tackle
the privacy problem of EAV. The main idea is the same of EAV (variables
representing events). However, the agents make decisions only about the
events they participate. Let us consider a set of variables Xk = {xk

n : n ∈ Ak}
where Xk ∈ {0, 1, ..., T−Lk+1} denotes starting time for event Ek where the
resource Rn takes part. The DCOP is constructed with the set of variables
X = ∪K

k=1X
k. Each variable Xn ∈ X that represents the n-th resource

belongs to the same agent. These variables are fully connected (intra-agent
links). The constraint utility function was designed to compute the values
of internal links so as to maintain the privacy. There are inter-agents links
connecting all participants of each event.

We are interested in representing DMS problems as close as possible to reality.
For this reason we prefer the PEAV approach. Next we show the constraint
utility function of PEAV and a conversion example. For details of each approach,
including the variable sets, the utility functions, and the proofs of congruency,
please refer to [4].

The resource constraint utility function used in the PEAV approach be-
tween the variables xk1

n1
and xk2

n2
, when xk1

n1
= t1 and xk2

n2
= t2, is given by

f(n1, k1, t1;n2, k2, t2), where:

f(n1, k1, t1; n2, k2, t2) = −MI{n1 6=n2}I{k1=k2}I{t1 6=t2}
+I{n1=n2}I{k1 6=k2}fintra(n1, k1, t1; k2, t2) (1)

where

fintra(n1, k1, t1; k2, t2) =

−M t1 6= 0, t2 6= 0, t1 ≤ t2 ≤ t1 + Lk − 1,
−M t1 6= 0, t2 6= 0, t2 ≤ t1 ≤ t2 + Lk − 1,
g(n, k1, t1; k2, t2) otherwise

and

g(n, k1, t1; k2, t2) =
1

|Xn| − 1
(Zk1

n (t1) + Zk2
n (t2))

where

Zki
n (ti) =

Lki∑

l=1

(V ki
n − V 0

n (ti + l + 1))I{ti 6=0}

with M > NTVmax where N is the number of participants, T is the number of
time slots and vmax = maxk,nV k

n .

As an illustrative example, assume that four attendees {A,B, C, D} should
schedule three meetings {E1, E2, E3} in a 3-time-slot agenda. Each meeting
takes one time-slot and has the following configuration: E1 involves A and D,
E2 A,C,D, and B, and E3 involves B,D, and C. Figure 1 shows the DCOP graph
for this example.

4 DMS through Cooperative Mediation

To apply OptAPO in the DMS problem we implemented a simple simulator using
Java and conducted experiments with randomly generated instances of the DMS
problem. We have used the same scenarios used in [4] to test the Adopt algorithm
in real-world problems, mapping them as DCOPs using DiMES, following the
PEAV approach. We ran the experiments in a standard PC under Linux.

Let us start discussing the performances of both OptAPO and Adopt in a
simple scenario (MaxSAT 3-coloring problem, i.e. the domain size is 3). Although
both were evaluated also with a large number of agents (more than 20), the den-
sity of the graph and the size of the domains were restricted. They worked with
a number of constraints equal to 2 ×K and 3 ×K, where K is the number of
nodes. Despite this, the evaluation of Adopt has shown that more than 10,000
cycles were necessary to reach the optimal solution. They have also shown that

approximately 50 messages were exchanged among the agents in each cycle. Al-
though the total time (in seconds) has not been analyzed, it is reasonable to
expect this to be high. We can see in these results that to find an optimal so-
lution is expensive even in simple scenarios. The total number of exchanged
messages exceeds 500,000, which may represent a significant overload in a com-
munication network. It is important to point out that the performance of Adopt
was compared to a centralized search based on B&B, i.e. the same centralized
search used in OptAPO. Adopt outperforms B&B in this analysis.

The evaluation of OptAPO in the same scenario has shown an immense
reduction in the number of messages and cycles. The total number of exchanged
messages does not exceed 15,000 and the number of cycles does not exceed 120.
OptAPO outperforms Adopt in this analysis, proving that, in simple scenarios,
the OptAPO runtime is not a byproduct of the centralized search (B&B).

Let us consider a more complex, real-world scenario: a DMS problem. In this
scenario 9 attendees, with a 8-time-slot agenda, must schedule 8 meetings. This
scenario was randomly chosen the data set in [4]. Converting this DMS problem
to DCOP (using PEAV) generates 23 variables, with a 8-element domain, and 16
constraints. When Adopt is applied in this scenario, its performance decreases
dramatically.

For the class of DMS problems, the authors have proposed two heuristics
to speedup the basic Adopt (which has not performed as good as in the graph
coloring scenario discussed above). These heuristics have shown good results.
One heuristic converts the constraint graph into a deep-first search (DFS) tree
which is used as a hierarchy to communicate the values and costs. The authors
also suggested to replace this structure with a MLSP (Minimum Depth Span-
ning) tree. They have shown that the communication structure affect the time of
convergence to the optimal solution. Besides, the pre-computation of a best case
bound in a distributed fashion was proposed. It was shown that the initial accu-
racy of this bound affects the convergence in complex scenarios. These heuristics
were evaluated in the DMS scenario described above and the total number of
cycles felt to less than 15,000. Despite this decrease, in a real application, to
exchange 750,000 messages (15,000 cycles times 50 messages per cycle) is still a
problem.

Since OptAPO has shown a better performance than Adopt in the graph
coloring scenario, we expect a similar performance in the DMS one. Initially we
intended to compare the original results of Adopt with the results archived in
the scenario proposed above using OptAPO. However, it was not possible due
the time complexity associated with the scenario.

In a recent paper, Davin and Modi [1] analyze the OptAPO and Adopt under
a evaluation metric different of the one used here. In this new analises the authors
shown that Adopt in complex scenarios requires less computation of OptAPO
despite been outperformed by OptAPO in number of cicles, that was the metric
used before (and here also). Their conclusions highlight our experimental results.
Next we analyze what happens.

The OptAPO algorithm uses a partial centralization technique (cooperative
mediation) based on a centralized search mechanism (B&B) to achieve the op-
timal result. The performance of OptAPO is closely related to the B&B. Each
time an agent decides to mediate in OptAPO (active or passive) it conducts a
B&B search in their good list. As the size of the good list grows, so does the
size of the B&B search space. If we have N variables in the good list, and M
is the domain size, then the size of the B&B search space is MN in the worst
case. Our scenario has 23 variables with an 8-elements domain, which means to
search within a 6 × 1020 possibilities. The number of variables involved in the
B&B increases dramatically the search space in scenarios with large domains.
During the OptAPO execution, the agents’ good list tends to increase as addi-
tional links are created due to external conflicts. Through this process, there is a
tendency of at least one agent achieving complete centralization and its good list
will have all variables. So, there are B&B searches during the OptAPO execution
that involve all variables, which means the worst case.

Therefore, since OptAPO would not run for the above scenario, we first
reduced the complexity of it. Later we will return to it, via an heuristic approach.
Basically, the reduction is achieved by abandoning the PEAV and using an EAV
(see Section 3) instead, in which there are less variables (8). Adopt was executed
for the same scenario, and the computer configuration was the same. Table 1
shows the runtime (in seconds), the number of exchanged messages, and the
number of cycles of OptAPO, a centralized search based on B&B, Adopt, and
Adopt with the speedup heuristics (here after we call it Adopt+H).

OptAPO B&B Adopt Adopt+H

runtime (s) 61133 56641 12529 89
messages 768 - 3370700 15798

cycles 19 - 146566 701

Table 1. Evaluation of DCOP algorithms in the DMS/EAV scenario

Interestingly, OptAPO is worse than the B&B. Let us see why there was a
degradation in the OptAPO performance from the graph-coloring scenario to
this one. Two heuristics were used to speedup the B&B inside the OptAPO al-
gorithm: the first branch of the search was the current solution; and the search
terminates early when the bound is equal to the current optimal local cost and
the cost for the agents outside the mediation is 0. These heuristics are impor-
tant because the quality of the B&B for a specific problem depends on how the
branching takes place and which bounding scheme is used. Let us focus on the
initial steps of OptAPO execution, where the performance of B&B should, the-
oretically, be the best due to the good list size. In an over-constraint scenario
the agents’ good list start with many variables (the good list is first composed
by variables’ that shares a relation with the agent by a constraint). The primary
values of the variables are randomly setup and the current optimal local cost
is equal to 0. Due to these characteristics, the speedup proposed for the B&B

does not affect the initial phase of the OptAPO algorithm. There is no optimal
solution computed yet - the current solution is randomly determined, there are
many agents in the good list and no early termination in the search is possible
(the bound could not be equal to zero).

For example, when simulating our reduced DMS scenario (EAV), the first
search involves all 8 variables, which means a search space of 16 million pos-
sibilities. The agent who decides to mediate first (the agent with the highest
priority, i.e. the one with more neighbors) has constraints with all other 7 vari-
ables. In this case, the initial solution is very poor and better solutions are found
only gradually. In summary, when OptAPO is used in this scenario, it has to
explore the entire solution space degrading the performance already in the first
steps. As the size of the good list grows, so does the search space of the B&B,
increasing the time consumed by OptAPO. Moreover, OptAPO has to run other
centralized searches during the further steps of its execution, potentially with
more than one including all variables.

The Adopt+H shows the best results due to the speedup heuristics, out-
performing all other algorithms. In particular, Adopt without heuristics outper-
forms OptAPO in terms of runtime. The same arguments used above to justify
OptAPO’s low performance also apply here. Since Adopt outperforms the cen-
tralized B&B already for simple scenarios, and OptAPO was outperformed by
B&B here, we expected this to happen. Also, this could be forecasted given the
graphs presented in [5], when the authors discuss the performance of Adopt and
OptAPO regarding more dense graph (higher number of constraints). Although
OptAPO starts with the best performance (in terms of runtime), there is a trend
of this not continuing for more dense graphs because OptAPO’s performance de-
creases exponentially while Adopts decreases linearly.

However, and this is very important in real-world scenarios, the number of
messages exchanged by OptAPO (as well as the number of cycles necessary to
achieve the optimum) is lower than both Adopt and Adopt+H, showing the value
of cooperative mediation. Even if Adopt+H outperforms the other algorithms
by a large difference in terms of runtime, the number of exchanged messages and
cycles taken in this reduced scenario is significantly large.

Assuming that in real-world applications it is normally enough to have a
solution close to the optimal, in order to take advantage of the value of the
cooperative mediation, we propose to trade the completeness of the B&B search
mechanism for the performance of a heuristic search. Our aim is to have the
best of the two worlds: OptAPO’s performance in terms of number of messages
and cycles, and performance in terms of runtime. Therefore, instead of using
the B&B algorithm within OptAPO, we use a GA for the search. Of course, this
mechanism does not guarantee optimality. However, GAs works well in very large
search spaces. Besides, the GA mapping fits this problem well, as demonstrated
by the pure-GA based approaches proposed for scheduling and optimization
problems [2].

In GA, each string is a possible solution having as many genes as variables
appearing in the DCOP. We represent each element of the domain as an integer.

In order to fit the gene and string mapping, integers were converted to bina-
ries. For example, in our reduced (EAV) DMS scenario there are 8 elements in
the domain and 8 variables. Each element in the domain represents a possible
meeting’s start time xk. As the agenda has 8 time slots and each meeting con-
sumes one of them, the domain values are 0 to 7. Each element of the domain is
represented by 3 binary digits. Thus, the string has 8 binary elements, one for
each variable. Considering these, each one representing a meeting Ek, one of the
optimal solutions for this scenario (obtained from an Adopt+H run) is: E0 = 3,
E1 = 0, E2 = 2, E3 = 5, E4 = 7, E5 = 2, E6 = 7, and E7 = 1. This solution is
represented as 011000010101111010111001 in the population.

Each generation has 200 strings. The fitness function is the same DCOP
global objective function discussed in Section 1. The cost of a solution is com-
puted as a sum of the costs of each constraint. Strings are ordered according
to the cost and only a set with 40% of the lowest cost solutions are chosen for
reproduction. The best 5% of this set stay unchanged in the next generation;
the other 35% reproduce by crossover. From this able-to-reproduce population,
a small number of genes are mutated with a rate of 1

gene size×num of genes . In
our example, only 0.02% mutates. The solution of the GA is the string with the
lowest cost after 200 generations.

Table 2 shows the performance of OptAPO using the GA search mechanism
(HeuAPO), Adopt+H, and, for sake of comparison with a centralized search,
one based only on GA. The runtime, the total number of cycles, and the num-
ber of exchanged messages were measured. Here we can afford to use the more
complex DMS scenario (PEAV with 23 variables) described in the beginning of
this section. The HeuAPO outperforms Adopt+H in all measured parameters.
Besides, HeuAPO reaches the optimal solution in this scenario just as Adopt
does.

HeuAPO Adopt+H GA

runtime (s) 978 8268 83
messages 5934 906758 -

cycles 192 13991 -
Table 2. Evaluation of the heuristic algorithm in a DMS scenario, compared to Adopt,
and to a centralized search based on GA

5 Conclusions and Further Work

In this paper we analyze the performance of several approaches to solve real-
world distributed meeting scheduling problems modelled as distributed con-
straint satisfaction problems, two well-known scenarios in AI. We compare the
performance of the OptAPO and Adopt algorithms. Adopt needs a large num-
ber of messages and cycles to converge to a solution, while OptAPO performs

worse in terms of runtime, both critical issues in real-world applications. For
instance, it was shown that the main assumptions about OptAPO in simple
scenarios are not necessarily valid in more complex ones. In our experiment,
in terms of runtime, OptAPO was worse than the B&B used to do the inter-
nal centralized search, and worse than Adopt, due to the reasons explained in
the previous section. However, OptAPO outperforms Adopt in the number of
exchanged messages and number of cycles.

Given the performance of Adopt and OptAPO, we have proposed the use
of an heuristic search mechanism to replace the B&B in the cooperative media-
tion. The results obtained are very promising: the heuristic version of OptAPO
achieves the best solution with a significant better performance, outperforming
Adopt even with the speedup heuristics.

In the future we intend to pursue three directions. First, to run our ap-
proach with several different scenarios to check the quality of the solutions.
Second, to compare the results of our proposal with other incomplete, heuristic
DCOP algorithms, including a version of Adopt which uses an error thresh-
old thus permitting the algorithm to stop earlier (when the solution is within
the threshold). Finally, it would be interesting to investigate which classes of
problems are adequate for which type of DCOP algorithm. Liu and Sycara [3]
discuss the use of partial overlap among subproblems solutions. In their algo-
rithm, Anchor&Ascend, an anchor agent is dynamically chosen and conducts a
local optimal search in its subproblem. According to the authors, their approach
is really effective when the structure of the problem exhibits extreme disparity
among the subproblems. Maybe it is the case that OptAPO is also sensible to
the structure of the problem, so that not only the complexity of the DMS prob-
lem could be affecting OptAPOs performance, but also its structure. Therefore,
a similar analysis (algorithm performance vs. problem structure) should be done
regarding OptAPo.

References

1. John Davin and Pragnesh Modi. Impact of problem centralization in distributed
constraint optimization algorithms. In Proceedings of Autonomous Agents and
Multi-Agent Systems - AAMAS, 2005. To appear.

2. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.

3. JyiShane Liu and Katia P. Sycara. Exploiting problem structure for distributed con-
straint optimization. In Victor Lesser, editor, Proceedings of the First International
Conference on Multi–Agent Systems, pages 246–254, San Francisco, CA, 1995. MIT
Press.

4. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham.
Taking DCOP to the real world: Efficient complete solutions for distributed multi-
event scheduling. In Third International Joint Conference on Autonomous Agents
and Multiagent Systems, volume 1, pages 310–317, Washington, DC, USA, July
2004. IEEE Computer Society.

5. R. Mailler and V. Lesser. Solving distributed constraint optimization problems using
cooperative mediation. In Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 438–445. IEEE Computer Society, 2004.

6. Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. An asyn-
chronous complete method for distributed constraint optimization. In Second in-
ternational joint conference on Autonomous agents and multiagent systems, pages
161–168, New York, NY, USA, 2003. ACM Press.

7. Sandip Sen and Edmund H. Durfee. A formal study of distributed meeting schedul-
ing. In Conference on Organizational Computing Systems, pages 310–317, september
1991.

8. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowl-
edge and Data Engineering, 10(5):673–685, 1998.

